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Unstructured search

Definition of the problem
@ Input: Black-box access to a function: f : {0, 1}" — {0, 1}
1 ifx=m

0 otherwise (where m € {0, 1}" is unknown)

@ Promise: f(x) = {

@ Problem: Find m

Notes
@ Can be generalized to the case of multiple “marked” elements

@ Common misconception about quantum algorithms

» Can try an exponential number of candidate solutions in parallel
~ If true, could solve this problem very fast
» Actually, can only get quadratic speedup
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2-dimensional subspace

@ In the spirit of "trying all candidate solutions in parallel"
» we first construct the superposition

oy = H0)*™" = = > 1)

Vor
x€{0,1}"
@ We are interested in the term x = m. |m)
» Let |m*) correspond to the rest
Ly 1
m) = = >0
X#+m
= Then, o) may be rewritten as o)
0
o) = sin Bplm) + cos Golm™) B0 i

m

1
V2

> where 6y = arcsin{yo|m) = arcsin

@ The general idea of Grover’s algorithm is to rotate |/ ) towards |m)
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Reflection around unmarked elements

@ Recall that

f(x)—{1 ifx:m

0 otherwise

@ Using phase kickback, we can simulate the operator Uy : |x) > (=1)"®)|x)
> In this case, this operator may be rewritten Us = [ — 2|m){m|
» Check:

X=m = Uilm) = Im) = 2lmym|m) = —|m) = (=1)""™|m)
x#m = Utlx) = [x) = 2lm)(mix) = |x) = (=1)@|x)
@ In the 2-dim subspace {|m),|m*)} |m)

> Ur = refjpey, reflection around [m™*)

o)

S
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Reflection around the initial state

@ We can create a circuit that evaluates the function (Exercise!)

0 ifx=0
fo(x) :{ 1 otherwise
@ Together with phase kickback, we may simulate Uy : |x) > (=1)°(*)|x)
~ This operator may be rewritten Uy = 2|0")0"| — I, where |0") = |0)®"
@ Since H®"0™y = |yrg),
HEMUpgHE™ = H®"(2]0")0"| — )H®" = 2H®"|0")0"|H®" — |
= 2o XWol = 1

@ In the 2-dim subspace {|m), |m*)} |m)

> H®"UyH®" = ref,,, reflection around |y)

o)

90 |mJ_>
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Combining the reflections

@ Recall: In the 2-dim subspace {|m), |m*)}
> U = refiy
- HEn U0H®n = ref‘(,,())
@ The product of the reflections G = ref,) - refjmey (“Grover iteration”) is a

> rotation of angle 26,
» (where 6 is the angle between [m*) and |yq))

e Example Im)

o) ——> Uplo) Glvo)

Ho" Ug Ho"
— Glo)

260 o)
% Im*)
Utlo)
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Grover’s algorithm [Gro96]

@ Starting from
lro) = sin Go|m) + cos Go|m™)
@ and repeating T times the Grover iteration, we have
G'lyo) = sinOr|m) + cos Or|m*)

» where 67 = (2T 4 1)6

@ In order to obtain |m) [m)
> we need 6y = 3
> and therefore (for large n) W)
T
T~—
46, 0
_ n T o)
= —
4 arcsin = Bo iy
~ il 2n
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Query complexity of the problem

Quantum query complexity
@ Grover's algorithm solves the problem with O( V2") queries

Classical query complexity

@ Recall: the problem is to find the unique m such that f(m) = 1
» among {0, 1}", that is a set of size 2"

@ In the worst case, a classical algorithm must query the whole set
» Classical query complexity: (2")
Notes
@ Grover’s algorithm provides a quadratic speedup
@ We can show that this is the best we can obtain for this problem
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Tool: Amplitude amplification [BHMTOZ2]

@ Letg:{0,1}" — {0,1}™ be a function we would like to compute
@ Suppose we have

» an algorithm computing g with success probability p <« 1

» a procedure to check if the output is correct or not
@ How to construct an algorithm for g with success probability ~ 1?

~ Classical solution: repeat the algorithm ©(1/p) times until the output is correct
» Quantum solution: use amplitude amplification, which only requires ©(1/ +/p)
calls to the algorithm.

Tool: Amplitude amplification

Using ©(1/+/p) calls to an algorithm with success probability p, one can construct
an algorithm with success probability close to 1.
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Quantum version of the original algorithm

@ We can assume that the original algorithm is quantum
» Recall that every classical algorithm can be turned into a quantum algorithm
» For probabilistic algorithms, we can produce random bits by measuring
310 +11)]
@ Let A be the unitary implemented by the quantum circuit

@ Let |W) be the final state (before any final measurement

=

input register [x) {

output register [0™) { |v)

L LT
>
[TTTT TTT 1111

workspace register [0%) {

@ Since the algorithm computes g(x) with success probability p, we can write

W) = ARIOMI0*) = VRGO ) + VT=p D, o)
_ y#4(x)
|wgnod>
|¢’bad>
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2-dimensional subspace

W) = AX)I0™I0Y) = VBIIg )iy ) + VT - Z YY)

y#4(x)
= @l‘ﬁgoed) + 1= Plvaa)

@ We consider the two-dimensional subspace spanned by [{s00d) and [paq)
W/good>

W)

\/5] by
=

|lﬁbad>

@ We want to rotate |W) to [(/so0d)
» 0y = arcsin \/p
@ ldea: Use two reflections as in Grover’s algorithm!
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Reflection around the initial state
|l¢//g00d>

\/5[ - W)

[baa)

@ Recall that
W) = Alx)I0™)0")
@ Just as for Grover, we can simulate by phase kickback
Uo = 2[x)10™)0%){x|K0™K0"| — |
@ and therefore simulate ref|y,
AUA™ = A(21)10™)I0" }(xI(0™K0¥| — AT
=2[UNV¥| -1

> This requires to run the algorithm back (AT) and forth (A)!
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Reflection around the bad state
|’jlg00d>

W)

V|
0 ¢ |Wbad>

@ Recall we have access to a procedure that checks the output of the algorithm

» we can evaluate the function

. n m i 1 lfy:f(X)
9 :{0,1}"x{0,1) _){0’1}'(X’y)H{ 0 otherwise

@ Using phase kickback (again!), we can simulate
Ug : 0l = (=1)910ly)
@ In particular, in the subspace spanned by [go0d) and [¥rpaq)

Ug|wgood> = - |¢’good> Ugllpbad> = |¢’bad>

> This is refy, ., the reflection we need!
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Wrapping up

@ Using one call to A, we prepare
W) = Alx)|0™)0")
@ Combining the two reflections W eooa)
G = AUpA"Uy = refjyy - refly,.) .
» we obtain a rotation of angle GlV)

1
26y = 2 arcsin —
VP

~2+p W)
\/EI 26
@ Repeating T times G, where % [Vpaa)
Ta T
4\p

> we rotate |‘U> to W’good)
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Fourier transform over Zy
@ An n-bit string X = Xp—1Xp—2 . . . X1 Xg can be viewed as
> an element of {0, 1}"
X = (Xn—1,Xn=2, - - -, X1, Xg)
> aninteger 0 < x < N, where N = 2", that is, an element of Zy

X=2""x1 +2"2Xp 0+ ...+ 2% + Xo

@ Recall: the Hadamard transform H®" implements the quantum Fourier
transform over {0, 1}"

3w 5 S Gy

x€{0,1}" ye{0,1}
> where i XiYi
- 7
) =5 > (1% (x)
ye(o,1n

» is the Fourier transform over {0, 1}"
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Fourier transform over Zy
@ An n-bit string X = Xp—1Xp—2 . . . X1 Xg can be viewed as
> an element of {0, 1}"
X = (Xn—1,Xn=2, - - -, X1, Xg)
> aninteger 0 < x < N, where N = 2", that is, an element of Zy

X=2""x1 +2"2Xp 0+ ...+ 2% + Xo

@ Question: can we also implement the quantum Fourier transform over Zy?

S w5 S dy)ly)

XE€ZN YE€Zn

~ where usual product

i) == Y dix)

YeZn

. . . 2ni
> is the Fourier transform over Zy, with w = ew
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Quantum Fourier transform (QFT) over Zy

@ Let us decompose x and y (integers in binary notation) as follows

X =Xp1Xn-2...X1X0 = 2" Xpt + X Y= Ynt¥no-.-Y1Yo=2Y + Yo
_,,—l H—l
X y
@ By definition QFT, acts on computational basis states |x) as
QFTa1x) = -= > w¥ly)

YE€ZN

_ \/127 Z w2xy’|y10>_|_ Z wx(2y’+1)|y/1>
Y €Znj2 Y €Znj2

_ 1 2xy" 1\, X

=L > e+ )
y'EZN/z

=L > Ve[ + (-1) el i)
y’EZN/z

= QFT,-11x) ® 5[10) + (=1)™ ¥ [1)]
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QFT circuit

[x") QFT -1

-9

QFT,|x)

QFTolx) = QFTy-41x) ® <=[10) + (=1)" 0" |1)]

@ In order to create the last qubit state
>~ we first apply H

H X,
Yoy = (100 + (=11 [1)]
~ followed by the controlled-phase gate R, acting as

IX)10) 2% [x)[0) XY 22 WX |x)[1)

@ It then remains to apply QFT,_1 on |x") by using the same construction
recursively
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QFT: final remarks

QFT,lx) = QFTy-11x) ® —5[10) + (=1)"" ¥ [1))]
Notes
@ After nrecursive steps, we obtain QFT; = H
@ Each step introduces O(n) gates
> Total complexity: O(n?)
» This is exponentially faster than the classical Fast Fourier Transform (FFT)
@ Note that the final state is not entangled (product state)

Tool: Quantum Fourier transform

The quantum Fourier transform over Zy (QFT) can be implemented using O(n?)
gates (where N = 2")
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Period finding

Definition of the problem
@ Input: Black-box access to a function: f : Zy — Zy
@ Promise: f is periodic
f(x) = f(x") =3 dk :x’=x+ka mod N
@ Problem: Find the period a

Notes
@ For simplicity, we assume that N is a power of 2 (N = 2")

» Otherwise, we round up N to the nearest power of 2
~ fis not perfectly periodic anymore, but algorithm still works w.h.p.
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Period finding algorithm [Sho94]

General idea

@ We follow the same approach as for Simon’s algorithm

> Also a period finding problem, over Zy instead of {0, 1}"
» Therefore, use QFT, instead of H®"

@ Why would it work?

~ Fourier transform of periodic function is peaked at harmonics of the frequency
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Period finding algorithm: analysis

Analysis

1002105 75 S 1010y 2 3 oif(x))

XEZN XELN

@ If the outcome of the first measurement is y, we have prepared
Ny

L= 3 W= & Z X0 + ka)

X: f(x)

ly) =

» where X, is such that f(xo) = y
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Period finding algorithm: analysis (cont’d)

@ We have prepared the state
N

= & Z|xO+ka> > w0

XEZN

> where

=LY

V() = { 0 otherwise

@ The quantum Fourier Transform acts on this state as

w0 25 3 i)

X€EZN Z€ZN
» where
Ny
N | 1 (xo+ka)z
W2) =5 D vx) =R 2K W
XEZLN =0
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2ir
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N
Ny
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Period finding algorithm: analysis (cont'd 2)

N_4

a
0(2) = e )

k=0

. 2im
@ We have a geometric sum Recall: w =e® = N =1
- )
Z W — 4 + w® + W2 + ... _|_w(§—1)az

- N
y fo¥*=1ez==1
= _azl Nz .
et = 12e2 =0 otherwise

@ The final state we measure is therefore

2, W@)2) = WZ“” I

ZeZN
@ The measurement outcome z is distrlbuted uniformly in
N 2N 3N (a-1)N
{0’ a’ a’ a 7"'5T}

» These are the harmonics of the frequency gl
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Period finding algorithm: analysis (cont'd 3)

@ Can we obtain a from one value j'a—\'?
> No: we know N but not j (which harmonic)
@ Just as for Simon’s algorithm, we can repeat and obtain k harmonics

> They are all multiples of &

~ If we are lucky, their greatest common divisor (GCD) could be g

~ Note: the GCD can be computed efficiently using Euclid’s algorithm [EucBC]
@ How lucky should we be?

> We obtain another GCD if all harmonics are multiples of ’;N for some j > 2.

Pr[1 sample multiple of ’ﬁ] <

—l=
IA

Pr[k samples multiple of 2 Zl< lk
ok

Pr[3j : k samples multiple of ’N] SH<E< 2ﬂk

> We therefore obtain GCD=4 w.h.p. by taking k = ©(n) samples

@ The query complexity of the algorithm is O(n) and the time complexity O(n?)
» Classically, the complexity of period finding is exponential.

Jérémie Roland (ULB, Brussels) Quantum algorithms I Singapore, January 2016 29/38



Outline

0 Grover’s algorithm

e Shor’s algorithm

@ Factoring

Jérémie Roland (ULB, Brussels) Quantum algorithms I

Singapore, January 2016

30/38



Factoring

Definition of the problem
@ Input: an integer N
@ Promise: N = p; - p2, where p; and p. are prime
@ Problem: Find the factors py and p»

Notes
@ This is not an oracle problem
» (no black-box, N is fully known to start with)
@ General idea: classical reduction to period finding

> In the period finding algorithm, the black-box will be replaced by an explicit circuit
computing a function
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Shor’s algorithm [Sho94]

Pick an integer ¢ < N uniformly at random
Compute GCD(c, N) (using Euclid’s algorithm)
If GCD(c, N) # 1

» GCD(c, N)=p; or p. = Finished!
@ Otherwise

> The function fy-(x) = ¢* mod N is a periodic function

» The period a is the smallest integer ¢ such that ¢ mod N = 1 (order of ¢)
Compute the period of fy ¢ using the period finding algorithm

» Note that fy.(x) = ¢* mod N can be computed efficiently by “repeated

squaring”
Suppose that a is even (@ ). Then we have
¢ modN=1 & ¢®-1=0 modN

& (c?-1)(c*?+1)=0 mod N

» (c¥2-1)(c¥2 4+ 1) is a multiple of N = p; - p»
(cZ=1)(c*2+1)=q-pi-pe
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Shor’s algorithm (cont’d) [Sho94]

(c*2=1)(c*+1)=q-ps-pe

@ ¢#? — 1 cannot be a multiple of N
» Otherwise ¢#2 =1 mod N, meaning that the order of c is at most a/2
@ Assume that ¢ + 1 is not a multiple of N either (@)
» N must have a common factor with each of (¢#2 - 1) and (¢#? + 1)
» GCD(N, c#? — 1) and GCD(N, ¢2 + 1) are equal to p; and p,
Discussion
@ The algorithm works if

© The order a of ¢ is even
® c?? + 1 is not a multiple of N

@ It can be shown that for a randomly chosen ¢ < N, this happens with
probability at least 1/2

» Pick random c until finding a good value
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Tool: quantum phase estimation

The problem
@ Consider a unitary operator U
@ Suppose we are given a state |v), and promised that it is an eigenstate of U
@ How to estimate the corresponding eigenvalue e%7#?
Ulv) = e2™|v)

Setting up the stage

@ We will compute the bits of the binary decomposition of the phase ¢ one by
one

@ For simplicity, suppose that ¢ can be expressed exactly by n bits
> ¢ = 4, where x is an integer between 0 and N = 2", that is

X=Xo+2X 4+ ...+ 2" x4

~ If this is not the case, the algorithm still works but with some error
@ The algorithm also requires the ability to apply controlled-U? efficiently, for
any0<j<n-1.
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Circuit for quantum phase estimation

|0) —N
0 ] T aFr D L&

0y —H} —D
v =k e W)
Analysis

@ Let us analyze the state of each qubit just before the QFT
2irx

. 2i;
» Since Ulv) = e~ |v) = w¥|v), where w = e'N'

H 2 - -
0)v) = L= [10) + D] V) —— [0y + D] Ivy = L > X |ypiv)
¥j€(0.1)

@ Therefore, the resulting state for the n qubits is

L > TNl e = <5 ) 0YIy) = QFTal)
Y0:Y15-0:Yn-1 YEZN
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Quantum phase estimation: conclusion

0y —{ri—e

0) —D

I

QFT,!

0 ]
v

@ The state just before QFT," is QFT,|x)
» which QFT," transforms into |x) itself
@ Measuring this state yields x with probability 1

» and therefore the eigenvalue e

Notes

Iv)

* associated to |v)

@ If the phase cannot be exactly expressed as n bits, the measurement yields
w.h.p. the n most significant bits of its binary decomposition

@ Shor’s period finding algorithm is actually equivalent to performing phase

estimation on the operator

Jérémie Roland (ULB, Brussels)

U; : Ix) > |c-x mod N)

. 2in
» whose eigenvalues are e 7,

where a is the order of c.
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