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U The Alps as seen by a state-of-the-art

GCM (MPI-ESM-LR, 1.875°)
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¥ 7.8*1.000.000.000.000.000.000.000.000

Piz Daint at the Swiss National Supercomputing Centre (CSCS)

www.cscs.ch
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U Limited Computing Resources

Global climate models (GCMs) as primary tools for climate projections

Spatial resolution limited by available computing resources

Limited capability to

represent regional/local climate forcings (e.g. surface)
represent mesoscale dynamics
local conditions at which climate impacts are often experienced
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U GCM Projections

Mean temperature change vs. mean precipitation change,
1971-2000 to 2070-2099, RCP4.5 emission scenario, European Alps
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U Climate Downscaling

Translate the large-scale features as represented by a
GCM into regional / local conditions.

GCM with Statistical-empirical Dynamical
local refinement downscaling downscaling
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U OUTLINE

2- Dynamical Downscaling: The Technique
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U The Nesting technique

Apply an atmospheric limited area model (regional climate

model, RCM) as a magnifying glass

boundary relaxation

RCM domain
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movie: MPI-M / DKRZ



r
The Alps at 12 km resolution (COSMO-CLM, 0.11°)




U Dynamical Downscaling: Details

® Origin: Limited area models in numerical weather prediction

® Application on climate timescales: Late 1980s
(Dickinson et al., 1989, Giorgi 1990)

“Workhorse” resolution: 10 km — 50 km
®* Convection-permitting / cloud-resolving applications coming up

Internal time step: a few minutes

Output interval: hourly, daily, monthly

® Nesting typically one-way only

* Two-way nesting to ensure feedback from finer to coarser scales
(e.g. Lorenz and Jacob 2005)

* (Spectral) Nudging: Boundary conditions also applied in interior RCM
domain -> Prevents disagreement between GCM and RCM large scales
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O

Model Components

DYNAMICS

@

Address the resolved part of atmosphe-
ric dynamics and thermodynamics.

Solution of the governing equations of
fluid motion on a computational grid

Examples of resolved structures: general
circulation of atmosphere, low and
high pressure systems, mountain
flows

PHYSICS

y | 1 Computational grid
AT with Ax= 50 km

R

Representation of unresolved scales by
parameterizations (sub-grid)

Typically contain empirical components
and are to some extent tuned/calibrated

Major source of model uncertainty

Examples of parameterized processes:
boundary layer, convection,
precipitation, clouds, land surface
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U Types of RCM Experiments

boundary forcing

(global)
Re-ana'ysis Evaluation of
(perfect boundaries) (pure) _
downscaling
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U Validation (1)

Mean annual 2m temperature (1961-2000) [°C]
EOBS vs2 8.55  C4l 8.25 CHMI 7.74 CNRM 5.82 DMI 8.30

®

O=NWNPOONDO

|11
PUN

72
L0 4
—liIIIIIIIIIIE-'-"

Dynamical Downscaling 17
4t VALUE Training School, October 2015 | S. Kotlarski



U Validation (2)

Mean annual 2m temperature bias wrt EOBS (1961—2000) [°C]

C4l -0.28 C

HMI

-0.79 CNRM 0.29 DMI —0.24

mean bias [°C]
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U Validation (3)
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Temperature [deg C]

O

Validation (4)

Mean seasonal temperature over Switzerland in observations and ERA40-driven RCMs (1971-2000)
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Observational uncertainty! Jan Rajczak, ETH Zurich

Uncertainty induced by internal climate variability!

Important, but often neglected: « Validation of trends
 Validation of physical relations
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U Types of RCM Experiments

boundary forcing

(global)
Re-analysis Evaluation of
(perfect boundaries) (pure) _
downscaling
GCM Evaluation of
historical GHG GCM-BCM
chain
GCM _
future GHG Climate
change
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@ GHG Scenarios
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U Regional Climate Scenarios (CCLM)

Temperature climate change signal, 2070—-2099 wrt. 1971—2000 [°C]
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U Types of RCM Experiments

boundary forcing
(global)

Re-analysis Evaluation of
(perfect boundaries) — — (pure)
downscaling
GCM Evaluation of
historical GHG — — GCM-BCM
chain
GCM :
future GHG Climate
change

Sensitivities,

Re-analysis/GCM

process
understanding

Idealized setups

Dynamical Downscaling 24
4t VALUE Training School, October 2015 | S. Kotlarski



U Dnymical Downscaling: Pros and Cons

3

Physically consistent response, including climate
feedbacks

Application of models for future periods possible
(in principle)

Computationally expensive

Advanced expertise required

Limited number of realizations

Limited spatial resolution (does not target the site scale)

Physically based, but calibration required (often
intransparent!)

Strongly depends on driving GCM (garbage in - garbage
outb)

“Added value” wrt. GCM not always apparent

Dynamical Downscaling 25
4t VALUE Training School, October 2015 | S. Kotlarski



F L

Remaining scale ga
: e S e -

e

p

| E‘* Ll Biases on resolved scale

T

A all " Statistical downscaling and bias adjustment

g R L L L S T J

o S R R R O T il e Ry



U OUTLINE

m Added Value
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U The Added Value (1)

The main job of an RCM is to add finer spatial scales upon the
driving coarse resolution data.

At these scales an added value wrt. to the driving data should be
apparent.

* An RCM won’t improve all aspects of a GCM simulation

* Added value often hard to find for time-averaged quantities or on
large spatial scales

® Added value most likely in frequency distributions and high-order
statistics reflecting intense and localized events (e.g. tails of daily
precipitation intensity distribution) and in fine-scale spatial climate
variability

® Indication for added value on scales that are common to both the
RCM and the driving GCM (Kerkhoff et al., 2014)
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U The Added Value (2)

Daily precipitation PDF over the Alps (1976-2005) for models
and observations, interpolated to 12 km resolution
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U The Added Value (3)

Observations

RCMs 50km
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U The Added Value (4)

Near-surface climate change until end of 215t century in the
ENSEMBLES RCMS (European Alps, SRES A1B)
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U The Added Value (4)

Near-surface climate change until end of 21st century in the
ENSEMBLES RCMS (European Alps, SRES A1B)
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U OUTLINE

4- Regional Climate Projections
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)

A Main Application of RCMs

Workflow:
Choice of Choice of . Interface to
. . .. Choice
emission driving subsequent
. of RCM DPE
scenario GCM applications

* Partly subjective choices that will influence final results and
introduce projection uncertainties

®* Further sources of uncertainty (e.g., internal climate variability)

® Can partly be sampled by large model ensembles
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U Climate Model Ensembles

EMISSION SCENARIO ENSEMBLES

« Carry out multiple projections assuming different emission scenarios

MULTI MODEL ENSEMBLES

« Combine multiple projections from different models

* Ideally: models independent of each other (typically not given!)

» Intermodel variability as a measure of uncertainty

PERTURBED PHYSICS ENSEMBLES

« Combine different simulations of the same model but with perturbed
versions of the original model physics

* More systematic sampling possible (multi model ensembles:
opportunistic ensembles)

« Intramodel variability as a measure of uncertainty

INITIAL CONDITION ENSEMBLES

« Sampling of internal climate variability
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U CORDEX

Coordinated Regional Climate
Downscaling Experiment

International framework for next generation
of regional climate change projections for all
terrestrial regions of the globe (http.//www.cordex.org)

Dynamical and statistical downscaling

Common RCM resolution: 50 km

5 . - http, dex.ipsl.jussieu.fr
The CORDEX community has grown to now include 14 domains; i/ wetp-cordexipsjussiects

Dynamical Downscaling 36

4t VALUE Training School, October 2015 | S. Kotlarski



¥ EURO-CORDEX

European branch of CORDEX

http://www.euro-cordex.net

~30 modelling centers applying
~10 RCMs

Empirical-statistical component

Experiments at 50 km and 12 km
for European domain

Re-analysis forcing and GCM
forcing (CMIPS)

Several GHG scenarios
(RCPs 2.6, 4.5, 8.5)
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U EURO-CORDEX Projections (1)

Equivalent atmospheric CO, concentration [ppm]
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U EURO-CORDEX Projections (2)

Equivalent atmospheric CO, concentration [ppm]
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RCP4.5

U EURO-CORDEX Projections (3)

Ensemble mean change until end of 21st century in EURO-CORDEX 12 km

(12 simulations combining 6 RCMs and 5 GCMs)

Temperature DJF Temperature JJA

[*c]

(R S LU RN B S )
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Kotlarski et al., submitted
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U Outlook: Convection-permitting scenarios
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Dramatic improvement of
diurnal cycle (including sub-
hourly extremes) and spatial

precipitation variability (e.g. Ban et
al., 2014; Prein et al., 2013)

Improved feedback representa-
tion (Hohenegger et al., 2009)

Added value for heavy rainfall

projections (Kendon et al., 2014; Ban
et al., 2015)

But:

High computa-
tional costs
still limiting!
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¥ Summary

* Dynamical downscaling via RCMs to add detail onto global climate
model results

® Provides physically consistent responses, but also has several
limitations

®* Remaining biases and scale gaps require further SD and/or bias
adjustment

®* Model validation as an important component of model development
and scenario generation

* Can identify added value

* Large (multi) model ensembles to sample inherent projection
uncertainties (e.g., CORDEX)
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¥ Summary

* Dynamical downscaling via RCMs to add detail onto global climate
model results

* Provides physically consistent responses, but also has several
limitations

®* Remaining biases and scale gaps r
adjustment

component of model development

- -

* Large (multi) model ensembles to sample inherent projection
uncertainties (e.g., CORDEX)
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