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Algorithms

What is an algorithm?

A computational procedure that
I given as input a value or a set of values
I produces as output a value or a set of values

AlgorithmInput Output
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Bits

Wlog: inputs and outputs may be expressed as bit strings
I Input: x = x0x1 . . . xn−1 ∈ {0, 1}n
I Output: y = y0y1, . . . ym−1 ∈ {0, 1}m

An algorithm computes a function
I f : {0, 1}n → {0, 1}m : x 7→ y = f(x)

f y ∈ {0, 1}mx ∈ {0, 1}n
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Circuit model

Building blocks: logical gates
I Examples: not, and, or

x1 not ¬x1

x1 and x1 ∧ x2x2

x1 or x1 ∨ x2x2

Circuit

x1
and

x2
or (x1 ∧ x2) ∨ ¬x3

x3 not
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Universal set of gates

A universal set of gates can simulate any logical gate (hence any function)
I Example 1: not, and, or, fanout and swap

x1x1 x1

x1 x2

x2 x1

I Example 2: nand, fanout and swap
x1 nand ¬(x1 ∧ x2)x2

Ancilla: extra bit with a fixed value
I Example: Simulate an and gate from two nand gates

x1 nandx2 nand x1 ∧ x21
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Reversibility of logical gates

Observation
Some logical gates are reversible

I Example: not

x1 not ¬x1 not x1

Many others are not
I Examples: and, xor

x1 and x1 ∧ x2x2

x1 xor x1 ⊕ x2x2

Irreversible gates erase some information
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Reversible computation [Ben73]

Landauer’s principle [Lan61]
When a computer erases a single bit of information, the amount of energy

dissipated into the environment is at least kBT ln 2.

How to make a computation reversible?
For each gate: additional output bit(s) holding erased information

I Example: xor gate =⇒ Controlled-not gate (c-not)

x1 xor x1 ⊕ x2x2 =⇒ x1 x1
x2 x1 ⊕ x2
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Universal set of gates

Universal (set of) gate(s) for reversible computation [FT82]
I Example 1: Fredkin gate (Controlled-swap)

x1 x1

x2 x2

0 0

x1 x2

x2 x1

1 1

I Example 2: Toffoli gate (“Controlled-Controlled-not”)

x1 x1

x2 x2

x3 not x3 ⊕ x1x2

Can simulate not, and, or, swap and fanout (with help of ancillas)
I and therefore any circuit
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Quantum circuits

A quantum circuit transforms a quantum state |Φ〉 ∈ H into |Ψ〉 = U|Φ〉 ∈ H
I where U is a unitary operation

|Ψ〉 ∈ H|Φ〉 ∈ H U

Each wire carries a qubit
I n qubits =⇒ dimH = 2n

What elementary gates to implement any unitary U over H?
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Quantum gates

Quantum evolution is reversible
I Number of qubits is preserved
I Reversible classical gates have quantum analogues
I Example 1: not gate: Unot : H2 → H2 : |x1〉 7→ |x1 ⊕ 1〉

not|x1〉 |x1 ⊕ 1〉
I Example 2: c-not gate: Uc−not : H2 ⊗H2 → H2 ⊗H2 : |x1〉 ⊗ |x2〉 7→ |x1〉 ⊗ |x1 ⊕ x2〉

|x1〉
|x2〉

|x1〉
|x1 ⊕ x2〉

This is not enough: quantum evolution is unitary
I For n qubits, a quantum circuit implements a unitary U ∈ U(2n) (unitary group)
I Note: global phases being irrelevant, we can restrict to SU(2n)

Question
Can we implement all operations in SU(2n) from a finite set of elementary gates?
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U(1): global phase

Suppose we want to implement all operations in U(1) ' {e iφ : φ ∈ [0, 2π)}
I Global phases

From a single element e iφ0

|Ψ〉 e iφ0 |Ψ〉φ0

The only option is to repeat the gate
|Ψ〉 e ikφ0 |Ψ〉φ0 φ0 φ0. . .

k times

Therefore, we can implement the set of phases {e ikφ0 : k ∈ N}
I How does this compare with all possible phases {e iφ : φ ∈ [0, 2π)}?
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U(1): global phase

Case 1: φ0
2π ∈ Q

I Example: φ0 = π/3

6φ0

φ02φ0

3φ0

4φ0 5φ0

Case 2: φ0
2π ∈ R \ Q

0

φ02φ0

3φ0

4φ0
5φ0

6φ0

7φ0

I Any phase φ ∈ [0, 2π) can be approximated within arbitrary precision
I The same idea will be used to approximate any operator in U(2n)
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SU(2): one-qubit gates

A one-qubit gate U ∈ SU(2) can be written
I in the computational basis

U : H2 → H2 :

{ |0〉 7→ u00|0〉+ u10|1〉
|1〉 7→ u01|0〉+ u11|1〉 or U =

(
u00 u01

u10 u11

)
I where unitarity imposes U†U = I ⇔ ∑

k u∗kluk m = δlm

Some special gates
I not-gate Unot, Hadamard gate H and phase gate Uφ

Unot =
(
0 1
1 0

)
H =

1√
2

(
1 1
1 −1

)
Uφ =

(
1 0
0 e iφ

)
Each one-qubit gate can be represented (up to a global phase) as

Rn̂(θ) = e−i θ2 n̂·σ̂ = cos θ
2 I + sin θ

2 (nxX + nyY + nzZ)
I for some angle θ and some unit vector n̂ = (nx , ny , nz)
I where σ̂ = (X ,Y ,Z) are the Pauli matrices

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
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A quantum fanout gate?

In classical circuits, swap and fanout gates are usually assumed to be
available

x1 x2

x2 x1

x1x1 x1

In quantum circuits, no problem for swap (unitary operation)
However, a quantum fanout should act as

|ψ〉
|0〉

|ψ〉
|ψ〉UFO

I For computational basis states (|ψ〉 = |0〉 or |1〉), we have

|0〉 ⊗ |0〉 UFO−−−→ |0〉 ⊗ |0〉 |1〉 ⊗ |0〉 UFO−−−→ |1〉 ⊗ |1〉
I Therefore, we have by linearity for superpositions |ψ〉 = α|0〉+ β|1〉

(α|0〉+ β|1〉) ⊗ |0〉 = α|0〉 ⊗ |0〉+ β|1〉 ⊗ |0〉 UFO−−−→α|0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉
, (α|0〉+ β|1〉) ⊗ (α|0〉+ β|1〉)

I No quantum fanout (cf. no-cloning theorem)
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A universal quantum gate

Recall: The Toffoli gate is universal for reversible classical computation

x1 x1

x2 x2

x3 not x3 ⊕ x1x2

We define the Deutsch gate as

|x1〉 |x1〉
|x2〉 |x2〉
|x3〉 R Rx1x2 |x3〉

I where R = −iRx(θ) = −ie−i θ2 X , for θ ∈ R \ Q

Theorem [Deu89]
The Deutsch gate is universal for quantum computation
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Proof of universality (sketch)

Since R = −iRx(θ) = −ie−i θ2 X , we have R4 = Rx(4θ) = e−2iθX

I Powers of R can approximate any operator generated by X
I in particular, we can approximate X itself, which is the not-gate

Since powers of R can approximate not
I Powers of c-c-R (Deutsch) can approximate c-c-not (Toffoli)
I Therefore, the Deutsch gate is (at least) universal for reversible computation
I In particular, we can swap any two computational basis states

By combining X operations, and swaps of computational basis states
I we can also generate Y and Z operations

By combining X ,Y ,Z operations, and swaps of computational basis states
I We can generate all of SU(2n)
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A universal 2-qubit quantum gate

Note

The Toffoli gate (3-bit gate) is universal for reversible computation

There is no universal 2-bit gate for reversible computation

Theorem
The controlled-R gate is universal for quantum computation

Proof

Powers of c-R can approximate c-not (cf. above) and c-R†

c-R, c-R† and c-not can simulate c-c-R2

R R† R R2

≡

c-c-R2 is a Deutsch gate, and therefore universal
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More universal 2-qubit quantum gates

Theorem [DBE95, Llo95]
Any generic 2-qubit quantum gate is universal for quantum computation

Notes

Generic essentially means that all the involved phases are irrational
Excellent news for implementations

I Any generic interaction between two qubits is sufficient for universal quantum
computation

Jérémie Roland (ULB, Brussels) Quantum computation Singapore, January 2016 23 / 33



Outline

1 Classical computation
Algorithms and circuits
Reversible computation

2 Quantum computation
Quantum circuits
Universal quantum gates
Quantum algorithms and complexity

Jérémie Roland (ULB, Brussels) Quantum computation Singapore, January 2016 24 / 33



Quantum algorithm

Quantum algorithm

1 Preparation of an n-qubit computational basis state

2 Quantum circuit C made of gates from a universal set

3 Measurement in the computational basis

y
|x〉

|0〉
|0〉

C

1 2 3
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Generality

Generality of this definition
Preparation of another state?

I Include the preparation of the state in the circuit

Measurement in another basis?
I Include the change of basis in the circuit

POVM instead of projective measurement?
I Can be simulated by a projective measurement using ancillas

Intermediate measurements in the circuit?
I All measurements can be postponed to the end
I Requires ancilla if subsequent gates dependent on measurement outcome
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Classical complexity

Notion of complexity and efficient algorithm

Complexity of an algorithm: (Asymptotic behavior of the) number of
elementary gates in the circuit

Efficient algorithm: Algorithm with a complexity that grows at most
polynomially in n (input size).

Basic classical complexity classes

P (Polynomial): Problems accepting an efficient (deterministic) algorithm

BPP (Bounded-error Probabilistic Polynomial) : Problems that can be solved
with probability at least 2/3 by an efficient probabilistic algorithm.

PSPACE (Polynomial Space): Problems that can be solved by an algorithm
using at most a polynomial amount of space (i.e., memory).

P ⊆ BPP ⊆ PSPACE
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Quantum complexity

Definition:
BQP (Bounded-error Quantum Polynomial) : Problems that can be solved
with probability at least 2/3 by an efficient quantum algorithm.

Note
This definition does not depend on the choice of universal set of gates

I Any universal set of gates can approximate another set of gates
I Controlling errors only incurs a polynomial overhead
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How powerful is quantum computation?

Theorem

P ⊆ BPP ⊆ BQP ⊆ PSPACE

Proof (sketch)

P ⊆ BQP
I Classical circuits can be made reversible
I Reversible circuits are special cases of quantum circuits

BPP ⊆ BQP
I Quantum circuits can generate random bits
I Measurement of 1√

2
[|0〉+ |1〉] in the computational basis

BQP ⊆ PSPACE
I Quantum circuits can be simulated by classical circuits with polynomial space

(but possibly exponential time)
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How powerful is quantum computation?

Theorem

P ⊆ BPP ⊆ BQP ⊆ PSPACE

Proof (sketch)

BQP ⊆ PSPACE
I Quantum circuits can be simulated by classical circuits with polynomial space

(but possibly exponential time)
I Let U = Ut Ut−1 · · ·U2U1 be the unitary realized by the quantum circuit
I The probability to measure outcome y if the input of the circuit was |x〉 is

py = |〈y |U|x〉|2

I The amplitude can be expanded as (cf. path integral)

〈y |U|x〉 =
∑

x(1) ,··· ,x(t−1)

〈y |Ut |x(t−1)〉〈x(t−1)|Ut−1|x(t−2)〉 · · · 〈x(2)|U2|x(1)〉〈x(1)|U1|x〉

I Ui ’s are 2-qubit gates so each factor can be computed in constant time
I There are 2n(t−1) terms, but each term can be computed in polynomial time
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Classical and quantum complexity classes

PSPACE

BQP

BPP

P?

Motivation for quantum computation
Problems efficiently solvable by quantum computers, but not by classical
computers

I Would imply BQP , BPP
I Statement still unknown: it is even unknown if PSPACE , P

Jérémie Roland (ULB, Brussels) Quantum computation Singapore, January 2016 30 / 33



Quantum speed-ups

Evidence of the power of quantum computation

Non-exponential speed-ups
I Example: Grover’s algorithm for unstructured search (quadratic speed-up)

[Gro96]

Relativized exponential speed-ups (in the presence of some oracle O , see later)
I BQPO , BPPO

I Example: Simon’s algorithm for period finding [Sim94]

Exponential speed-up over the best known classical algorithm
I Example: Shor’s algorithm for factoring (problem in BQP, not known if in BPP)

[Sho94]
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