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Outline

@ Quantum algorithms
@ Oracle problems
@ Phase kickback: Deutsch’s algorithm
@ Fourier sampling: Deutsch-Jozsa’s and Bernstein-Vazirani’s algorithms
@ Preimage of a function: Simon’s algorithm

Jérémie Roland (ULB, Brussels) Quantum algorithms | Singapore, January 2016 2/28



Outline

@ Quantum algorithms
@ Oracle problems
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Oracle model

@ In the usual circuit model
» The input of the problem can be used as input to the circuit

B

NIl

@ In the oracle model
= The input is only accessible via a black-box, called oracle
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Oracles

@ The oracle computes an (unknown) function f : {0, 1}" — {0, 1}
» Classical oracle

» Reversible oracle

» Quantum oracle

x) Ix)
Ib) If(x) @ b)

@ The problem is to determine some property of f by querying the oracle

Jérémie Roland (ULB, Brussels) Quantum algorithms | Singapore, January 2016

5/28



Time complexity vs query complexity

@ Time complexity
» Total number of gates: T =9
0)
0
|0)
|0)

@ Query complexity
> Number of oracle calls: Q =2
0
[0)
|0)
|0)

@ Applications of query complexity

~ Lower bound on time complexity: T > Q
» Equal up to constant factor for problems studied in these lectures
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Outline

@ Quantum algorithms

@ Phase kickback: Deutsch’s algorithm
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Tool: Phase kickback

@ Let us consider the following circuit:

Ix) (=1)®x)
) i

» where H is the Hadamard gate

10) > {10} + [1)] 1) 5 {10y - [1)]
@ Analysis
I 5 1) -5[10) - I1)]
25 1)L ~ () @ 1] = (~1) @) -5 [10) - [1)]

& (=) )

» This computes f(x) in the phase
>~ |1) plays the role of an ancilla (returns to its initial state)
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Tool: Phase kickback

[x) (1) ™|x)
1) i = 1)@

Tool: Phase kickback
Using one call to oracle
Os : [x)|b) = |x)|f(x) @ b),
one can simulate the operation
Ur - Ix) - (1) ®)1x)
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Application: Deutsch’s algorithm [Deu85]

Definition of the problem
@ Input: Black-box access to a one-bit function: f : {0,1} — {0, 1}
@ Problem: Determine if f(0) = (1) or f(0) # f(1)

Deutsch’s algorithm
@ We use phase kickback

0 —{HHuHA A
@ Analysis

0) i L[|0>+ )
5 |10y + (1O | = (=)@ 5 10) + (1))

a (—1)“0 If(0) ® f(1))

» The final measurement yields 0 if f(0) = f(1), and 1 otherwise
» This solves the problem with only one query, while two are required classically
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Outline

@ Quantum algorithms

@ Fourier sampling: Deutsch-Jozsa’s and Bernstein-Vazirani’s algorithms
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Fourier transform over {0, 1}"

@ Recall: H acts on one qubit |x;) as

Hix) = 35010} + (=1)"I10] = 55 D" (=1)""lyo)

y1€{0,1}
@ Therefore, H®" acts on an n-qubit state |x) = |xq)|X2)...|x,) as

Xy ®H|x,'>=®[$§ DL EM| =5 DL G
i=1 i=1

yi€{0,1} ye{0,1)"

> where x -y =¥, Xy,
@ For a general n-qubit state, we have

3w w0 D Fm =Y Gy

x€{0,1}" x€{0,1}" ye{0,1}n ye{0,1}n
» where

by) == D, (1))

x€{0,1}"

is the Fourier transform of /(x).
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Tool: Fourier sampling

@ Let us consider the following circuit

0 i
0 e,
e

@ Analysis

Z = > ex)x)

xe{O 1}n x€{0,1}"

= d(y)ly)

ye{0,1)"

m

> where ®(x) = —=(~1)"®

> The final measurement yields y with probability p, = IdA>(y)|2
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Tool: Fourier sampling

0
o —oH

0

1D
plin:Re

(-

Tool: Fourier sampling

Using one oracle call to f, one can sample y with probability p, equal to the
modulus square of the Fourier coefficient ®(y) of ®(x) = \/427(—1 ) )

Note

@ The Fourier coefficients ®(y) depend on all values f(x) for all x.
@ Fourier sampling can provide information about global properties of f
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Application 1: Deutsch-Jozsa'’s algorithm

Definition of the problem

[DJ92]

@ Input: Black-box access to a (n-bit) function: f : {0,1}" — {0, 1}
@ Promise: f(x) is either

» constant: f(x) = ¢ Vx

> balanced: f(x) = 1 on half of the values of x

@ Problem: Determine if f is constant or balanced

Constant
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Application 1: Deutsch-Jozsa’s algorithm [DJ92]

Constant Balanced
X 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 X 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
IR NNE fol1]of1]ofof1]1]0

Deutsch-Jozsa’s algorithm
@ We use Fourier sampling on f
@ Analysis
> We obtain y with probability p, = |®(y)?, where ®(y) = & 3, (~1) ) +xv
» If fis constant, that is, f(x) = c for all x

S vy [ (F1)F ity =0
(y) = z(-1) XE;)”( 1) 7{ 0 otherwise

~ If f is balanced

d0)=2 > (-1)¥ =0

2!1
x€{0,1}"

> We always obtain y = 0 when f is constant
» ... but never obtain y = 0 when f is balanced
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Query complexity of the problem

Quantum query complexity
@ Deutsch-Jozsa’s algorithm solves the problem with one query

Classical query complexity
@ We need > 2"/2 queries to solve the problem with probability one
» We could be unlucky and always obtain the same value f(x) even if f is balanced
@ We only need 2 queries to solve the problem with probability 2/3

> Query two random values x and x’

= If f(x) # f(x’), conclude that f is balanced

= If f(x) = f(x"), say that it is constant with probability 2/3, and that it is balanced
with probability 1/3.
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Application 2: Bernstein-Vazirani’s algorithm  [BV93]

Definition of the problem
@ Input: Black-box access to a (n-bit) function: f : {0,1}" — {0, 1}
@ Promise: f is of the form f(x) = a® x = }};a;x; mod 2
@ Problem: Find a

Bernstein-Vazirani’s algorithm
@ We use Fourier sampling on f
@ Analysis

> We obtain y with probability p, = |$(y)I?, where ®(y) = % 3, (=1) 0+
> Since f(x) = a - x, we have

b X+X- X 1 ify=a
b= Y (=g Y e ={ f Y

otherwise
x€{0,1}" x€{0,1}"

» We always obtain y = a
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Query complexity of the problem

Quantum query complexity
@ Bernstein-Vazirani’s algorithm solves the problem with one query

Classical query complexity
@ Each query reveals at most 1 bit of information about a
@ a contains n bits, therefore we need Q(n) queries to learn it
» Even if we only require to learn it with constant probability
Note
@ Linear separation between the quantum and classical complexities (1 vs
Q(n))
@ The separation can be made exponential by using this construction
recursively

~ Recursive Fourier sampling (see [BV93])
» BPP° + BQP° (see also next algorithm)
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Outline

@ Quantum algorithms

@ Preimage of a function: Simon’s algorithm
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Tool: Preimage of a function
i :{0,1}" —> {0,1}"

@ Suppose we have black-box access to a function f : {0, 1}
@ Let us consider the following circuit

» Note that only the last n-qubit register is measured

@ Analysis
H®ﬂ
020" — L= > WI0)*"
x€{0,1}"

2L S lf(x))

xe€{0,1}"

» If the measurement outcome is y, then the remaining state is

lyy) = «/f1— Z
Singapore, January 2016
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Tool: Preimage of a function

_ 1
|¢’y> - m Zx:f(x):y |X>

Tool: Preimage of a function

Using one oracle call to f, one can generate a uniform superposition over all x’s
such that f(x) = y (for some random value y).

Note
@ The probability to obtain y is

I (y)l
2n

py =

» where f-'(y) = {x € {0,1}" : f(x) = y}
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Application: Simon’s algorithm [Sim94]

Definition of the problem
@ Input: Black-box access to a function: f : {0,1}" — {0,1}"
@ Promise: f is 2-to-1 and periodic on {0, 1}"
fx)=f(x) & x=x" or x=xda
@ Problem: Find the period a
Simon’s algorithm

@ We construct the preimage of f for some value y
@ Then we apply a Fourier transform (H®")
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Simon’s algorithm: analysis
@ If the outcome of the first measurement is y, we have prepared

!
L,

» where X is such that f(xo) = y
@ After the Fourier transform H®", we have

[IX0) + Ix0 @ @)]

HEn
Uy — = D (107 4 (<) jz)
ze{0,1}n
= % Z (1) [1 + (-1)*7]12)
ze{0,1}n
== D, VD
z:a0z=0

» wherea®z = };az mod2
@ The final measurement then produces outcome z uniformly at random from

{ze{0,1}":a0z =0}
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Simon’s algorithm: analysis (cont'd)

@ How much information does a value z such that a ® z = 0 provide about a?
» Not that much (one parity bit), this just provides one linear equation satisfied by a

aiZ1+az+...ap2z, =0 mod 2

@ By repeating the procedure, we can obtain multiple values z(1), 2, ... z(")
> ...and form a linear system of equations that can be solved for a

a1z(1)+a22(1)+...+anz,(,1) =0 mod2

1
as 21(2) + 32222) + ...+ a,,z,(,z) =0 mod2

()

) + a2z,

a1z1(” +...4az" =0 mod2

o It suffices to repeat O(n) times in order to obtain n linearly independent

equations
» This follows from the fact that z is uniform in {z € {0,1}" : a©® z = 0}.
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Query complexity of the problem

Quantum query complexity

@ Simon’s algorithm solves the problem with O(n) queries

Classical query complexity

@ Queries reveal essentially nothing about a until we find a pair x, x” such that
X' =x®a

@ For one random pair x, x’, we have Pr[x’ = x® a] = 27"
@ For T queries, we have less than T2 pairs, so that Pr[find a] < 722"
@ Therefore, to find a with probability p, we need T > p2"/2

Notes
@ Exponential quantum speed-up O(n) vs Q(2"/2)
> Separation between BQP' and BPP'
@ In the algorithm, we never used the measurement outcome y
> We don’t need to actually perform the measurement (only useful for analysis)
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Tomorrow

Last lecture
@ Grover’s algorithm
@ Amplitude amplification
@ Shor’s algorithm
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