Symmetry in Physics, Problem Sheet 1

For simplicity, we work in the natural system of units where $\hbar = c = 1$.

1. Show that any linear operator \hat{A} can be written in the form

$$\hat{A} = \hat{A}_R + i\hat{A}_I,$$

where \hat{A}_R and \hat{A}_I are hermitian operators.

2. A linear operator is *normal* if and only if $[\hat{A}, \hat{A}^{\dagger}] = 0$. Show that, if \hat{A} is normal, it has a complete orthonormal set of eigenstates.

Hint: Use the decomposition of \hat{A} introduced in question 1.

3. In this problem we study a simplified model of the propagation of K^0 and $\overline{K^0}$. We start by representing their states as kets in Dirac notation:

$$|K^{0}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |\overline{K^{0}}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}.$$

The Schrödinger equation for a superposition of of K^0 and $\overline{K^0}$

$$|\psi(t)\rangle = \psi_1(t)|K^0\rangle + \psi_2(t)|\overline{K^0}\rangle = \left(\begin{array}{c}\psi_1(t)\\\psi_2(t)\end{array}\right)$$

has the form

$$i\frac{\partial}{\partial t}|\psi(t)
angle = \hat{H}|\psi(t)
angle \,,$$

where \hat{H} has the general form

$$\hat{H} = \hat{M} - \frac{i}{2}\hat{\Gamma} \,.$$

where \hat{M} and $\hat{\Gamma}$ are two hermitian operators. We assume that \hat{M} and $\hat{\Gamma}$ have the form

$$\hat{M} = \begin{pmatrix} m_K & M \\ M & m_K \end{pmatrix}, \qquad \hat{\Gamma} = \begin{pmatrix} \gamma & \Gamma \\ \Gamma & \gamma \end{pmatrix},$$

with M and Γ real numbers.

- (a) Compute the eigenvalues of $M_{1,2} i/2\Gamma_{1,2}$ of \hat{H} .
- (b) We identify K_1 with the particle with the larger width $\Gamma_1 > \Gamma_2$ (i.e. the shorter lifetime). From experimental data we have

$$\begin{split} \frac{M_1 + M_2}{2} &\simeq 500 \,\,\mathrm{MeV}\,,\\ \Delta M &\equiv M_1 - M_2 = -3.5 \times 10^{-6} \,\,\mathrm{eV}\,,\\ \Gamma_1 &\simeq 1.1 \times 10^{10} \,\,\mathrm{s}^{-1}\,,\\ \Gamma_2 &\simeq 1.9 \times 10^7 \,\,\mathrm{s}^{-1}\,. \end{split}$$

Introducing $\Delta \Gamma \equiv \Gamma_1 - \Gamma_2$, what conclusions can we infer for m_K , γ , M and Γ ?

(c) If we perform a CP transformation on K^0 and $\overline{K^0}$ we obtain

$$CP|K^0\rangle = -|\overline{K^0}\rangle$$
, $CP|\overline{K^0}\rangle = -|K^0\rangle$.

It is found experimentally that the state with the largest width is CP-even. Use this information to ultimately constrain M and Γ , and determine $|K_1\rangle$ and $|K_2\rangle$.

- (d) At the time t = 0 s the system is a beam composed of K^0 particles. What is the probability of finding a $\overline{K^0}$ at a time t > 0 s? Express your result in terms of Γ_1, Γ_2 and ΔM . Can you insert the actual numbers and plot the probability as a function of t?
- 4. We know from data that CP is not conserved in kaon decays. Then, the actual states $|K_L\rangle$ and $|K_S\rangle$ that we observe are linear combinations of $|K_1\rangle$ and $|K_2\rangle$, as follows

$$|K_S\rangle = \frac{1}{\sqrt{1+|\epsilon|^2}} \left(|K_1\rangle + \epsilon |K_2\rangle\right),$$

$$|K_L\rangle = \frac{1}{\sqrt{1+|\epsilon|^2}} \left(|K_2\rangle + \epsilon |K_1\rangle\right),$$

where ϵ is a *complex* number, and $|\epsilon| \simeq 2.3 \times 10^{-3}$.

- (a) Are $|K_S\rangle$ and $|K_L\rangle$ orthonormal?
- (b) Let us denote with $\mathcal{A}(K^0 \to \pi^0 \pi^0)$ the amplitude for the decay process $K^0 \to \pi^0 \pi^0$. We define similarly the amplitudes $\mathcal{A}(K^0 \to \pi^+ \pi^-)$, $\mathcal{A}(\overline{K^0} \to \pi^0 \pi^0)$, $\mathcal{A}(\overline{K^0} \to \pi^+ \pi^-)$, and for all other processes. We assume that the interaction giving these decays conserves CP, which implies (why?)

$$\mathcal{A}(K^0 \to \pi\pi) = -\mathcal{A}(\overline{K^0} \to \pi\pi).$$

We define the two ratios of amplitudes

$$\eta_{00} \equiv \frac{\mathcal{A}(K_L \to \pi^0 \pi^0)}{\mathcal{A}(K_S \to \pi^0 \pi^0)}, \qquad \eta_{+-} \equiv \frac{\mathcal{A}(K_L \to \pi^+ \pi^-)}{\mathcal{A}(K_S \to \pi^+ \pi^-)}.$$

Express η_{00} and η_{+-} in terms of ϵ and comment on your result.

(c) We now consider the semileptonic decays $K^0 \to \pi^- e^+ \nu_e$ and $\overline{K^0} \to \pi^+ e^- \bar{\nu}_e$. The same processes with opposite sign of the lepton charges are forbidden. Consider the ratio

$$\delta_L = \frac{|\mathcal{A}(K_L \to \pi^- e^+ \nu_e)|^2 - |\mathcal{A}(K_L \to \pi^+ e^- \bar{\nu}_e)|^2}{|\mathcal{A}(K_L \to \pi^- e^+ \nu_e)|^2 + |\mathcal{A}(K_L \to \pi^+ e^- \bar{\nu}_e)|^2},$$

and express it in terms of ϵ .