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What is it? 

•  validation in the temporal domain 
•  validation of temporal behaviour  
•  2 different issues fall here 

– short-term (day-to-day) variability 
–  long-term variations (trends) 



Why is it important?  

•  short-term variability 
– many impact sectors (models) are sensitive to 

it 
•  agriculture 
•  hydrology 

•  long-term variations (trends) 
– key property in relation to climate change 



Short-term variability 
•  various aspects 

–  temperature (and some other variables) 
•  persistence (temporal autocorrelations) 
•  day-to-day changes (variations) – empirical distributions 
•  extended extreme events (heat waves, cold spells) 

–  precipitation 
•  separate evaluation of  

–  precipitation occurrence / non-occurrence (binary variable) 
–  precipitation amounts (continuous variable) 

•  wet / dry periods 
•  transition probabilities (wetàwet, dryàwet) 
•  “binary persistence” – quantifiable e.g. by Heidke “skill” score 
•  not much sense in examining temporal properties of 

precipitation amounts – perhaps only in very wet climates 



Short-term variability 
•  issue that must be considered: grid box vs. 

stations 
•  gridbox (gridpoint) representation (whether in 

RCM or gridded observations) may not truly 
represent station characteristics of temporal 
behaviour and extremes  

•  (smoothing effect) 
•  must be kept in mind when interpreting results 
•  e.g. Osborn & Hulme: Development of a 

relationship between station and grid-box 
rainday frequencies for climate model 
evaluation, J. Climate 1997 



Examples 
•  four examples to illustrate validation of short-term variability 
•  Huth et al., J. Climate 2001 

–  6 stations in central Europe 
–  SDS  

•  linear regression 
•  different ways of accounting for missing variance 

–  2 variants of weather generator 
–  2 GCMs 

•  Huth, J. Climate 2002 
–  39 stations in central & western Europe 
–  various linear SDS methods (MLR, CCA, SVD, …) with various combinations of 

predictor fields 
•  Huth et al., Int. J. Climatol., 2008 

–  8 stations in Europe 
–  linear & nonlinear SDS methods 

•  Huth et al., Theor. Appl. Climatol. 2015 
–  dense network (stations & grid) in central Europe (CZ, AT, HU, SK borders) 
–  SDS  

•  linear regression 
•  4 non-linear methods (analogs, local linear models, 2 neural networks) 

–  2 RCMs  
•  ALADIN-Climate/CZ – 10 km grid 
•  Reg CM3 – 25 km grid 



Persistence 

•  lag-1 day autocorrelation 
•  simple, important, but only rarely 

evaluated 
•  note: does not account for the magnitude 

of day-to-day variability 
•  note: post-processing (bias correction) 

methods cannot affect it 



Tmax, 1-day lag persistence, whole year 
OBSERVED 
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Tmax, 1-day lag persistence, whole year 
difference from OBS, x100 



Tmax & Tmin, 1-day lag persistence, 
DJF & JJA 



Day-to-day changes 
•  different aspect of short-term variability 
•  time series with identical persistence may have 

very different distributions of day-to-day changes 
•  characteristics of statistical distribution 

(histogram) of day-to-day changes are 
evaluated, namely 
–  standard deviation 
–  skewness (asymmetry) 

•  reflects the ability of models to include (and 
correctly simulate) various physical processes 
(radiation, advection, …) 



day-to-day max.temperature change, summer 



day-to-day min.temperature change, winter 



day-to-day temperature change 



Extended extreme events 
•  important characteristics of extreme weather 
•  potentially big difference if extremes occur individually or in 

sequences 
•  examples 

–  heat waves 
–  cold spells 

•  typical definition – periods of a certain minimum duration with 
temperature exceeding a threshold (absolute or percentile-based) 

•  integral characteristic – integrates different aspects o temperature 
(extremes, persistence, annual cycle, …) 

•  possible characteristics to validate 
–  frequency 
–  duration 
–  percentage of extreme days included in extended events (reflects 

mainly persistence) 
–  intensity (highest temperature or highest temperature exceedance over 

threshold during the event) 
–  date of occurrence (reflects the ability to simulate annual cycle) 



heat waves, cold spells 



heat waves, cold spells 



heat waves 
•  Vautard et al., Clim. Dyn. 2013 
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Precipitation transition 
probabilities: dry-wet, wet-wet 
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Wet periods 

•  Number of uninterrupted periods of wet days 1 to 10 days long. Shown are 
the median value in the set of grid points in the validation domain (bold line), 
the interquartile range (darker shading) and min-max range (lighter 
shading).  



Trends (long-term variations) 
•  long-term variations – essential for climate change 

assessment, impacts etc.  
•  if a model is not able to simulate current trends, how can 

we rely on it for future climate change?  
•  in spite of it, trend validation studies are scarce 
•  model’s time series must correspond to real time series 
•  i.e., applicable only if model is driven by observed data 

(typically represented by reanalysis) 
–  RCM nested in reanalysis 
–  SDS model trained on reanalysis 
–  GCM nudged towards reanalysis (very rarely done so far) 

•  two possible approaches 
–  trends as linear regression fits – variable vs. time 
–  differences for contrasting periods (warm vs. cold; wet vs. dry) 



Trends (long-term variations) 
•  three examples 
•  all for temperature 
•  Lorenz & Jacob, Clim. Res. 2010 

–  8 European domains 
–  13 RCMs driven by ERA40 
–  ENSEMBLES project 

•  Bukovsky, J. Climate 2012 
–  North America 
–  6 RCMs driven by NCEP-2 
–  NARCCAP programme 

•  Huth et al., Theor. Appl. Climatol. 2015 
–  central Europe 
–  2 RCMs driven by ERA40 
–  5 SDS models trained on ERA40 
–  CECILIA project 





•  trend difference (in °C / decade) from E-OBS 
•  note discrepancies between observed data / reanalyses 
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•  trends (in °C / decade) 



•  trends (in °C / decade) 
•  DJF 



•  trends (in °C / decade) 
•  JJA North American 

“warming hole” 



•  not a great success, is it …  
•  where do the differences from reality come from?  

–  problems inside the models 
–  imprecise reference climate data (trends differ between 

databases / reanalyses) 
–  problems in the driving reanalyses (e.g. presence of artificial 

trends in upper level fields) 
–  sampling variations 

•  difficult to distringuish model errors from other potential 
error sources 



persistence, DJF, Tmean 



persistence, DJF, Tmax 


