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Algorithms

What is an algorithm?

@ A computational procedure that

> given as input a value or a set of values
» produces as output a value or a set of values

Input ————| Algorithm ——— Output
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Bits

@ WIlog: inputs and outputs may be expressed as bit strings
> Input: X = XoX1 ... X,—1 € {0,1}"
» Output: y = yoY1,...Ym1 € {0,1}™

@ An algorithm computes a function
» f:{0,1}" > {0,1}" : x > y = f(X)

xe{o,1)" { — f —}ye{0,1}’”

Jérémie Roland (ULB, Brussels) Quantum computation Singapore, January 2016

5/33



Circuit model

@ Building blocks: logical gates
» Examples: NoT, AND, OR

X1 Xq
X1 NOT —|X1 X2 X1 A X2 X2 X1 \Y% X2

@ Circuit

X4
X2

(X1 A X2) V X3
X3 NOT
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Universal set of gates

@ A universal set of gates can simulate any logical gate (hence any function)
» Example 1: noT, AND, OR, FANOUT and swap

! !
X1_:_E:x1 X2 77‘ X1

» Example 2: naND, FANOUT and swaP

X{ —

Xo —] NAND — —|(X1 A X2)

@ Ancilla: extra bit with a fixed value
» Example: Simulate an anp gate from two NAND gates

X1 —
NAND
Xo — T ~—

'1_

NAND (— X1 A Xo
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Reversibility of logical gates

Observation
@ Some logical gates are reversible
> Example: not

@ Many others are not
» Examples: AnD, xor

X4 X4

@ Irreversible gates erase some information
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Reversible computation [Ben73]

Landauer’s principle [Lan61]

When a computer erases a single bit of information, the amount of energy
dissipated into the environment is at least kg T In 2.

How to make a computation reversible?
@ For each gate: additional output bit(s) holding erased information
» Example: xor gate = Controlled-not gate (c-not)

X4 X1 X1
X2X1€BX2 = X X1 ® X2
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Universal set of gates

@ Universal (set of) gate(s) for reversible computation [FT82]

» Example 1: Fredkin gate (Controlled-swap)

X4 X4 X4 N X2

X2 Xo X2 ‘ X4
0—+—o0 1 1

~ Example 2: Toffoli gate (“Controlled-Controlled-not”)

X4
Xo ———— Xo

@ Can simulate noT, AND, oR, swap and FanouT (with help of ancillas)
» and therefore any circuit

— X1
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Quantum circuits

@ A quantum circuit transforms a quantum state |®) € H into |V) = U|P) € H
~ where U is a unitary operation

eH {4 U = WeH

@ Each wire carries a qubit
> nqubits = dimH = 2"
@ What elementary gates to implement any unitary U over H?
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Quantum gates

@ Quantum evolution is reversible

» Number of qubits is preserved
» Reversible classical gates have quantum analogues
» Example 1: noT gate: Uyor : Ho = Ho @ [X1) > [xy & 1)

IX1) X1 ®1)
» Example 2: c-NoT gate: U._yor : Ho @ Ho = Ho @ Ha = [X1) @ [X2) > |X1) @ |X1 D Xo)
X1 1x1)
IX2) X1 @ X2)
@ This is not enough: quantum evolution is unitary

» For n qubits, a quantum circuit implements a unitary U € U(2") (unitary group)
» Note: global phases being irrelevant, we can restrict to SU(2")

Question
Can we implement all operations in SU(2") from a finite set of elementary gates?
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U(1): global phase

@ Suppose we want to implement all operations in U(1) = {e : ¢ € [0, 27)}
» Global phases

@ From a single element g%
W) R
@ The only option is to repeat the gate

) &% |v)

k times

@ Therefore, we can implement the set of phases {€? : k € N}
» How does this compare with all possible phases {e/ : ¢ € [0, 27)}?
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U(1): global phase

o Case1: R eQ
> Example: ¢ = 7/3

o Case2: L eR\Q

v/g

2¢0 #o
3o 6¢o
4o S¢o
200 adl0 ¢o
w0 8¢
4e 59

» Any phase ¢ € [0, 27) can be approximated within arbitrary precision
» The same idea will be used to approximate any operator in U(2")
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SU(2): one-qubit gates

@ A one-qubit gate U € SU(2) can be written
> in the computational basis

] | 10} = Ugol0) + usol1) _ [Uoo
U'WZ_)ﬂZ'{ 1) = Up|0) + ugq|1) o U_(Uw

> where unitarity imposes U'U = | & ¥, Uj,Uxm = 6jm
@ Some special gates
> not-gate U,r, Hadamard gate H and phase gate U,

0 1 1 1 1 0
B I R

@ Each one-qubit gate can be represented (up to a global phase) as
R(6) = e 2" = cos & I+sin & (X + n,Y + n,2)
» for some angle 6 and some unit vector fi = (ny, n, n;)
» where & = (X, Y, Z) are the Pauli matrices

(98] () 8
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A quantum ranout gate?

@ In classical circuits, swap and FanouT gates are usually assumed to be
available X T x -,
| X !

i . T

@ In quantum circuits, no problem for swap (unitary operation)
@ However, a quantum ranout should act as

Wy — = W

Uro

0 = _— W

» For computational basis states (Jy) = |0) or 1)), we have

I0>®|0> % 10y ® [0) |1>®|0> S el)
> Therefore, we have by linearity for superpositions |) = «|0) + S[1)
U
(@l0) + B11)) ®10) = a|0) ® [0) + AI1) ® [0) —>al0) ® [0) + A1) ® [1)
# (al0) + AI1)) ® (2l0) + BI1))
> No quantum ranour (cf. no-cloning theorem)
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A universal quantum gate

@ Recall: The Toffoli gate is universal for reversible classical computation

X1 X4
X2 X2
X3 NoT X3 D X1 Xo

@ We define the Deutsch gate as

IX1)
IX2)

IXs) — R F— R**|xg)

» where R = —iR,(6) = —ie72%, for6 e R\ Q

— |Xq)

—— |Xx2)

Theorem [Deu89]
The Deutsch gate is universal for quantum computation
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Proof of universality (sketch)

@ Since R = —iRy(0) = —ie~'2X, we have R* = R,(46) = e 2%X
» Powers of R can approximate any operator generated by X
> in particular, we can approximate X itself, which is the noT-gate
@ Since powers of R can approximate Not

» Powers of c-c-R (Deutsch) can approximate c-c-not (Toffoli)
~ Therefore, the Deutsch gate is (at least) universal for reversible computation
» In particular, we can swap any two computational basis states

@ By combining X operations, and swaps of computational basis states
> we can also generate Y and Z operations

@ By combining X, Y, Z operations, and swaps of computational basis states
» We can generate all of SU(2")
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A universal 2-qubit quantum gate

Note
@ The Toffoli gate (3-bit gate) is universal for reversible computation
@ There is no universal 2-bit gate for reversible computation
Theorem

The controlled-R gate is universal for quantum computation

Proof

@ Powers of c-R can approximate c-nor (cf. above) and ¢c-R’
@ c-R, c-R" and c-not can simulate ¢c-c-R?

) o
-

@ c-c-R? is a Deutsch gate, and therefore universal
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More universal 2-qubit quantum gates

Theorem [DBE95, Llo95]

Any generic 2-qubit quantum gate is universal for guantum computation

Notes
@ Generic essentially means that all the involved phases are irrational
@ Excellent news for implementations

> Any generic interaction between two qubits is sufficient for universal quantum
computation
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Quantum algorithm

Quantum algorithm

© Preparation of an n-qubit computational basis state
® Quantum circuit C made of gates from a universal set
® Measurement in the computational basis

N n i)
X { 4 -

1 C Dy
0y = i
o >
o ! ) @
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Generality

Generality of this definition
@ Preparation of another state?
» Include the preparation of the state in the circuit
@ Measurement in another basis?
» Include the change of basis in the circuit
@ POVM instead of projective measurement?
» Can be simulated by a projective measurement using ancillas
@ Intermediate measurements in the circuit?

» All measurements can be postponed to the end
> Requires ancilla if subsequent gates dependent on measurement outcome
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Classical complexity

Notion of complexity and efficient algorithm

@ Complexity of an algorithm: (Asymptotic behavior of the) number of
elementary gates in the circuit

o Efficient algorithm: Algorithm with a complexity that grows at most
polynomially in n (input size).

Basic classical complexity classes
@ P (Polynomial): Problems accepting an efficient (deterministic) algorithm

@ BPP (Bounded-error Probabilistic Polynomial) : Problems that can be solved
with probability at least 2/3 by an efficient probabilistic algorithm.

@ PSPACE (Polynomial Space): Problems that can be solved by an algorithm
using at most a polynomial amount of space (i.e., memory).

P c BPP c PSPACE
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Quantum complexity

Definition:
@ BQP (Bounded-error Quantum Polynomial) : Problems that can be solved
with probability at least 2/3 by an efficient quantum algorithm.

Note
@ This definition does not depend on the choice of universal set of gates

> Any universal set of gates can approximate another set of gates
» Controlling errors only incurs a polynomial overhead
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How powerful is quantum computation?

Theorem

P c BPP c BQP c PSPACE

Proof (sketch)

@ PC BQP
» Classical circuits can be made reversible
~ Reversible circuits are special cases of quantum circuits

@ BPP c BQP

» Quantum circuits can generate random bits
» Measurement of \%[lO) + [1)] in the computational basis

@ BQP c PSPACE

» Quantum circuits can be simulated by classical circuits with polynomial space
(but possibly exponential time)
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How powerful is quantum computation?

Theorem

P c BPP c BQP c PSPACE

Proof (sketch)

@ BQP c PSPACE

> Quantum circuits can be simulated by classical circuits with polynomial space
(but possibly exponential time)

> Let U = U;U;_q - - - U, Uy be the unitary realized by the quantum circuit

» The probability to measure outcome y if the input of the circuit was |x) is

py = KylUIx)P

» The amplitude can be expanded as (cf. path integral)

Wiub = > UKD U X2y - XU D) (XD Uy )

X(1) o x(t=1)

» Uj's are 2-qubit gates so each factor can be computed in constant time
» There are 2"(*"") terms, but each term can be computed in polynomial time
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Classical and quantum complexity classes

/ D
PSPACE
4 BQP )
BPP
N N~ 9,

Motivation for quantum computation

@ Problems efficiently solvable by quantum computers, but not by classical

computers
» Would imply BQP # BPP

» Statement still unknown: it is even unknown if PSPACE + P
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Quantum speed-ups

Evidence of the power of quantum computation

@ Non-exponential speed-ups
» Example: Grover’s algorithm for unstructured search (quadratic speed-up)
[Gro96]
@ Relativized exponential speed-ups (in the presence of some oracle O, see later)

» BQP©° # BPP°
» Example: Simon’s algorithm for period finding [Sim94]

@ Exponential speed-up over the best known classical algorithm

~ Example: Shor’s algorithm for factoring (problem in BQP, not known if in BPP)
[Sho94]
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