Symmetry in Physics, Problem Sheet 1

For simplicity, we work in the natural system of units where $\hbar=c=1$.

1. Show that any linear operator \hat{A} can be written in the form

$$
\hat{A}=\hat{A}_{R}+i \hat{A}_{I}
$$

where \hat{A}_{R} and \hat{A}_{I} are hermitian operators.
2. A linear operator is normal if and only if $\left[\hat{A}, \hat{A}^{\dagger}\right]=0$. Show that, if \hat{A} is normal, it has a complete orthonormal set of eigenstates.
Hint: Use the decomposition of \hat{A} introduced in question 1.
3. In this problem we study a simplified model of the propagation of K^{0} and $\overline{K^{0}}$. We start by representing their states as kets in Dirac notation:

$$
\left|K^{0}\right\rangle=\binom{1}{0}, \quad\left|\overline{K^{0}}\right\rangle=\binom{0}{1}
$$

The Schrödinger equation for a superposition of of K^{0} and $\overline{K^{0}}$

$$
|\psi(t)\rangle=\psi_{1}(t)\left|K^{0}\right\rangle+\psi_{2}(t)\left|\overline{K^{0}}\right\rangle=\binom{\psi_{1}(t)}{\psi_{2}(t)}
$$

has the form

$$
i \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle,
$$

where \hat{H} has the general form

$$
\hat{H}=\hat{M}-\frac{i}{2} \hat{\Gamma}
$$

where \hat{M} and $\hat{\Gamma}$ are two hermitian operators. We assume that \hat{M} and $\hat{\Gamma}$ have the form

$$
\hat{M}=\left(\begin{array}{cc}
m_{K} & M \\
M & m_{K}
\end{array}\right), \quad \hat{\Gamma}=\left(\begin{array}{cc}
\gamma & \Gamma \\
\Gamma & \gamma
\end{array}\right),
$$

with M and Γ real numbers.
(a) Compute the eigenvalues of $M_{1,2}-i / 2 \Gamma_{1,2}$ of \hat{H}.
(b) We identify K_{1} with the particle with the larger width $\Gamma_{1}>\Gamma_{2}$ (i.e. the shorter lifetime). From experimental data we have

$$
\begin{aligned}
& \frac{M_{1}+M_{2}}{2} \simeq 500 \mathrm{MeV} \\
& \Delta M \equiv M_{1}-M_{2}=-3.5 \times 10^{-6} \mathrm{eV} \\
& \Gamma_{1} \simeq 1.1 \times 10^{10} \mathrm{~s}^{-1} \\
& \Gamma_{2} \simeq 1.9 \times 10^{7} \mathrm{~s}^{-1}
\end{aligned}
$$

Introducing $\Delta \Gamma \equiv \Gamma_{1}-\Gamma_{2}$, what conclusions can we infer for m_{K}, γ, M and Γ ?
(c) If we perform a $C P$ transformation on K^{0} and $\overline{K^{0}}$ we obtain

$$
C P\left|K^{0}\right\rangle=-\left|\overline{K^{0}}\right\rangle, \quad C P\left|\overline{K^{0}}\right\rangle=-\left|K^{0}\right\rangle
$$

It is found experimentally that the state with the largest width is CP-even. Use this information to ultimately constrain M and Γ, and determine $\left|K_{1}\right\rangle$ and $\left|K_{2}\right\rangle$.
(d) At the time $t=0 \mathrm{~s}$ the system is a beam composed of K^{0} particles. What is the probability of finding a $\overline{K^{0}}$ at a time $t>0 \mathrm{~s}$? Express your result in terms of Γ_{1}, Γ_{2} and ΔM. Can you insert the actual numbers and plot the probability as a function of t ?
4. We know from data that $C P$ is not conserved in kaon decays. Then, the actual states $\left|K_{L}\right\rangle$ and $\left|K_{S}\right\rangle$ that we observe are linear combinations of $\left|K_{1}\right\rangle$ and $\left|K_{2}\right\rangle$, as follows

$$
\begin{aligned}
\left|K_{S}\right\rangle & =\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\left|K_{1}\right\rangle+\epsilon\left|K_{2}\right\rangle\right) \\
\left|K_{L}\right\rangle & =\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\left|K_{2}\right\rangle+\epsilon\left|K_{1}\right\rangle\right)
\end{aligned}
$$

where ϵ is a complex number, and $|\epsilon| \simeq 2.3 \times 10^{-3}$.
(a) Are $\left|K_{S}\right\rangle$ and $\left|K_{L}\right\rangle$ orthonormal?
(b) Let us denote with $\mathcal{A}\left(K^{0} \rightarrow \pi^{0} \pi^{0}\right)$ the amplitude for the decay process $K^{0} \rightarrow$ $\pi^{0} \pi^{0}$. We define similarly the amplitudes $\mathcal{A}\left(K^{0} \rightarrow \pi^{+} \pi^{-}\right)$, $\mathcal{A}\left(\overline{K^{0}} \rightarrow \pi^{0} \pi^{0}\right)$, $\mathcal{A}\left(\overline{K^{0}} \rightarrow \pi^{+} \pi^{-}\right)$, and for all other processes. We assume that the interaction giving these decays conserves $C P$, which implies (why?)

$$
\mathcal{A}\left(K^{0} \rightarrow \pi \pi\right)=-\mathcal{A}\left(\overline{K^{0}} \rightarrow \pi \pi\right)
$$

We define the two ratios of amplitudes

$$
\eta_{00} \equiv \frac{\mathcal{A}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\mathcal{A}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}, \quad \eta_{+-} \equiv \frac{\mathcal{A}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\mathcal{A}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)} .
$$

Express η_{00} and η_{+-}in terms of ϵ and comment on your result.
(c) We now consider the semileptonic decays $K^{0} \rightarrow \pi^{-} e^{+} \nu_{e}$ and $\overline{K^{0}} \rightarrow \pi^{+} e^{-} \bar{\nu}_{e}$. The same processes with opposite sign of the lepton charges are forbidden. Consider the ratio

$$
\delta_{L}=\frac{\left|\mathcal{A}\left(K_{L} \rightarrow \pi^{-} e^{+} \nu_{e}\right)\right|^{2}-\left|\mathcal{A}\left(K_{L} \rightarrow \pi^{+} e^{-} \bar{\nu}_{e}\right)\right|^{2}}{\left|\mathcal{A}\left(K_{L} \rightarrow \pi^{-} e^{+} \nu_{e}\right)\right|^{2}+\left|\mathcal{A}\left(K_{L} \rightarrow \pi^{+} e^{-} \bar{\nu}_{e}\right)\right|^{2}}
$$

and express it in terms of ϵ.

