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MotivationMotivation

● Goal: “Engineering the topological quantum processor”.

● Materials

– 2DEG in GaAs/AlGaAs

– Graphene

● Devices

– Quantum point contact

– Interferometer (double quantum point contact)

● Engineering quantum gates – algorithms only



Nobel Laureates Said …Nobel Laureates Said …

● Technology evokes new physics

“It is frequently said that having a more or less specific practical goal
in mind will degrade the quality of research. I do not believe that this
is necessarily the case and to make my point in this lecture I have
chosen my examples of the new physics of semiconductors from
research projects which were very definitely motivated by practical
considerations.”

-- William Shockley, Nobel Lecture, Dec. 11, 1956

● Futuristic, but not crazy

[Frank] Wilczek also notes a number of new proposals to look for
more exotic anyon states of FQH systems that could form the basis
for quantum computers. Such ideas are “futuristic,” he says, "but not
as crazy as they used to be.“

                             -- Phys. Rev. Focus 16, 14 (2005)



From Ge Transistor to Si CMOSFrom Ge Transistor to Si CMOS



Metal-Oxide-Semiconductor Field Effect TransistorMetal-Oxide-Semiconductor Field Effect Transistor



QHE in GrapheneQHE in Graphene

Novoselov et al., Nature (2005); 
Zhang et al., Nature (2005)

Dean et al., Nature Physics (2011);
Du et al. Nature (2009); Bolotin et al., ibid. (2009)



 

Two-Dimensional Electron GasTwo-Dimensional Electron Gas

Pfeiffer et al., Appl. Phys. Lett. 55, 18 (1989)

GaAs/GaAlAs
interface

Si d-doping

2DEG



Fractional Quantum Hall Effect (1982)Fractional Quantum Hall Effect (1982)
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✔ High quality sample

✔ Low temperature

✔ High magnetic field

Daniel C. Tsui Horst L. Störmer Robert B. Laughlin

Nobel Prize 1998: "for their discovery of a new form of
quantum fluid with fractionally charged excitations." 

Fractional filling factor: 
    interaction important!



On SamplesOn Samples



FQHE: Distinct Topological PhasesFQHE: Distinct Topological Phases

● Dominated by odd denominators, with notable exception at (5/2)

● Condensate of charge and flux composites



2DEGs: Algebraic Approach2DEGs: Algebraic Approach

● Coordination of electrons in a plane described by a complex  z = x + iy
● Perpendicular magnetic field, choose symmetric gauge
● Hamiltonian (free spin-polarized electrons)

● Two sets of ladder operators

H 0=
1

2m
 p−e A2 H 0=ℏωc ( a+ a+ 1

2 )

Density of States (DOS)
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cyclotron
motion
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Laughlin State – Disk GeometryLaughlin State – Disk Geometry

● In the LLL, electron-electron interaction is not a perturbation.
Nevertheless,

● Basic requirement for an electron 
wave function in the LLL:
– antisymmetric function

– analytic function

– a universal Gaussian factor

● Laughlin state

Ψ L=∏
i< j

( z i−z j)
m e
−∑i

∣z i∣
2/4

ϕ l (z ) ∼ z l e−∣z∣2 /4

z0
z1 z l⋯ ⋯z2

Rl=〈l∣r2∣l 〉=2 l1

z=xiy



Model Hamiltonian for the Laughlin StateModel Hamiltonian for the Laughlin State

● Laughlin wavefunction is the ground state of 

● Its LLL projection has a simple 
pseudopotential form

– Two-particle wavefunction

– Interaction can be written, in general, as 

– One produces the 1/3 Laughlin factor by V
1
 > 0 only

● In general, the Laughlin state is the zero-energy ground state of

Ψ L=∏i< j
(z i−z j)

3e
−∑i

∣z i∣
2 /4H hardcore=∑

i< j

N

∂i
2δ2 (z i−z j)

When N = 2 particles
approach the same point,
the wavefunction vanishes
as q = 3 powers.

(z1+z2)
M (z1−z2)

m

H i = ∑m
VmPm(1,2)

H = ∑
m=0

q−1

Vm∑
i< j
Pm(i , j)



 

Abelian Laughlin QuasiholesAbelian Laughlin Quasiholes

● FQHE for electrons (n = 1/3, 1/5, …) 

– Condensate of composite bosons

e/3

Path equiv. in 3D; NOT equiv. in 2D:

Abelian anyons (i.e., different by a phase)

Ψξ
1qh=∏

j

( z j−ξ)∏
i< j

( z i−z j)
3 e
−∑i

∣zi∣
2/ 4

3ie q

ie q-

 ei

Ψ L=∏
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( z i−z j)
3e
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2/ 4

Ψξ1, ξ2

2qh =∏
j

( z j−ξ1)(z j−ξ2)∏
i< j

( z i−z j)
3 e
−∑i

∣z i∣
2 /4

qps created
away from
1/3 filling 



Exercises on the Laughlin StateExercises on the Laughlin State

● Why is the filling fraction for the following Laughlin
state?

– m = 2: bosonic

– m = 3: fermionic

● What is its total angular momentum? 

● What is the fractional charge of the m = 2 state?

ΨLaughlin= ∏
1⩽i< j⩽N

(z i−z j)
me

−∑i
∣z i∣

2 /4



● Laughlin state for electrons (n = 1/3) 

● For N electrons, 

Hint: Two-Electron Laughlin StateHint: Two-Electron Laughlin State

Ψ L=∏
i< j

(zi−z j)
3e
−∑i

z i
2/4

(z1−z2)
3 = 1⋅(z1

3−z2
3)+ (−3)⋅(z1

2 z2−z1 z2
2)

+   (- 3)1 Orbitals: 0,1,2,3

Ψ L=Sym ( z13(N−1) z2
3(N−2)⋯z N

0 +⋯) e−∑i
∣z i∣

2 /4

ν = lim
N→∞

N
3(N−1)+1

= 1
3

Generalize it for 3 electrons. Use Mathematica for N electrons.



Realistic ModelRealistic Model
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Ground State and Edge SpectrumGround State and Edge Spectrum

● Edge excitations generated by 
symmetric polynomials

P {z i }∏
i j

 z i−z j
m e
−∑

i

∣z i∣
2/4

Gapless chiral
bosonic charge
mode



Introducing QuasiholeIntroducing Quasihole

9-electron 
Laughlin state

HW=Wc0
+ c0



How to Measure the Charge Experimentally?How to Measure the Charge Experimentally?

t

average # of events in t 

t
´ charge contribution per eventI  =

rms fluctuation of # in t 

t
´ charge contribution per eventI

n
  =

SI ∝ In
2 ∝ 2e∗ I

t



Fractional Charge in Shot NoiseFractional Charge in Shot Noise

Saminadayar et al., PRL 79, 2526 (1997)

De-Picciotto et al., Nature 389, 162 (1997)



Devices for Edge PhysicsDevices for Edge Physics

● Quantum point contact

– Smooth potential, tunable
● Cleaved-edge overgrowth

– Broad energy range



#1: Messages So Far#1: Messages So Far

● FQH effect can be routinely observed in two-dimensional electron
systems in GaAs quantum wells or in high-mobility graphene. 

● Mobility is an important quantity to determine which fractions can be
observed. Higher mobility means smaller disorder. 

● A model wave function can be thought of as the fixed point for the
corresponding topological phase, which is stable under long-range
interaction and disorder. 

● Laughlin states support (gapped) Abelian quasiparticle excitations
which carry a fraction of an electron charge. The fractional charge has
been detected by shot noise measurement.  

● Laughlin states support gapless chiral edge excitations. Quasiparticles
can propagate along the edge.

● Other odd-denominator FQH states can be thought of as the
descendants of the Laughlin states. 

Next: non-Abelian state at n = 5/2



 

FQH at the First Excited Landau LevelFQH at the First Excited Landau Level

Xia et al., PRL (04)

Moore-Read

Read-Rezayi?

Ising anyon / Majorana fermion mode

Fibonacci
anyon

0LL

1LL

2DEG



 

A Cartoon of the Moore-Read State A Cartoon of the Moore-Read State 

● Half-filling n = 1/2: CF at zero effective field (B* = 0)

– 0LL (or LLL): Fermi sea of composite fermions

– 1LL: Superfluid of Cooper pairs of  composite fermions

– 2+LL: Charge density wave

● Condensate of composite fermions (n = 5/2 = 2 + 1/2)

e/4

e/4

Ψqh
e /4=σ e iϕ /2 √2

Ψqh
e /2=e i ϕ/√2 ,ψe i ϕ/√2

e/4 quasihole = charge-e/4 boson  + neutral Majorana fermion mode
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Ising CFT in FQHE and its application to TQC

Density Profiles for a 12-electron Droplet (ED)Density Profiles for a 12-electron Droplet (ED)

M-R

M-R + e/4 quasihole

M-R + e/2 quasihole



 

Quasiholes Wavefunctions in the Moore-Read StateQuasiholes Wavefunctions in the Moore-Read State

● Moore-Read state (Moore & Read, 1991)

● Quasiholes in Moore-Read condensate

– Charge e/2, Abelian (Laughlin type)

– Charge e/4, non-Abelian

Ψ(12)(34)=Pf ( (z i−ξ1)(z i−ξ2)( z j−ξ3)( z j−ξ4)+i⇔ j

z i−z j
) ∏

1⩽ i< j⩽N

(z i−z j)
2

∏
i

( z i−ξ1)( z i−ξ2)Pf ( 1
z i−z j

) ∏1⩽i< j⩽N

(z i−z j)
2

ΨPf=Pf ( 1
z i−z j

)∏i< j
( z i−z j)

m

Quasiparticles cannot be generated by local operators, but can be moved
around by local operators adiabatically.



 

Four-Anyon StatesFour-Anyon States

● Even when one fixes the location of all 
quasiholes, there are more than one states

● But they are not linearly independent!

Ψ(13)(24)=Pf ( ( z i−ξ1)(z i−ξ3)(z j−ξ2)(z j−ξ4)+i⇔ j

z i−z j
) ∏

1⩽i< j⩽N

(z i−z j)
2

Ψ(12)(34)=Pf ( (z i−ξ1)(z i−ξ2)( z j−ξ3)(z j−ξ4)+i⇔ j

z i−z j
) ∏
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(z i−z j)
2

Ψ(14)(23)=Pf ( ( z i−ξ1)(z i−ξ4)(z j−ξ2)(z j−ξ3)+i⇔ j

z i−z j
) ∏

1⩽i< j⩽N

(z i−z j)
2

Ψ(12)(34)−Ψ(13)(24)=(1−x) (Ψ(12)(34)−Ψ(14 )(23) ) x=
(ξ1−ξ2)(ξ3−ξ4)
(ξ1−ξ3)(ξ2−ξ4)

1 2 3 4
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Experimental Progress Experimental Progress 

● e/4 charge probing (indirect)

– Noise in current across quantum point contact (Heiblum group, 2008)

– Tunneling conductance across a QPC (MIT-Harvard group, 2008; Lin 2015)

– Local charge via coupling with single electron transistor (Yacoby group, 2011)

● Quasiparticle statistics (direct)

– Interference (Willett, 2009, 2010, 2013; Kang group, 2011)

– Ground state degeneracy via thermopower (Eisenstein group, 2012)

● Other consistent results

– Spin polarization (Muraki group, 2012), ruled out spin-unpolarized states

– Neutral current noise (Heiblum group, 2010)



 

Spin Polarization: Tiemann et al., Science (2012)Spin Polarization: Tiemann et al., Science (2012)

Resistively detected NMR (RD-NMR)

5/2 plateau vanishes ~ 150 mK
maximum polarization up to 200 mK



 

      Anyons Anywhere?Anyons Anywhere?

Dolev et al., Nature 452, 829 (2008)

Radu et al., Science
320, 899 (2008)

Venkatachalam et al., Nature 469, 285 (2011)

Noise, tunneling conductance, and local incompressibility support the
existence of e/4 anyons. But what about their statistics?



 

How to Measure Ground State Degeneracy?How to Measure Ground State Degeneracy?

● Seebeck effect

● Number of quasiparticles

● Ground state degeneracy

● Thermopower measures “entropy per charge carrier”

V

T
1

T
2

Q =
Eemf

∇T
= −∇V

∇T

dn → S = kn lnd

Q = − S
Nee

=−∣(B−B0)
B0

∣ k∣e∗∣ lnd

n=Ne∣ ee∗ (B−B0)
B0

∣



 

Thermopower (Caltech group)Thermopower (Caltech group)

Chickering et al.,
arXiv:1211.3672

Yang & Halperin, 2009

Q = −∣(B−B0)/B0∣(k/∣e
∗∣) lnd

T = 20 mK (B), 28 mK (G)
and 41 mK (R)



 

#2: More Messages#2: More Messages

● Fractional quantum Hall effect at filling fraction 5/2 (and 7/2) is distinct
from odd-denominator states. It can be thought of as the reincarnation of
a p+ip superfluid in quantum Hall regime.  

● The 5/2 state support both Abelian charge e/2 quasiparticles and non-
Abelian charge e/4 quasiparticles. 

● The charge of the elementary quasiparticles has been proved by shot
noise and local charge measurements to be e/4. 

● There are tangible evidences in tunneling conductance and thermal
power experiments that the 5/2 state may be of non-Abelian nature. 

Next: quantum Hall interferometer



 

Young and Double Slit InterferenceYoung and Double Slit Interference

● Double-slit experiment (1801)

Thomas Young (1773-1829)

Double-slit interference demonstrates the wave nature of light and,
later, other quantum particles. 



 

Detecting Quasiparticle Statistics by InterferenceDetecting Quasiparticle Statistics by Interference

edge of the ½ dropletpath via point
contact 1

path via point
contact 2

Gates controlling the strength of tunneling

Side gate controlling the number of quasiparticles on the central antidot

edges of the filled
Landau levels not
included

G∝∣t1 U 1t 2 U 2∣ 〉∣2=∣t1∣
2∣t2∣

22ℜ {t1
∗ t2 ei 〈∣M n∣ 〉 }

Chamon et al., 1997; Fradkin et al., 1998

T
im

e



 

Heiblem Group,Heiblem Group,  PNAS (2010)PNAS (2010)



 

Relevant Process and DiagramRelevant Process and Diagram

point contact 1 point contact 2

central antidot (n non-Abelian qps)

evaluate corresponding Jones polynomials



 

Evaluation of the Jone PolynomialEvaluation of the Jone Polynomial

=−q−q−1=2

= 0   !!

q = −eiπ/ 4



 

Expected Experimental SignatureExpected Experimental Signature

V
bg

I

V
bg

I

Even number of non-Abelian
quasiparticles inside the
interference loop

Odd number of non-Abelian
quasiparticles inside the
interference loop

Stern & Halperin (06); Bonderson, Kitaev & Shtengel (06)Odd-even effect:

which-way
experiment



 

Willett et al., PNAS (2009); arXiv:0807.0221Willett et al., PNAS (2009); arXiv:0807.0221



 

Charge-e/2 Quasiparticles?Charge-e/2 Quasiparticles?

 qh
e /4 =  ei/22 Ψqh

e /2 = e iϕ/√2 ,ψe iϕ/√2 Irrelevant to inter-
edge tunneling in
RG sense

×=1 (Ising/Majorana) Less relevant but
relevant 
Charge component only!

Most relevant. 
Charge & neutral components.

I 12∝∑q
sq∣1∣∣ 2∣e

−∣x1−x2∣/ Lcos 2 q
e

0
qarg 12

∗ 
tunneling
amplitude

coherence length due to
thermal smearing

favors e/4 qps
favors e/2 qps

L=
1

2 k B T  g c

vc


gn

vn

−1



 

Coherence Length of e/4 QuasiparticlesCoherence Length of e/4 Quasiparticles

Willett et al., arXiv:1301.2594

e/2: longer, because of the absence of the slow
neutral mode. More visible at higher temperatures.

XW, Hu, Rezayi & Yang, PRB (2008)

Theory predicted at 25 mK:

(e/4):  L
f
 ~ 1.5 mm 

(e/2):  L
f
 ~ 5 mm

Lϕ=
1

2 π k BT ( g c

vc

+
gn

vn
)
−1

ln (exp{-L/Lf})

L

e/2

e/4



 

Signature for Non-Abelian StatisticsSignature for Non-Abelian Statistics

Even number of non-Abelian
quasiparticles inside the
interference loop

Odd number of non-Abelian
quasiparticles inside the
interference loop

e/4 like e/2 like

XW, Hu, Rezayi & Yang, PRB (2008)Background Abelian signal:

Coherence length ~ 1 mm



 

e/4 Pattern Suppressed at Higher Te/4 Pattern Suppressed at Higher T

B or V
bg

I
XW, Hu, Rezayi & Yang, PRB (2008)

e/4 like

increase T

e/2 like

Willett et al.,
PNAS (2009)

~ 80 mK



 

Alternative e/4 and e/2 PatternsAlternative e/4 and e/2 Patterns
Willett et al., PRB (2010)



 

B-field Induced e/4 and e/2 Oscillation SwapB-field Induced e/4 and e/2 Oscillation Swap

A suitable adjustment of the applied magnetic field is expected to
change the parity in the encircled localized quasiparticle number,
thus change the pattern of aperiodic e/4 and e/2 observed over the
same side-gate sweep. 

65 kG (upper panel) → 65 kG + 19 G (lower panel)

Willett et al., PRB (2010)



 

#3: Yet More Messages#3: Yet More Messages

● Willett's interference data agrees with the existence of both charge e/4
and e/2 quasiparticles. 

● Experimental data does not violate the theoretical expectation that the
ground state wave function of the 5/2 state is the Moore-Read state (or
its particle-hole conjugate).

● Non-Abelian e/4 quasiparticles have short decoherence length, which
limits the device size to 1 micron or so with today's technology. 

● The interferometer experiment demonstrated that we have the
technology to create anyons and to manipulate them to achieve braiding. 

● Reproduction of data and significant improvements in experiments are
desired. 

Next: What to do with anyons?



 

Model of AnyonsModel of Anyons

• A model of anyons is a theory of a 
two-dimensional medium with a mass 
gap, where the particles carry locally 
conserved charges. One defines

– A finite label set {a,b,c,…};

– The fusion rules a ´ b = c Nab
c c;

– The F-matrix (expressing associativity of fusion);

– The R-matrix (braiding rules).

F= 1

√2 ( 1 1
−1 1)

R=(e−iπ/8 0
0 e3 iπ /8 )

Ising anyon model:

{1, s, y}

s x s = 1 + y
y x y = 1
y x s = s x y = s 

F & R satisfy self-consistency equations,
known as the pentagon and hexagon
equations.



 

DiagramsDiagrams



 

Four Ising Anyons as a QubitFour Ising Anyons as a Qubit

● Even when one fixes the location of all 
quasiholes, there are more than one states

● But they are not linearly independent!

Ψ(13)(24)=Pf ( ( z i−ξ1)(z i−ξ3)( z j−ξ2)(z j−ξ4)+ i⇔ j

z i−z j
) ∏
1⩽i< j⩽N

( z i−z j)
2

Ψ(12)(34)=Pf ( (z i−ξ1)(z i−ξ2)(z j−ξ3)(z j−ξ4)+i⇔ j

z i−z j
) ∏
1⩽i< j⩽N

(z i−z j)
2

Ψ(14)(23)=Pf ( ( z i−ξ1)(z i−ξ4)( z j−ξ2)(z j−ξ3)+ i⇔ j

z i−z j
) ∏
1⩽i< j⩽N

( z i−z j)
2

Ψ(12)(34)−Ψ(13)(24)=(1−x ) (Ψ(12)(34)−Ψ(14)(23) ) x=
(ξ1−ξ2)(ξ3−ξ4)
(ξ1−ξ3)(ξ2−ξ4)

1 2 3 4



 

Four Ising Anyons as a QubitFour Ising Anyons as a Qubit

● Ansatz wavefunction (decomposition into two quasihole-paring
wavefunctions)

Ψ(0,1)(ξ1,ξ2,ξ3,ξ4 ; z1, ... , zN ) = A(0,1)({ξ})Ψ(12)(34)({ξ},{z })

+ B(0,1)({ξ})Ψ(13)(24)({ξ},{z })

C. Nayak and F. Wilczek, Nucl. Phys. B 479 (1996) 529

E. Ardonne and K. Schoutens, Ann. Phys. 322 (2007) 201

|1 ⟩=|(⋅⋅)1(⋅⋅)1 ⟩0

|0 ⟩=|(⋅⋅)0(⋅⋅)0 ⟩0

Ising: • = s, 0 = 1, 1 = y

s s s s

I/y I/y

I



 

Identify the Two Fusion ChannelsIdentify the Two Fusion Channels

● The two linearly independent wave function can be written as

● Exchanging x
1
 and x

2
, we have 

Ψ±=
[(ξ1−ξ3)(ξ2−ξ4)]

1/4

(1±√ 1−x)
1/2 (Ψ(13)(24)±√ 1−xΨ(14)(23)) Ψ=a+ Ψ+ + a−Ψ−

a = 1 / y b = 1 / y

= ∑
b

(Rσσ)ab

1−x → 1
1−x

(ξ1−ξ3)(ξ2−ξ4) → (ξ2−ξ3)(ξ1−ξ4)
=(ξ1−ξ3)(ξ2−ξ4)(1−x)

Φ(13)(24)±√1−xΦ(14)(23) → Φ(23)(14)±√ 1
1−x

Φ(24)(13)

=√ 1
1−x [±Φ(13)(24)+√1−xΦ(14)(23)]

1−x=
(ξ1−ξ4)(ξ2−ξ3)
(ξ1−ξ3)(ξ2−ξ4)

( Ψ
+

Ψ− ) → (1 0
0 −1) (Ψ

+

Ψ− )
R-matrix (Ising x U(1))

s ss s



 

Spin and StatisticsSpin and Statistics



 

A Simple Quantum ComputationA Simple Quantum Computation

I 

I 

Mn

〈Ψ∣

∣Ψ 〉 〈Ψ∣Mn∣Ψ 〉

G∝∣t 1U 1+t 2 U 2
∣Ψ 〉∣2=∣t1∣

2+∣t 2∣
2+2ℜ {t1

∗ t2 eiϕ 〈Ψ∣M n∣Ψ 〉 }



 

Calculating with F-MatrixCalculating with F-Matrix



 

NOT GateNOT Gate



 

Initialize AnyonsInitialize Anyons

n = 5/2

Das Sarma, Freedman & Nayak (2005)



 

Braiding Example: Hadamard GateBraiding Example: Hadamard Gate

● Braiding diagram for the Hadamard gate 

The Ising model is not universal; it cannot generate all single-qubit gates!



 

Braiding Example: CNOT GateBraiding Example: CNOT Gate

Generates representation
of the braid group B6



Universal Quantum Gate SetUniversal Quantum Gate Set

● A set of universal quantum gates is any set of gates to which any
operation possible on a quantum computer can be reduced, that is, any
other unitary operation can be expressed as a finite sequence of gates
from the set. We only require that any quantum operation can be
approximated by a sequence of gates from this finite set. Moreover, for
the specific case of single qubit gates, the Solovay-Kitaev theorem 
guarantees that this can be done efficiently.

● From a more mathematical point of view, the Solovay-Kitaev theorem is
a remarkable general statement about how quickly the group SU(d) is
“filled in” by a universal set of gates.

● One simple set of universal quantum gates is the Hadamard gate H, the
p/8-gate R(p/4), and the controlled-NOT gate.



 

Measuring AnyonsMeasuring Anyons

Das Sarma, Freedman & Nayak, PRL 94, 166802 (2005)



 

#4: Pictorial Messages#4: Pictorial Messages

Planer graph with punctures <==> Condensate with quasiparticles

initialization/
measurement (inverse process)

braiding = computing

g

 aM ab b

Advantages: GS degeneracy and braiding operation robust against local perturbation

ground state
manifold

Excited
states 

Gap D



 

Topological Quantum ComputationTopological Quantum Computation

Next: compute with Fibonacci anyons



I Ching I Ching of Knotsof Knots

● I Ching (~1100 BC): Ancient people tied knots on cords to keep
record, while people during later periods replaced with writing

● 《易 · 系辞》载：“上古结绳而治，后世圣人易之以书契”

纠缠 ↔ entanglement



Counting in Oracle Bone InscriptionsCounting in Oracle Bone Inscriptions

● Decimal system in China (over 3000 years ago)

一 二 三 四 五 六 七 八 九 十

百

千



Fibonacci AnyonsFibonacci Anyons

● Suppose we have only two types of anyons 

– A trivial anyon I (or 0): representing the ground state of the system (vacuum)

– A non-trivial anyon t (or 1) – must be the antiparticle of itself

● Anyons can be fused to a new one

×= ITwo possibilities:
non-Abelian!

or nothing

σ×σ= I+ ψIsing:

k = 3 Read-Rezayi state; non-Abelian spin-singlet state  (Ardonne & Schoutens)



Quantum DimensionQuantum Dimension

×××= I××=×××= I I

V n1=V n−1V n

Dimension of V
n
: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Dim(V n)∼ϕ
n , ϕ=(√5+1)/2



Hexagon EquationHexagon Equation



Single Qubit and Elementary BraidsSingle Qubit and Elementary Braids

● Either three or four anyons can encode one qubit of information.

● A braid represents the worldline of anyons in the (2+1)-dim spacetime. 

=5−1
2

Identical to s
1



Universal Quantum GatesUniversal Quantum Gates

● Single-qubit gates (rotation)

• At least a two-qubit gate, such as CNOT

• Any N-qubit gates can be realized by the set of universal gates

• Freedman et al. proved TQC is as powerful as conventional QC;
implemented by Bonesteel and co-workers using Fibonacci anyons. 

• Textbook discussion on conventional quantum gate construction (e.g.,
Nielsen & Chung)

∣ 〉 U U∣ 〉

∣ 〉 ∣ 〉

∣ 〉 ∣ ' 〉

U−1 = 1
−2 2

21
4⋯

Goal: Efficiently find a
sequence that approximates
the target gate within a given
error e.



Single-Qubit Gates: Brute-Force SearchSingle-Qubit Gates: Brute-Force Search

● We have s
1
 (or s

3
), s

2
, and inverses s

1

-1, s
2

-1

● Each exchange has 3 possibilities (no return)

● Finding the best braid in ~3N possibilities

● Exhaustive search: non-polynomial time

● Error to the desired gate (semi-empirical)

~e−L/ , ≈7.3 for identity

 i
10=1

1 211 21=1



Exchange-by-Exchange DistanceExchange-by-Exchange Distance

rare fluctuation!Distance between matrices U and V is defined as the square
root of the highest eigenvalues of (U-V)*(U-V)

L = 44, e = 0.00191937



Distance Distribution for a Fixed LengthDistance Distribution for a Fixed Length

d=2sin /4 PBF d =
4
 d

21−d2/4

Distribution of distance to
the identity for all weaves
(a subset of braids in
which only one anyon
moves) with a length 24:

How to enhanced the
sampling at small d?

assuming that the braids distributed uniformly in the space of unitary matrices



Randomly Uniform ApproximationRandomly Uniform Approximation

● Assumption: The matrix representations of long enough braids distribute
randomly in the space of unitary matrices (3-sphere). There is no local 
correlation. 

– Total number of weaves for a fixed braid length L: 

– Average volume per weave on the 3-sphere:

– Average error:

N (L)∼αL/2 , α≈2.732< 3

[ϵ(L)]3∼1/N (L)∼α−L /2

L~−L /6 N (L)∼(1+ √ 3 ) L/2

σ1
n1σ2

n2σ1
n3σ2

n4⋯σ1
nm−1σ2

nm

ni=±2,±4

L=∑
i

∣ni∣

L~ln 1/or

Burrello et al., 2011
T∼(1/ϵ)3 inefficient!

g=ei m̂⋅σ⃗ (ϕ/2)

 i
10=1 1 211 21=1



Two-Qubit GatesTwo-Qubit Gates

● Single-qubit gate: 3 free parameters [SU(2)]

● Two-qubit gate: too many parameters

∣ 〉 ∣ 〉

∣ 〉 ∣ ' 〉

∣ 〉 ∣ 〉
1?

1?

leakage



Decomposing Two-Qubit GatesDecomposing Two-Qubit Gates

● Idea proposed by Bonesteel et al. (2005) – leakage error ~10-3

● [Xu & Wan, 08] Reduces leakage error significantly, ~10-9

● Inject the control pair into the target qubit – exchange braid D

● Perform a single-qubit rotation U – implemented by a weave

● Extract the control pair use the inverse of the inverse of the exchange braid D-1

D-1D

U
0

0

Generic
controlled-gates
with leakage error
~10-9.



Leakage ErrorLeakage Error

Create a pair of anyons out of
vacuum (so fuse to 0).

Note they could also be stray
anyons thermally excited.

Computing basis

Non-computing basis



Leakage-Error AnalysisLeakage-Error Analysis

 ei  0
0 ei   10  = e i 10 

What kind of braids (of a
4
, a

5
, a

6
) leave

the left qubit in state 0, after
exchanging a

4 
and a

5
?

 1 0
0 1  10  = 10 



Phase GatesPhase Gates

• Let us look for diagonal matrices, rather than the identity matrix; this
means we introduce a phase error.

• For small b, g is irrelavent. Targeting less parameter – higher accuracy!

• But how do we use it? What about the phase? 

∣1∣=∣2∣=1−r2=1.56×10−10



Exchange BraidExchange Braid

• Apply the diagonal gate (with the irrelevant phase) to the leakage model

∣1∣=1.56×10−10Low leakage!

∣1∣=∣2∣
2∣3∣

2=∣4∣=∣5∣
2∣6∣

2=∣1∣= 1−r2≈1.56×10−10



5-Dimensional Representation5-Dimensional Representation

• One calculate the braiding matrix in an enlarged space, including non-
computing bases. 



Improvement in the Brute-Force PerformanceImprovement in the Brute-Force Performance

≈1.6 e−L/7.3

≈0.76 e−L /4.3

Search for one point 
on the bloch sphere

Search for any point 
on a circle on the
Bloch sphere

Leakage error reduction by several orders of magnitude



Single-Qubit Construction AgainSingle-Qubit Construction Again

● Single-qubit construction hides an SU(2) symmetry. A rotation around an
arbitrary axis l by an angle q on a Bloch sphere can be carried out by first
rotating l to another direction l', then rotating around l' by an angle q, and
finally rotating l' back to l.

● Implementation: Instead of search for a gate G, we search a pair of gates
G

1
 and G

2
, such that

|ψ ⟩ G1 G2 G1
+ U|ψ ⟩

U(1) symmetry

SU (2)/U (1) ∼ S 2

G≈G1G2G1
+



Geometric Redundancy for Single-qubit GatesGeometric Redundancy for Single-qubit Gates

● We first rotate the axis of rotation, then rotate around the axis, and
finally rotate the axis back – physically, this means that we have a
geometric redundancy in search, due to the SU(2) rotation symmetry.

– We can search G
1
 and G

2
 separately

– Both searches are achievable in lower (than 3) dimensions

– i.e., we can fix 

 G
1
 up to a U(1) rotation, and 

 G
2
 up to SU(2) / U(1) ~ S2

● Outcome: Generic single-qubit gates with error (distance) ~10-10 with
braids of ~300 exchanges (length) – Xu & XW (2009). 

– Hormozi et al. (07): 4 ×10-5 for a braid of length 220 with Solovay-Kitaev
algorithm



Arbitrary Controlled-rotation GateArbitrary Controlled-rotation Gate

● Example: CNOT with precision 5 x 10-10 – 280
interchanges of double braids and 208 of single braids



#5: Messages on Topological Quantum Gates#5: Messages on Topological Quantum Gates

● Three or four Fibonacci anyons can encode one qubit of information. 

● Quantum gates can be achieved by braiding anyons; in particular,
moving one or one pair of anyons is enough to generate all quantum
gates. 

● Braids for quantum gates can be compiled into sequences of two
elementary exchanges and their inverses. 

● The construction of two-qubit gates can be mapped to that of single-
qubit gates. But at least one high-precision phase gate is needed to
eliminate leakage errors. 

● In the brute-force search for braids geometrical redundancy can be
explored to boost the efficiency. 

Next: reducing the computational complexity of search



Renormalization Group SchemeRenormalization Group Scheme

1. Start from a collection of braids of certain length

2. Find the cluster of braids that approximates the target best

3. Moving on to a collection of longer braids (finer in distance) matching
the residual error

4. Repeat 2-3, and stop when the desired error scale is reached



Icosahedral GroupIcosahedral Group

● The following Cartesian coordinates define 
the vertices of an icosahedron with 
edge-length 2, centered at the origin:

● The icosahedral group is the largest finite 
subgroup of SU(2). It is composed by the 
60 rotations around the axes of symmetry 
of the icosahedron.

● There are 6 axes of the 5th order, 10 of the 3rd, and 15 of the 2nd.

● We approximate all group elements by braids of various length.

0,±1,± ,±1,± ,0 ,± ,0,±1

=15
2

I 60={g 0, g1, g 2,⋯, g59 } g0=e



Braid Representations for the Identity eBraid Representations for the Identity e

● L = 8, e = 0.236068

● L = 24, e = 0.0344419

● L = 44, e = 0.00191937

● L = 68, e = 0.0000304193

g̃ 0(8)=σ2
−2σ1

2σ2
−2σ1

2=g0 eiΔ 0
(8 )

Δ 0
(8): a Hermitian matrix

characterizing error

The braid representations can be computed and stored once for all.
Hence no additional cost to the search later. 



Connection to Random Matrix TheoryConnection to Random Matrix Theory

● Pseudogroup of braids (for small D
i 
)

● To approximate

● We conjecture H
n
 is a random matrix 

in the Wigner-Dyson Gaussian 
Unitary Ensemble (s for eigenvalue/error)

g i g j=g k , g̃ i g̃ j=g i e
iΔ i g j e

i Δ j≈g k ei( g j
−1Δ i g j+ Δ j)≠ g̃k=g k ei Δk

n = 3 is large enough

g̃ i g̃ j⋯ ̃gn+ 1=g i e
i Δ i g j e

iΔ j⋯g n+ 1 eiΔ n+ 1≡ei H n

H n=g iΔ i g i
−1+ g i g jΔ j g j

−1 g i
−1+⋯

+ g i g j⋯g nΔ n gn
−1⋯g j

−1 g i
−1

+ Δ n+ 1+ O (Δ 2)

g i g j⋯g n+ 1=e

P (s)= 32

π2 s0
( s
s0
)

2

e−(4 /π)(s / s0)
2

A single parameter s
0
 controls the flow of the (distribution of) error. 



Refined RealizationRefined Realization

1. Load a collection of braids of certain length that approximate the
elements of the icosahedral group.

2. Find the cluster of braids that approximates the target best

3. Replace with a collection of longer (finer in distance) braids that
approximate the icosahedral group matching the residual error

4. Find the cluster of braids in the vicinity of the identity that when adding
to the previous approximation reduces the residual error most 

5. Repeat 3-4, and stop when the desired error scale is reached

First approximation Correction: approximation to 



Understanding Error RenormalizationUnderstanding Error Renormalization

● First approximate by gluing 3 short (L = 8) segments (1 out of 603 ).

● Reduce the error (e
1
) by gluing 

4 (= n + 1) longer (L = 24) 
segments (1 out of 603 ).

● The resulting error (e
2
) follows 

the Wigner-Dyson distribution.

● Average error reduction:  

<e
1
> / <e

2
> ~ f = 60n/3

√ n+ 1

Initial approximation Correction: approximation to e
1

e
2

distribution of e
2



Scaling AnalysisScaling Analysis

● The number of iteration for a
given final error

●  Choose suitable braid segment
length to match the residual error 

● Each iteration increases the
length by 4 (= n + 1) segments

● Length of braid after q iterations

● Time

≪1 ln(error)

ln(e)

ln(f)ln(f)…

~ 0



Comparison with Other AlgorithmsComparison with Other Algorithms

● Compiling with the RG-like algorithm

● Brute-force search

● Solovay-Kitaev

U i1=Ai Bi Ai
−1 Bi

−1 U i

It takes less than a
second on a 3 GHz
Intel E6850 processor
to reach an average
precision of 7 x 10−4 
for an arbitrary gate.

It takes less than a
second on a 3 GHz
Intel E6850 processor
to reach an average
precision of 7 x 10−4 
for an arbitrary gate.

Thanks to randomness in the building blocks, we save time in search exponentially. 



#6: Importance of Algorithm#6: Importance of Algorithm

● In a classical computer, one can build up a circuit, e.g., to add two
numbers using OR and NOT gates.

● In a quantum computer, the set of possible quantum gates forms a
continuum, and it’s not necessarily possible to use one gate set to
simulate another exactly. Instead, some approximation may be
necessary.

● We explore an algorithm that guarantees the efficient construction of
any quantum gate, to a very good approximation. 

– From a practical point of view, this is important in compiling quantum
algorithms (like Shor’s) into a form that can be implemented fault-tolerantly. 

– From a more mathematical point of view, we give a general statement about
how quickly the group SU(d) is “filled in” by a universal set of gates.

● This is also the importance of the textbook example – the Solovay-
Kitaev algorithm.
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