Symmetry in Physics, Problem Sheet 2

For simplicity, we work in the natural system of units where $\hbar=c=1$.

1. A unitary operator \hat{U} satisfies $\hat{U}^{\dagger} \hat{U}=\mathbb{1}$. Unitary operators are used to represent symmetry transformations in Quantum Mechanics. Consider a state $|\psi\rangle$, solution of the Schrödinger equation

$$
i \frac{\partial}{\partial t}|\psi\rangle=\hat{H}|\psi\rangle
$$

where \hat{H} is the Hamiltonian for the system. Show that $\left|\psi^{\prime}\right\rangle \equiv U|\psi\rangle$ is also a solution of the Schrödinger equation if and only if $\hat{U} \hat{H} \hat{U}^{\dagger}=\hat{H}$.
Note that, if \hat{U} represents a continuous symmetry operation, then $\hat{U}=\exp [-i \alpha \hat{T}]$, where \hat{T} is a hermitian operator. The condition $\hat{U} \hat{H} \hat{U}^{\dagger}=\hat{H}$ implies $[\hat{T}, \hat{H}]=0$, i.e. the observable associated with \hat{T} is conserved.
2. Consider the unitary parity operator \hat{P}, defined in such a way that $\hat{P} \hat{\vec{x}}^{\dagger} \hat{P}^{\dagger}=-\hat{\vec{x}}$.
(a) Show that $\hat{P}^{2}=\mathbb{1}$ (up to a phase). What can we say about \hat{P}^{\dagger} ?
(b) What are the eigenvalues of \hat{P} ?
3. Consider the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Using the conventions $[A, B]=A B-B A,\{A, B\}=A B+B A$, show that the matrices $\frac{\sigma_{i}}{2}$ satisfy the commutation relations

$$
\left[\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right]=i \epsilon_{i j k} \frac{\sigma_{k}}{2}
$$

where $\epsilon_{i j k}$ is totally antisymmetric and $\epsilon_{123}=+1$. Show also that

$$
\left\{\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right\}=\frac{\mathbb{1}}{2} \delta_{i j}
$$

with $\mathbb{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ denoting the two-dimensional identity matrix.
(b) Consider the matrix $G \equiv \exp \left(-\frac{i}{2} \theta \sigma_{3}\right)$, dependent on the real parameter θ. Show by explicit computation that

$$
\exp \left(-\frac{i \theta}{2} \sigma_{3}\right)=\mathbb{1} \cdot \cos (\theta / 2)-i \sigma_{3} \cdot \sin (\theta / 2)
$$

Perform the above transformation using $\theta=2 \pi$ and $\theta=4 \pi$, respectively, and compare your result to ordinary three-dimensional rotations by an angle θ about the 3 -axis.
(c) Consider the matrix $U(\vec{\theta}) \equiv \exp \left(-\frac{i}{2} \theta_{k} \sigma_{k}\right)$ with real parameters $\vec{\theta} \equiv\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$. Show, either by explicit computation or with the help of part (b) and symmetry arguments, that

$$
\exp \left(-\frac{i \theta_{k}}{2} \sigma_{k}\right)=\mathbb{1} \cdot \cos (\theta / 2)-i\left(\hat{\theta}_{k} \sigma_{k}\right) \cdot \sin (\theta / 2)
$$

Here, $\hat{\theta}=\vec{\theta} / \theta$ is the unit vector in the direction of $\vec{\theta}$, and $\theta \equiv|\vec{\theta}|$.
4. Consider the set of matrices of the form $U(\vec{\theta}) \equiv \exp \left(-\frac{i}{2} \theta_{k} \sigma_{k}\right)$.
(a) Using the known relation $\operatorname{det}(\exp (A))=\exp (\operatorname{Tr} A)$, show that any $U(\vec{\theta})$ has unit determinant. What can we say about the determinant of the product $U\left(\vec{\theta}_{1}\right) U\left(\vec{\theta}_{2}\right)$?
(b) From question 2, we have seen that $U(\vec{\theta})=a_{0} \mathbb{1}+i a_{k} \sigma_{k}$, where $a_{0}, a_{1}, a_{2}, a_{3}$ are real numbers. Compute $\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\left|a_{3}\right|^{2}$. Imagine that $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ are points in a four-dimensional space. What surface do they describe while $\vec{\theta}$ varies?
(c) Show that $[U(\vec{\theta})]^{-1}=[U(\vec{\theta})]^{\dagger}=U(-\vec{\theta})$.

These properties, and the fact that $U(\overrightarrow{0})=\mathbb{1}$ imply that the matrices $U(\theta)$ form the group of 2×2 unitary matrices with unit determinant, a.k.a. $S U(2)$.
5. Given a three-dimensional vector $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$, we construct the 2×2 matrix $\bar{v}=v_{i} \sigma_{i}$, with $\sigma_{i}, i=1,2,3$ the three Pauli matrices, as follows

$$
\bar{v}=\left(\begin{array}{cc}
v_{3} & v_{1}-i v_{2} \\
v_{1}+i v_{2} & -v_{3}
\end{array}\right)
$$

(a) Show that $\vec{v}^{2}=-\operatorname{det}(\bar{v})$. Then show that, for any two vectors \vec{v} and \vec{w},

$$
\vec{v} \cdot \vec{w}=\frac{1}{4}[\operatorname{det}(\bar{v}-\bar{w})-\operatorname{det}(\bar{v}+\bar{w})] .
$$

(b) Using the properties of Pauli matrices, show that, for any matrix $U \in S U(2)$, the matrix

$$
\bar{v}^{\prime}=U \bar{v} U^{\dagger}
$$

can be written in the form $\bar{v}^{\prime}=v_{i}^{\prime} \sigma_{i}$, where

$$
v_{i}^{\prime}=\Omega_{i j} v_{j}, \quad \Omega_{i j}=\frac{1}{2} \operatorname{Tr}\left[\sigma_{i} U \sigma_{j} U^{\dagger}\right] .
$$

Hint. Any 2×2 complex matrix M can be written as $M=M_{0} \mathbb{1}+M_{i} \sigma_{i}$.
(c) Show that Ω is an orthogonal transformation, i.e. if $\vec{v}^{\prime}=\Omega \vec{v}$ and $\vec{w}^{\prime}=\Omega \vec{w}$, then $\vec{v}^{\prime} \cdot \vec{w}^{\prime}=\vec{v} \cdot \vec{w}$. What kind of ortogonal transformation is Ω ?

