

4th VALUE Training School Validation of Regional Climate Change Projections

Towards Process-based Validation II

Douglas Maraun

Wegener Center for Climate and Global Change

Rationale

Sensitivity studies

Using dynamical models to validate statistical models

Using statistical models to validate dynamical models

Ideas for a process-oriented intercomparison

Rationale

Sensitivity studies

Using dynamical models to validate statistical models

Using statistical models to validate dynamical models

Ideas for a process-oriented intercomparison

Why process based validation?

Why process based validation?

- Identify "over-tuning": How do they perform for non-tuned aspects? Are the models right for the right reasons?
- Uncertainty attribution: Why is a model wrong? Where could I improve my model?
- Confidence in projections: Are the relevant processes realistically simulated to capture climate change?

Experiments vs. diagnostics

One may vary different parts/ingredients of a validation to gain insight:

- Different types of experiments (varying boundary conditions)
- Sensitivity studies within one experiment (varying predictors, parameterisations, resolutions, etc.
- Different types of diagnostics (select a range of diagnostic indices)

Mutual use of statistical and dynamical model

Different possible settings/questions

- How can dynamical models help to evaluate statistical models?
- How can statistical models be used to evaluate dynamical models?
- How can the representation of physical processes be inter-compared for both?

Rationale

Sensitivity studies

Using dynamical models to validate statistical models

Using statistical models to validate dynamical models

Ideas for a process-oriented intercomparison

Sensitivity studies

6 Jul 2012 precipitation extreme at Krymsk

Meredith et al., Nat. Geosci., 2015

Experimental Design

- Simulate the event with WRF, triple nesting; horizontal resolution: 15km, 3km, 600m;
- boundary conditions: NCEP Final Analysis; NOAA-OI SST;
- spectral nudging in outer domain for upper level winds;
- vary SST incrementally, 6 ensemble members each.

(Potential) added value of convection resolutio

Meredith et al., JGR, minor rev.

Sensitivity studies

Tipping point comparison

Red: convection permitting; blue: parameterised convection

Meredith et al., JGR, minor rev.

Sensitivity studies

Tipping point comparison

Different convection parameterisation schemes 1st wave

2nd wave

Meredith et al., JGR, minor rev.

GEOMAR

Different physical response

Top: parameterised convection; bottom: convection permitting

downdraft

latent heating

Meredith et al., JGR, minor rev.

Rationale

Sensitivity studies

Using dynamical models to validate statistical models

Using statistical models to validate dynamical models

Ideas for a process-oriented intercomparison

Pseudo reality approaches

Charles et al., JGR, 1999; Frias et al., GRL, 2006; Vrac et al., GRL, 2007; Maraun, GRL, 2012; Maraun et al., EF, 2015

Rationale

Sensitivity studies

Using dynamical models to validate statistical models

Using statistical models to validate dynamical models

Ideas for a process-oriented intercomparison

Using statistical models to validate dynamical models · GCM studies

Precipitation in Romania (circulation)

CCA between winter SLP and precipitation simulated by ECHAM3

Tropical cloud radiative forcing

Multivariate analyses

Using statistical models to validate dynamical models GCM studies

Tropical cloud radiative forcing (large-scale vertical motion)

Douglas Maraun MOS

Precipitation in Australia (circulation)

Mean precipitation for different weather types (nodes of self-organised-maps); NCEP and GPCP data

Douglas Maraun MOS

Double ITCZ (vertical resolution)

Mean precipitation for different vertical circulation regimes, 20S-0, 150W-100W.

GEOMAR

Cloud water content (vertical velocity)

Su et al., J Geophys. Res., 2013 ICTP, Trieste 23 / 31

Using statistical models to validate dynamical models · RCM studies

Precipitation extremes in UK (circulation)

Relationship between median of monthly maximum precipitation and airflow indices; top: Kinnlochewe; bottom: Sandringham house

Douglas Maraun MOS

```
ICTP, Trieste 25 / 31
```

GEOMAR

Precipitation extremes in UK (circulation)

Top: dependence on flow strength; bottom: dependence on flow direction; left: UKMO data, centre: E-OBS, right: KNMI RACMO2

Douglas Maraun

ICTP, Trieste 26/31

Precipitation extremes in UK (circulation)

Taylor diagrams; a) anti-cyclonic vorticity, b) cyclonic vorticity, c) airflow direction, d) amplitude of direction dependence

Maraun et al., Clim. Dynam., 2012 ICTP, Trieste 27 / 31

Precipitation probability in Czech Republic (circedution)

CL: central lowlands; SH: southern highlands, EH: eastern highlands

Plavcova et al., Int. J. Climatol., 2014

Precipitation extremes in Czech Republic (circalation)

	Ν	NE	W	NW	С	CN	CNE	CE	CSE	CS	CW	CNW
DJF												
OBS			2.61	2.75	3.76							
HIRHAM				2.44	4.01			3.62			2.67	
RACMO			1.91		6.27		7.39	6.08	4.07			
RegCM				2.19	2.26				3.82		4.11	
REMO	4.01			2.53	3.09		6.17	4.93				
RCA				2.79			6.22			3.90		
JJA												
OBS	4.28	2.93			3.95	4.37	5.18					
HIRHAM	3.76				3.61	12.74	6.99					
RACMO	3.75	4.16				8.46	4.03					
RegCM	4.47	3.07				5.65	5.15					5.56
REMO		2.84			5.90	3.87	3.93					
RCA	3.30				6.43	4.52						

Table 6. Normalized relative occurrence of extreme precipitation per circulation types in the EH region.

Only ratios significantly greater than 1 at the 0.05 level (estimated by block bootstrapping, R = 1000) are shown.

Plavcova et al., Int. J. Climatol., 2014

Rationale

Sensitivity studies

Using dynamical models to validate statistical models

Using statistical models to validate dynamical models

Ideas for a process-oriented intercomparison

GEOMAR

Steps of a process-oriented intercomparison G

- 1. Define relevant "weather regimes" for particular phenomenon of interest, at different spatial and temporal scales (e.g., meso-scale; synoptic scale; intr-annual, interannual, decadal variability);
- 2. Investigate relationship between weather regimes and local/regional surface climate;
- **3.** assess the representation of this relationship in different downscaling models.