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Model of AnyonsModel of Anyons

• A model of anyons is a theory of a 
two-dimensional medium with a mass 
gap, where the particles carry locally 
conserved charges. One defines

– A finite label set {a,b,c,…};

– The fusion rules a  b = c Nab
c c;

– The F-matrix (expressing associativity of fusion);

– The R-matrix (braiding rules).

F= 1

√2 (1 1
1 −1 )

R=(e−iπ/8 0
0 e3 iπ /8 )

Ising anyon model:

{1, s, y}

s x s = 1 + y
y x y = 1
y x s = s x y = s 

F & R satisfy self-consistency equations,
known as the pentagon and hexagon
equations.



 

DiagramsDiagrams



 

Spin and StatisticsSpin and Statistics



 

Initialize AnyonsInitialize Anyons

 = 5/2

Das Sarma, Freedman & Nayak (2005)



 

Four Ising Anyons as a QubitFour Ising Anyons as a Qubit

● Even when one fixes the location of all 
quasiholes, there are more than one states

● But they are not linearly independent!

Ψ(13)(24)=Pf ( ( z i−ξ1)(z i−ξ3)( z j−ξ2)(z j−ξ4)+ i⇔ j

z i−z j
) ∏
1⩽i< j⩽N

( z i−z j)
2

Ψ(12)(34)=Pf ( (z i−ξ1)(z i−ξ2)(z j−ξ3)(z j−ξ4)+i⇔ j

z i−z j
) ∏
1⩽i< j⩽N

(z i−z j)
2

Ψ(14)(23)=Pf ( ( z i−ξ1)(z i−ξ4)( z j−ξ2)(z j−ξ3)+ i⇔ j

z i−z j
) ∏
1⩽i< j⩽N

( z i−z j)
2

Ψ(12)(34)−Ψ(13)(24)=(1−x ) (Ψ(12)(34)−Ψ(14)(23) ) x=
(ξ1−ξ2)(ξ3−ξ4)
(ξ1−ξ3)(ξ2−ξ4)

1 2 3 4



 

Four Ising Anyons as a QubitFour Ising Anyons as a Qubit

● Ansatz wavefunction (decomposition into two quasihole-paring
wavefunctions)

Ψ(0,1)(ξ1,ξ2,ξ3,ξ4 ; z1, ... , zN ) = A(0,1)({ξ})Ψ(12)(34)({ξ},{z })

+ B(0,1)({ξ})Ψ(13)(24)({ξ},{z })

C. Nayak and F. Wilczek, Nucl. Phys. B 479 (1996) 529

E. Ardonne and K. Schoutens, Ann. Phys. 322 (2007) 201

|1 ⟩=|(⋅⋅)1(⋅⋅)1 ⟩0

|0 ⟩=|(⋅⋅)0(⋅⋅)0 ⟩0

Ising: • = s, 0 = 1, 1 = y

s s s s

I/y I/y

I



 

Identify the Two Fusion ChannelsIdentify the Two Fusion Channels

● The two linearly independent wave function can be written as

● Exchanging x
1
 and x

2
, we have 

Ψ±=
[(ξ1−ξ3)(ξ2−ξ4)]

1/4

(1±√ 1−x)
1/2 (Ψ(13)(24)±√ 1−xΨ(14)(23)) Ψ=a+ Ψ+ + a−Ψ−

a = 1 / y b = 1 / y

= ∑
b

(Rσσ)ab

1−x → 1
1−x

(ξ1−ξ3)(ξ2−ξ4) → (ξ2−ξ3)(ξ1−ξ4)
=(ξ1−ξ3)(ξ2−ξ4)(1−x)

Φ(13)(24)±√1−xΦ(14)(23) → Φ(23)(14)±√ 1
1−x

Φ(24)(13)

=√ 1
1−x [±Φ(13)(24)+√1−xΦ(14)(23)]

1−x=
(ξ1−ξ4)(ξ2−ξ3)
(ξ1−ξ3)(ξ2−ξ4)

( Ψ
+

Ψ− ) → (1 0
0 −1) (Ψ

+

Ψ− )
R-matrix (Ising x U(1))

s ss s



 

A Simple Quantum ComputationA Simple Quantum Computation

I 

I 

Mn

〈Ψ∣

∣Ψ 〉 〈Ψ∣Mn∣Ψ 〉

G∝∣t 1U 1+t 2 U 2
∣Ψ 〉∣2=∣t1∣

2+∣t 2∣
2+2ℜ {t1

∗ t2 eiϕ 〈Ψ∣M n∣Ψ 〉 }



 

Calculating with F-MatrixCalculating with F-Matrix



 

NOT GateNOT Gate



 

Braiding Example: CNOT GateBraiding Example: CNOT Gate

Generates representation
of the braid group B6



 

Measuring AnyonsMeasuring Anyons

Das Sarma, Freedman & Nayak, PRL 94, 166802 (2005)



 

#4: Pictorial Messages#4: Pictorial Messages

Planer graph with punctures <==> Condensate with quasiparticles

initialization/
measurement (inverse process)

braiding = computing

g

 aM ab b

Advantages: GS degeneracy and braiding operation robust against local perturbation

ground state
manifold

Excited
states 

Gap D



Universal Quantum Gate SetUniversal Quantum Gate Set

● A set of universal quantum gates is any set of gates to which any
operation possible on a quantum computer can be reduced, that is, any
other unitary operation can be expressed as a finite sequence of gates
from the set. We only require that any quantum operation can be
approximated by a sequence of gates from this finite set. Moreover, for
the specific case of single qubit gates, the Solovay-Kitaev theorem 
guarantees that this can be done efficiently.

● From a more mathematical point of view, the Solovay-Kitaev theorem is
a remarkable general statement about how quickly the group SU(d) is
“filled in” by a universal set of gates.

● One simple set of universal quantum gates is the Hadamard gate H, the
p/8-gate R(p/4), and the controlled-NOT gate.



Fibonacci AnyonsFibonacci Anyons

● Suppose we have only two types of anyons 

– A trivial anyon I (or 0): representing the ground state of the system (vacuum)

– A non-trivial anyon t (or 1) – must be the antiparticle of itself

● Anyons can be fused to a new one

×= ITwo possibilities:
non-Abelian!

or nothing

σ×σ= I+ ψIsing:

k = 3 Read-Rezayi state; non-Abelian spin-singlet state  (Ardonne & Schoutens)



Quantum DimensionQuantum Dimension

×××= I××=×××= I I

V n1=V n−1V n

Dimension of V
n
: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Dim(V n)∼ϕ
n , ϕ=(√5+1)/2



Single Qubit and Elementary BraidsSingle Qubit and Elementary Braids

● Either three or four anyons can encode one qubit of information.

● A braid represents the worldline of anyons in the (2+1)-dim spacetime. 

=5−1
2

Identical to s
1



Braiding Matrices from the Hexagon EquationBraiding Matrices from the Hexagon Equation



Universal Quantum GatesUniversal Quantum Gates

● Single-qubit gates (rotation)

• At least a two-qubit gate, such as CNOT

• Any N-qubit gates can be realized by the set of universal gates

• Freedman et al. proved TQC is as powerful as conventional QC;
implemented by Bonesteel and co-workers using Fibonacci anyons. 

∣ 〉 U U∣ 〉

∣ 〉 ∣ 〉

∣ 〉 ∣ ' 〉

U−1 = 1
−2 2

21
4⋯

Goal: Efficiently find a
sequence that approximates
the target gate within a given
error e.



Importance of AlgorithmImportance of Algorithm

● In a classical computer, one can build up a circuit, e.g., to add two
numbers using OR and NOT gates.

● In a quantum computer, the set of possible quantum gates forms a
continuum, and it’s not necessarily possible to use one gate set to
simulate another exactly. Instead, some approximation may be
necessary.

● We explore an algorithm that guarantees the efficient construction of
any quantum gate, to a very good approximation. 

– From a practical point of view, this is important in compiling quantum
algorithms (like Shor’s) into a form that can be implemented fault-tolerantly. 

– From a more mathematical point of view, we give a general statement about
how quickly the group SU(d) is “filled in” by a universal set of gates.

● This is also the importance of the textbook example – the Solovay-
Kitaev algorithm (c.f. Nielsen & Chung).



Single-Qubit Gates: Brute-Force SearchSingle-Qubit Gates: Brute-Force Search

● We have s
1
 (or s

3
), s

2
, and inverses s

1

-1, s
2

-1

● Each exchange has 3 possibilities (no return)

● Finding the best braid in ~3N possibilities

● Exhaustive search: non-polynomial time i
10=1

1 211 21=1



Exchange-by-Exchange DistanceExchange-by-Exchange Distance

rare fluctuation!Distance between matrices U and V is defined as the square
root of the highest eigenvalues of (U-V)*(U-V)

L = 44, e = 0.00191937



Distance Distribution for a Fixed LengthDistance Distribution for a Fixed Length

d=2sin /4 PBF d =
4
 d

21−d2/4

Distribution of distance to
the identity for all weaves
(a subset of braids in
which only one anyon
moves) with a length 24:

How to enhanced the
sampling at small d?

assuming that the braids distributed uniformly in the space of unitary matrices



Randomly Uniform ApproximationRandomly Uniform Approximation

● Assumption: The matrix representations of long enough braids distribute
randomly in the space of unitary matrices (3-sphere). There is no local 
correlation. 

– Total number of weaves for a fixed braid length L: 

– Average volume per weave on the 3-sphere:

– Average error:

N (L)∼αL/2 , α≈2.732< 3

[ϵ(L)]3∼1/N (L)∼α−L /2

L~−L /6 N (L)∼(1+ √ 3 ) L/2

σ1
n1σ2

n2σ1
n3σ2

n4⋯σ1
nm−1σ2

nm

ni=±2,±4

L=∑
i

∣ni∣

L~ln 1/or

Burrello et al., 2011
T∼(1/ϵ)3∼eγ L

inefficient!

g=ei m̂⋅σ⃗ (ϕ/2)

 i
10=1 1 211 21=1



Two-Qubit GatesTwo-Qubit Gates

● Single-qubit gate: 3 free parameters [SU(2)]

● Two-qubit gate: too many parameters

∣ 〉 ∣ 〉

∣ 〉 ∣ ' 〉

∣ 〉 ∣ 〉
1?

1?

leakage



Decomposing Two-Qubit GatesDecomposing Two-Qubit Gates

● Idea proposed by Bonesteel et al. (2005) – leakage error ~10-3

● [Xu & Wan, 08] Reduces leakage error significantly, ~10-9

● Inject the control pair into the target qubit – exchange braid D

● Perform a single-qubit rotation U – implemented by a weave

● Extract the control pair use the inverse of the inverse of the exchange braid D-1

D-1D

U
0

0

Generic
controlled-gates
with leakage error
~10-9.



Leakage ErrorLeakage Error

Create a pair of anyons out of
vacuum (so fuse to 0).

Note they could also be stray
anyons thermally excited.

Computing basis

Non-computing basis



Leakage-Error AnalysisLeakage-Error Analysis

 ei  0
0 ei   10  = e i 10 

What kind of braids (of a
4
, a

5
, a

6
) leave

the left qubit in state 0, after
exchanging a

4 
and a

5
?

 1 0
0 1  10  = 10 



Phase GatesPhase Gates

• Let us look for diagonal matrices, rather than the identity matrix; this
means we introduce a phase error.

• For small b, g is irrelavent. Targeting less parameter – higher accuracy!

• But how do we use it? What about the phase? 

∣1∣=∣2∣=1−r2=1.56×10−10



Exchange BraidExchange Braid

• Apply the diagonal gate (with the irrelevant phase) to the leakage model

∣1∣=1.56×10−10Low leakage!

∣1∣=∣2∣
2∣3∣

2=∣4∣=∣5∣
2∣6∣

2=∣1∣= 1−r2≈1.56×10−10



5-Dimensional Representation5-Dimensional Representation

• One calculate the braiding matrix in an enlarged space, including non-
computing bases. 



Improvement in the Brute-Force PerformanceImprovement in the Brute-Force Performance

≈1.6 e−L/7.3

≈0.76 e−L /4.3

Search for one point 
on the bloch sphere

Search for any point 
on a circle on the
Bloch sphere

Leakage error reduction by several orders of magnitude



Single-Qubit Construction AgainSingle-Qubit Construction Again

● Single-qubit construction hides an SU(2) symmetry. A rotation around an
arbitrary axis l by an angle q on a Bloch sphere can be carried out by first
rotating l to another direction l', then rotating around l' by an angle q, and
finally rotating l' back to l.

● Implementation: Instead of search for a gate G, we search a pair of gates
G

1
 and G

2
, such that

|ψ ⟩ G1 G2 G1
+ U|ψ ⟩

U(1) symmetry

SU (2)/U (1) ∼ S 2

G≈G1G2G1
+



Geometric Redundancy for Single-qubit GatesGeometric Redundancy for Single-qubit Gates

● We first rotate the axis of rotation, then rotate around the axis, and
finally rotate the axis back – physically, this means that we have a
geometric redundancy in search, due to the SU(2) rotation symmetry.

– We can search G
1
 and G

2
 separately

– Both searches are achievable in lower (than 3) dimensions

– i.e., we can fix 

 G
1
 up to a U(1) rotation, and 

 G
2
 up to SU(2) / U(1) ~ S2

● Outcome: Generic single-qubit gates with error (distance) ~10-10 with
braids of ~300 exchanges (length) – Xu & XW (2009). 

– Hormozi et al. (07): 4 ×10-5 for a braid of length 220 with Solovay-Kitaev
algorithm



#5: Messages on Topological Quantum Gates#5: Messages on Topological Quantum Gates

● Three or four Fibonacci anyons can encode one qubit of information. 

● Quantum gates can be achieved by braiding anyons; in particular,
moving one or one pair of anyons is enough to generate all quantum
gates. 

● Braids for quantum gates can be compiled into sequences of two
elementary exchanges and their inverses. 

● The construction of two-qubit gates can be mapped to that of single-
qubit gates. But at least one high-precision phase gate is needed to
eliminate leakage errors. 

● In the brute-force search for braids geometrical redundancy can be
explored to boost the efficiency. 



Renormalization Group Like SchemeRenormalization Group Like Scheme

1. Start from a collection of braids of certain length

2. Find the cluster of braids that approximates the target best

3. Moving on to a collection of longer braids (finer in distance) matching
the residual error

4. Repeat 2-3, and stop when the desired error scale is reached



Icosahedral GroupIcosahedral Group

● The following Cartesian coordinates define 
the vertices of an icosahedron with 
edge-length 2, centered at the origin:

● The icosahedral group is the largest finite 
subgroup of SU(2). It is composed by the 
60 rotations around the axes of symmetry 
of the icosahedron.

● There are 6 axes of the 5th order, 10 of the 3rd, and 15 of the 2nd.

● We approximate all group elements by braids of various length.

0,±1,± ,±1,± ,0 ,± ,0,±1

=15
2

I 60={g 0, g1, g 2,⋯, g59 } g0=e



Braid Representations for the Identity eBraid Representations for the Identity e

● L = 8, e = 0.236068

● L = 24, e = 0.0344419

● L = 44, e = 0.00191937

● L = 68, e = 0.0000304193

g̃ 0(8)=σ2
−2σ1

2σ2
−2σ1

2=g0 eiΔ 0
(8 )

Δ 0
(8): a Hermitian matrix

characterizing error

The braid representations can be computed and stored once for all.
Hence no additional cost to the search later. 



Connection to Random Matrix TheoryConnection to Random Matrix Theory

● Pseudogroup of braids (for small D
i 
)

● To approximate

● We conjecture H
n
 is a random matrix 

in the Wigner-Dyson Gaussian 
Unitary Ensemble (s for eigenvalue/error)

g i g j=g k , g̃ i g̃ j=g i e
iΔ i g j e

i Δ j≈g k ei( g j
−1Δ i g j+ Δ j)≠ g̃k=g k ei Δk

n = 3 is large enough

g̃ i g̃ j⋯ ̃gn+ 1=g i e
i Δ i g j e

iΔ j⋯g n+ 1 eiΔ n+ 1≡ei H n

H n=g iΔ i g i
−1+ g i g jΔ j g j

−1 g i
−1+⋯

+ g i g j⋯g nΔ n gn
−1⋯g j

−1 g i
−1

+ Δ n+ 1+ O (Δ 2)

g i g j⋯g n+ 1=e

P (s)= 32

π2 s0
( s
s0
)

2

e−(4 /π)(s / s0)
2

A single parameter s
0
 controls the flow of the (distribution of) error. 



Understanding Error RenormalizationUnderstanding Error Renormalization

● First approximate by gluing 3 short (L = 8) segments (1 out of 603 ).

● Reduce the error (e
1
) by gluing 

4 (= n + 1) longer (L = 24) 
segments (1 out of 603 ).

● The resulting error (e
2
) follows 

the Wigner-Dyson distribution.

● Average error reduction:  

<e
1
> / <e

2
> ~ f = 60n/3

√ n+ 1

Initial approximation Correction: approximation to e
1

e
2

distribution of e
2



Scaling AnalysisScaling Analysis

● The number of iteration for a
given final error

●  Choose suitable braid segment
length to match the residual error 

● Each iteration increases the
length by 4 (= n + 1) segments

● Length of braid after q iterations

● Time

≪1 ln(error)

ln(e)

ln(f)ln(f)…

~ 0



Comparison with Other AlgorithmsComparison with Other Algorithms

● Compiling with the RG-like algorithm

● Brute-force search

● Solovay-Kitaev

U i1=Ai Bi Ai
−1 Bi

−1 U i

It takes less than a
second on a 3 GHz
Intel E6850 processor
to reach an average
precision of 7 x 10−4 
for an arbitrary gate.

It takes less than a
second on a 3 GHz
Intel E6850 processor
to reach an average
precision of 7 x 10−4 
for an arbitrary gate.

Thanks to randomness in the building blocks, we save time in search exponentially. 



#6: Importance of Algorithm#6: Importance of Algorithm

● In a classical computer, one can build up a circuit, e.g., to add two
numbers using OR and NOT gates.

● In a quantum computer, the set of possible quantum gates forms a
continuum, and it’s not necessarily possible to use one gate set to
simulate another exactly. Instead, some approximation may be
necessary.

● We explore an algorithm that guarantees the efficient construction of
any quantum gate, to a very good approximation. 

– From a practical point of view, this is important in compiling quantum
algorithms (like Shor’s) into a form that can be implemented fault-tolerantly. 

– From a more mathematical point of view, we give a general statement about
how quickly the group SU(d) is “filled in” by a universal set of gates.

● This is also the importance of the textbook example – the Solovay-
Kitaev algorithm.



I Ching I Ching of Knotsof Knots

● I Ching (~1100 BC): Ancient people tied knots on cords to keep
record, while people during later periods replaced with writing

● 《易 · 系辞》载：“上古结绳而治，后世圣人易之以书契”

纠缠 ↔ entanglement



Stability in Chinese CharactersStability in Chinese Characters

● Decimal system in China (over 3000 years ago)

一 二 三 四 五 六 七 八 九 十

百

千

Chinese characters
encode information,
in some sense, in
the topology of the
strokes.



 

Topological Quantum ComputationTopological Quantum Computation

Next: compute with Fibonacci anyons
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