
Symmetry in Physics, Problem Sheet 2

For simplicity, we work in the natural system of units where ℏ = c = 1.

1. A unitary operator Û satisfies Û †Û = 1. Unitary operators are used to represent
symmetry transformations in Quantum Mechanics. Consider a state |ψ⟩, solution of
the Schrödinger equation

i
∂

∂t
|ψ⟩ = Ĥ|ψ⟩ ,

where Ĥ is the Hamiltonian for the system. Show that |ψ′⟩ ≡ U |ψ⟩ is also a solution
of the Schrödinger equation if and only if ÛĤÛ † = Ĥ.

Note that, if Û represents a continuous symmetry operation, then Û = exp[−iαT̂ ],
where T̂ is a hermitian operator. The condition ÛĤÛ † = Ĥ implies [T̂ , Ĥ] = 0, i.e.
the observable associated with T̂ is conserved.

2. Consider the unitary parity operator P̂ , defined in such a way that P̂ ˆ⃗xP̂ † = −ˆ⃗x.

(a) Show that P̂ 2 = 1 (up to a phase). What can we say about P̂ †?

(b) What are the eigenvalues of P̂?

3. Consider the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(a) Using the conventions [A,B] = AB − BA, {A,B} = AB + BA, show that the
matrices σi

2
satisfy the commutation relations[σi

2
,
σj
2

]
= i ϵijk

σk
2
,

where ϵijk is totally antisymmetric and ϵ123 = +1. Show also that{σi
2
,
σj
2

}
=
1

2
δij ,

with 1 =

(
1 0
0 1

)
denoting the two-dimensional identity matrix.

(b) Consider the matrix G ≡ exp(− i
2
θσ3), dependent on the real parameter θ. Show

by explicit computation that

exp

(
−iθ

2
σ3

)
= 1 · cos(θ/2)− i σ3 · sin(θ/2) .

Perform the above transformation using θ = 2π and θ = 4π, respectively, and
compare your result to ordinary three-dimensional rotations by an angle θ about
the 3-axis.
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(c) Consider the matrix U(θ⃗) ≡ exp(− i
2
θkσk) with real parameters θ⃗ ≡ (θ1, θ2, θ3).

Show, either by explicit computation or with the help of part (b) and symmetry
arguments, that

exp

(
−iθk

2
σk

)
= 1 · cos(θ/2)− i (θ̂kσk) · sin(θ/2) .

Here, θ̂ = θ⃗/θ is the unit vector in the direction of θ⃗, and θ ≡ |θ⃗|.

4. Consider the set of matrices of the form U(θ⃗) ≡ exp(− i
2
θkσk).

(a) Using the known relation det (exp(A)) = exp (TrA), show that any U(θ⃗) has
unit determinant. What can we say about the determinant of the product
U(θ⃗1)U(θ⃗2)?

(b) From question 2, we have seen that U(θ⃗) = a01+ iakσk, where a0, a1, a2, a3 are
real numbers. Compute |a0|2 + |a1|2 + |a2|2 + |a3|2. Imagine that (a0, a1, a2, a3)

are points in a four-dimensional space. What surface do they describe while θ⃗
varies?

(c) Show that [U(θ⃗)]−1 = [U(θ⃗)]† = U(−θ⃗ ).
These properties, and the fact that U (⃗0) = 1 imply that the matrices U(θ) form
the group of 2× 2 unitary matrices with unit determinant, a.k.a. SU(2).

5. Given a three-dimensional vector v⃗ = (v1, v2, v3), we construct the 2 × 2 matrix
v̄ = viσi, with σi, i = 1, 2, 3 the three Pauli matrices, as follows

v̄ =

(
v3 v1 − iv2

v1 + iv2 −v3

)
(a) Show that v⃗ 2 = − det(v̄). Then show that, for any two vectors v⃗ and w⃗,

v⃗ · w⃗ =
1

4
[det(v̄ − w̄)− det(v̄ + w̄)] .

(b) Using the properties of Pauli matrices, show that, for any matrix U ∈ SU(2),
the matrix

v̄′ = U v̄ U † ,

can be written in the form v̄′ = v′iσi, where

v′i = Ωij vj , Ωij =
1

2
Tr

[
σiUσjU

†] .
Hint. Any 2× 2 complex matrix M can be written as M =M01+Miσi.

(c) Show that Ω is an orthogonal transformation, i.e. if v⃗ ′ = Ωv⃗ and w⃗ ′ = Ωw⃗, then
v⃗ ′ · w⃗ ′ = v⃗ · w⃗. What kind of ortogonal transformation is Ω?
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