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Oracle model

In the usual circuit model
I The input of the problem can be used as input to the circuit

y
|x〉

|0〉
|0〉

In the oracle model
I The input is only accessible via a black-box, called oracle

Of Of
y

|0〉
|0〉
|0〉
|0〉
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Oracles

The oracle computes an (unknown) function f : {0, 1}n → {0, 1}
I Classical oracle

x f(x)f
I Reversible oracle

x
x

f(x)
f

I Quantum oracle
|x〉
|b〉

|x〉
|f(x) ⊕ b〉Of

The problem is to determine some property of f by querying the oracle
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Time complexity vs query complexity

Time complexity
I Total number of gates: T = 9

Of Of

|0〉
|0〉
|0〉
|0〉

Query complexity
I Number of oracle calls: Q = 2

Of Of

|0〉
|0〉
|0〉
|0〉

Applications of query complexity
I Lower bound on time complexity: T ≥ Q
I Equal up to constant factor for problems studied in these lectures
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Tool: Phase kickback

Let us consider the following circuit:
|x〉 (−1)f(x)|x〉
|1〉 |1〉OfH H

I where H is the Hadamard gate

|0〉 H−→ 1√
2
[|0〉+ |1〉] |1〉 H−→ 1√

2
[|0〉 − |1〉]

Analysis

|x〉|1〉 H−→ |x〉 1√
2

[|0〉 − |1〉]
Of−−→ |x〉 1√

2
[|f(x)〉 − |f(x) ⊕ 1〉] = (−1)f(x)|x〉 1√

2
[|0〉 − |1〉]

H−→ (−1)f(x)|x〉|1〉

I This computes f(x) in the phase
I |1〉 plays the role of an ancilla (returns to its initial state)
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Tool: Phase kickback

|x〉 (−1)f(x)|x〉
|1〉 |1〉OfH H ≡ |x〉 (−1)f(x)|x〉Uf

Tool: Phase kickback
Using one call to oracle

Of : |x〉|b〉 7→ |x〉|f(x) ⊕ b〉,
one can simulate the operation

Uf : |x〉 7→ (−1)f(x)|x〉
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Application: Deutsch’s algorithm [Deu85]

Definition of the problem

Input: Black-box access to a one-bit function: f : {0, 1} → {0, 1}
Problem: Determine if f(0) = f(1) or f(0) , f(1)

Deutsch’s algorithm

We use phase kickback
|0〉 H Uf H

Analysis

|0〉 H−→ 1√
2

[|0〉+ |1〉]
Uf−−→ 1√

2

[
(−1)f(0)|0〉+ (−1)f(1)|1〉

]
= (−1)f(0) 1√

2

[
|0〉+ (−1)f(0)⊕f(1)|1〉

]

H−→ (−1)f(0)|f(0) ⊕ f(1)〉

I The final measurement yields 0 if f(0) = f(1), and 1 otherwise
I This solves the problem with only one query, while two are required classically
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Fourier transform over {0, 1}n

Recall: H acts on one qubit |x1〉 as

H|x1〉 = 1√
2

[|0〉+ (−1)x1 |1〉] = 1√
2

∑

y1∈{0,1}
(−1)x1y1 |y1〉

Therefore, H⊗n acts on an n-qubit state |x〉 = |x1〉|x2〉 . . . |xn〉 as

|x〉 H⊗n

−−−→
n⊗

i=1

H|xi〉 =
n⊗

i=1


1√
2

∑

yi∈{0,1}
(−1)xiyi |yi〉

 = 1√
2n

∑

y∈{0,1}n
(−1)x·y |y〉

I where x · y =
∑n

i=1 xiyi

For a general n-qubit state, we have
∑

x∈{0,1}n
ψ(x)|x〉 H⊗n

−−−→
∑

x∈{0,1}n
ψ(x) 1√

2n

∑

y∈{0,1}n
(−1)x·y |y〉 =

∑

y∈{0,1}n
ψ̂(y)|y〉

I where

ψ̂(y) = 1√
2n

∑

x∈{0,1}n
(−1)x·yψ(x)

is the Fourier transform of ψ(x).
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Tool: Fourier sampling

Let us consider the following circuit

|0〉 H H

|0〉 H H

|0〉 H H

...
...

...
...

yUf

Analysis

|0〉⊗n H⊗n

−−−→ 1√
2n

∑

x∈{0,1}n
|x〉

Uf−−→ 1√
2n

∑

x∈{0,1}n
(−1)f(x)|x〉 =

∑

x∈{0,1}n
Φ(x)|x〉

H⊗n

−−−→
∑

y∈{0,1}n
Φ̂(y)|y〉

I where Φ(x) = 1√
2n (−1)f(x)

I The final measurement yields y with probability py = |Φ̂(y)|2
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Tool: Fourier sampling

|0〉 H H

|0〉 H H

|0〉 H H

...
...

...
...

yUf

Tool: Fourier sampling
Using one oracle call to f , one can sample y with probability py equal to the
modulus square of the Fourier coefficient Φ̂(y) of Φ(x) = 1√

2n
(−1)f(x)

Note

The Fourier coefficients Φ̂(y) depend on all values f(x) for all x.

Fourier sampling can provide information about global properties of f
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Application 1: Deutsch-Jozsa’s algorithm [DJ92]

Definition of the problem

Input: Black-box access to a (n-bit) function: f : {0, 1}n → {0, 1}
Promise: f(x) is either

I constant: f(x) = c ∀x
I balanced: f(x) = 1 on half of the values of x

Problem: Determine if f is constant or balanced

Constant

1 1 1 1 1 1 1 1f(x)
x 000 001 010 011 100 101 110 111

Balanced

1 0 1 0 0 1 1 0f(x)
x 000 001 010 011 100 101 110 111
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Application 1: Deutsch-Jozsa’s algorithm [DJ92]

Constant

1 1 1 1 1 1 1 1f(x)
x 000 001 010 011 100 101 110 111

Balanced

1 0 1 0 0 1 1 0f(x)
x 000 001 010 011 100 101 110 111

Deutsch-Jozsa’s algorithm
We use Fourier sampling on f
Analysis

I We obtain y with probability py = |Φ̂(y)|2, where Φ̂(y) = 1
2n

∑
x(−1)f(x)+x·y

I If f is constant, that is, f(x) = c for all x

Φ̂(y) = 1
2n (−1)c

∑

x∈{0,1}n
(−1)x·y =

{
(−1)c if y = 0
0 otherwise

I If f is balanced

Φ̂(0) = 1
2n

∑

x∈{0,1}n
(−1)f(x) = 0

I We always obtain y = 0 when f is constant
I . . . but never obtain y = 0 when f is balanced

Jérémie Roland (ULB, Brussels) Quantum algorithms I Singapore, January 2016 16 / 28



Query complexity of the problem

Quantum query complexity

Deutsch-Jozsa’s algorithm solves the problem with one query

Classical query complexity
We need > 2n/2 queries to solve the problem with probability one

I We could be unlucky and always obtain the same value f(x) even if f is balanced

We only need 2 queries to solve the problem with probability 2/3
I Query two random values x and x ′
I If f(x) , f(x ′), conclude that f is balanced
I If f(x) = f(x ′), say that it is constant with probability 2/3, and that it is balanced

with probability 1/3.
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Application 2: Bernstein-Vazirani’s algorithm [BV93]

Definition of the problem

Input: Black-box access to a (n-bit) function: f : {0, 1}n → {0, 1}
Promise: f is of the form f(x) = a � x =

∑
i aixi mod 2

Problem: Find a

Bernstein-Vazirani’s algorithm

We use Fourier sampling on f
Analysis

I We obtain y with probability py = |Φ̂(y)|2, where Φ̂(y) = 1
2n

∑
x(−1)f(x)+x·y

I Since f(x) = a · x, we have

Φ̂(y) = 1
2n

∑

x∈{0,1}n
(−1)a·x+x·y = 1

2n

∑

x∈{0,1}n
(−1)(a⊕y)·x =

{
1 if y = a
0 otherwise

I We always obtain y = a
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Query complexity of the problem

Quantum query complexity

Bernstein-Vazirani’s algorithm solves the problem with one query

Classical query complexity

Each query reveals at most 1 bit of information about a
a contains n bits, therefore we need Ω(n) queries to learn it

I Even if we only require to learn it with constant probability

Note

Linear separation between the quantum and classical complexities (1 vs
Ω(n))
The separation can be made exponential by using this construction
recursively

I Recursive Fourier sampling (see [BV93])
I BPPO , BQPO (see also next algorithm)
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Tool: Preimage of a function

Suppose we have black-box access to a function f : {0, 1}n → {0, 1}n
Let us consider the following circuit

|0〉 H

|0〉 H

|0〉 H

|0〉⊗n

...
...

|ψy〉

yOf

I Note that only the last n-qubit register is measured
Analysis

|0〉⊗n |0〉⊗n H⊗n

−−−→ 1√
2n

∑

x∈{0,1}n
|x〉|0〉⊗n

Of−−→ 1√
2n

∑

x∈{0,1}n
|x〉|f(x)〉

I If the measurement outcome is y, then the remaining state is

|ψy〉 =
1√|f−1(y)|

∑

x:f(x)=y

|x〉
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Tool: Preimage of a function

|0〉 H

|0〉 H

|0〉 H

|0〉⊗n

...
...

|ψy〉 = 1√
|f−1(y)|

∑
x:f(x)=y |x〉

yOf

Tool: Preimage of a function
Using one oracle call to f , one can generate a uniform superposition over all x ’s
such that f(x) = y (for some random value y).

Note
The probability to obtain y is

py =
|f−1(y)|

2n

I where f−1(y) = {x ∈ {0, 1}n : f(x) = y}
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Application: Simon’s algorithm [Sim94]

Definition of the problem

Input: Black-box access to a function: f : {0, 1}n → {0, 1}n
Promise: f is 2-to-1 and periodic on {0, 1}n

f(x) = f(x′) ⇔ x = x′ or x = x′ ⊕ a

Problem: Find the period a

Simon’s algorithm

We construct the preimage of f for some value y

Then we apply a Fourier transform (H⊗n)

|0〉 H H

|0〉 H H

|0〉 H H

|0〉⊗n

...
...

...
z

yOf
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Simon’s algorithm: analysis

If the outcome of the first measurement is y, we have prepared

|ψy〉 =
1√|f−1(y)|

∑

x:f(x)=y

|x〉 =
1√
2

[|x0〉+ |x0 ⊕ a〉]

I where x0 is such that f(x0) = y

After the Fourier transform H⊗n, we have

|ψy〉 H⊗n

−−−→ 1√
2n+1

∑

z∈{0,1}n

[
(−1)x0·z + (−1)(x0⊕a)·z] |z〉

= 1√
2n+1

∑

z∈{0,1}n
(−1)x0·z [1 + (−1)a·z ] |z〉

= 1√
2n−1

∑

z:a�z=0

(−1)x0·z |z〉

I where a � z =
∑

i aizi mod 2

The final measurement then produces outcome z uniformly at random from
{
z ∈ {0, 1}n : a � z = 0

}
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Simon’s algorithm: analysis (cont’d)

How much information does a value z such that a � z = 0 provide about a?
I Not that much (one parity bit), this just provides one linear equation satisfied by a

a1z1 + a2z2 + . . . anzn = 0 mod 2

By repeating the procedure, we can obtain multiple values z(1), z(2), . . . , z(n)

I . . . and form a linear system of equations that can be solved for a


a1z(1)
1 + a2z(1)

2 + . . . + anz(1)
n = 0 mod 2

a1z(2)
1 + a2z(2)

2 + . . . + anz(2)
n = 0 mod 2

...

a1z(n)
1 + a2z(n)

2 + . . . + anz(n)
n = 0 mod 2

It suffices to repeat O(n) times in order to obtain n linearly independent
equations

I This follows from the fact that z is uniform in {z ∈ {0, 1}n : a � z = 0}.
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Query complexity of the problem

Quantum query complexity

Simon’s algorithm solves the problem with O(n) queries

Classical query complexity

Queries reveal essentially nothing about a until we find a pair x, x′ such that
x′ = x ⊕ a

For one random pair x, x′, we have Pr[x′ = x ⊕ a] = 2−n

For T queries, we have less than T2 pairs, so that Pr[find a] ≤ T22−n

Therefore, to find a with probability p, we need T ≥ p2n/2

Notes
Exponential quantum speed-up O(n) vs Ω(2n/2)

I Separation between BQP f and BPP f

In the algorithm, we never used the measurement outcome y
I We don’t need to actually perform the measurement (only useful for analysis)
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Tomorrow

Last lecture

Grover’s algorithm

Amplitude amplification

Shor’s algorithm
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