Temporal validation

Radan HUTH

Faculty of Science, Charles University, Prague, CZ

Institute of Atmospheric Physics, Prague, CZ

What is it?

- validation in the temporal domain
- validation of temporal behaviour
- 2 different issues fall here
 - short-term (day-to-day) variability
 - long-term variations (trends)

Why is it important?

- short-term variability
 - many impact sectors (models) are sensitive to it
 - agriculture
 - hydrology
- long-term variations (trends)
 - key property in relation to climate change

Short-term variability

- various aspects
 - temperature (and some other variables)
 - persistence (temporal autocorrelations)
 - day-to-day changes (variations) empirical distributions
 - extended extreme events (heat waves, cold spells)
 - precipitation
 - separate evaluation of
 - precipitation occurrence / non-occurrence (binary variable)
 - precipitation amounts (continuous variable)
 - wet / dry periods
 - transition probabilities (wet \rightarrow wet, dry \rightarrow wet)
 - "binary persistence" quantifiable e.g. by Heidke "skill" score
 - not much sense in examining temporal properties of precipitation amounts – perhaps only in very wet climates

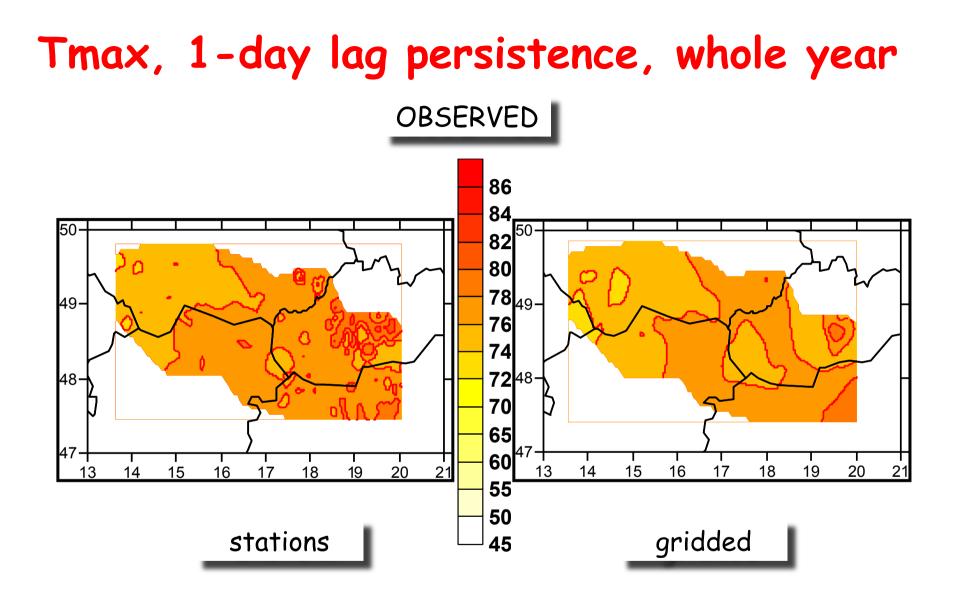
Short-term variability

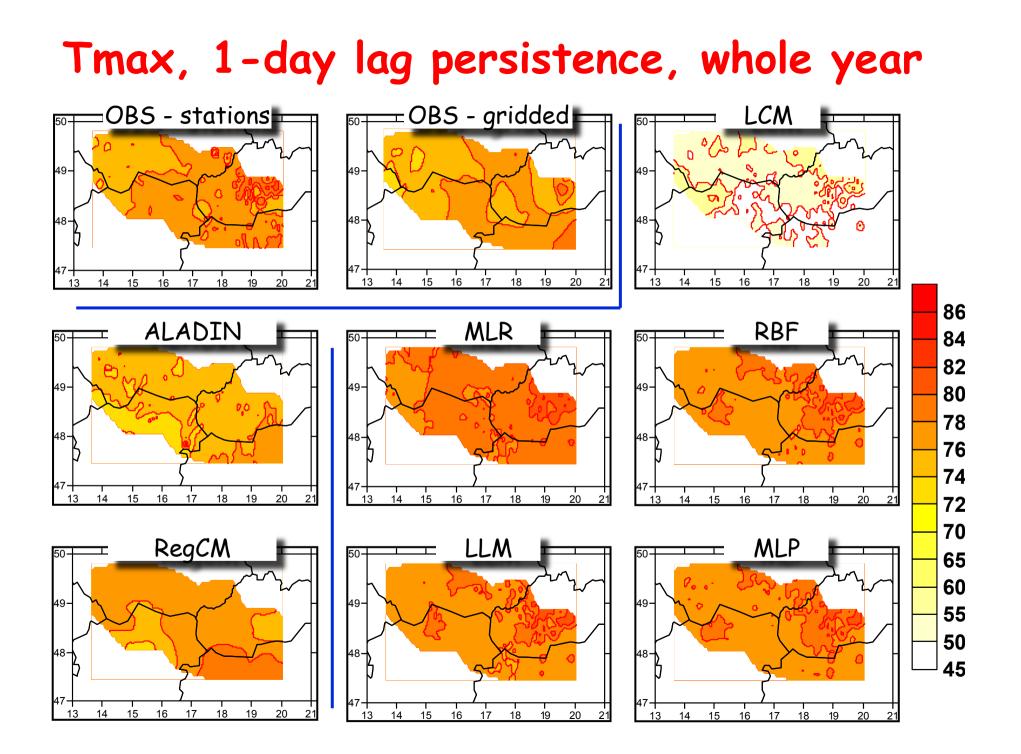
- issue that must be considered: grid box vs. stations
- gridbox (gridpoint) representation (whether in RCM or gridded observations) may not truly represent station characteristics of temporal behaviour and extremes
- (smoothing effect)
- must be kept in mind when interpreting results
- e.g. Osborn & Hulme: Development of a relationship between station and grid-box rainday frequencies for climate model evaluation, *J. Climate* 1997

- four examples to illustrate validation of short-term variability
- Huth et al., *J. Climate* 2001
 - 6 stations in central Europe
 - SDS
 - linear regression
 - different ways of accounting for missing variance
 - 2 variants of weather generator
 - 2 GCMs
- Huth, *J. Climate* 2002
 - 39 stations in central & western Europe
 - various linear SDS methods (MLR, CCA, SVD, ...) with various combinations of predictor fields
- Huth et al., Int. J. Climatol., 2008
 - 8 stations in Europe
 - linear & nonlinear SDS methods
- Huth et al., Theor. Appl. Climatol. 2015
 - dense network (stations & grid) in central Europe (CZ, AT, HU, SK borders)
 - SDS
 - linear regression
 - 4 non-linear methods (analogs, local linear models, 2 neural networks)
 - 2 RCMs
 - ALADIN-Climate/CZ 10 km grid
 - Reg CM3 25 km grid

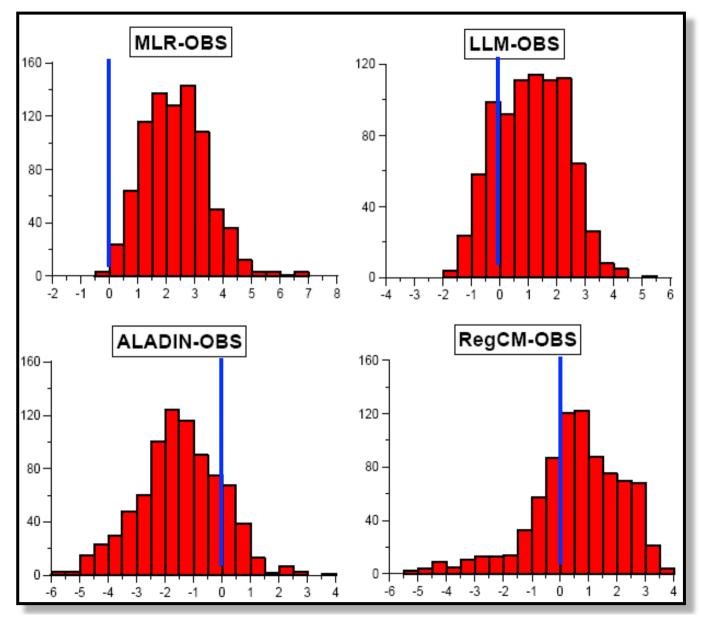
Persistence

- lag-1 day autocorrelation
- simple, important, but only rarely evaluated
- note: does not account for the magnitude of day-to-day variability
- note: post-processing (bias correction) methods cannot affect it

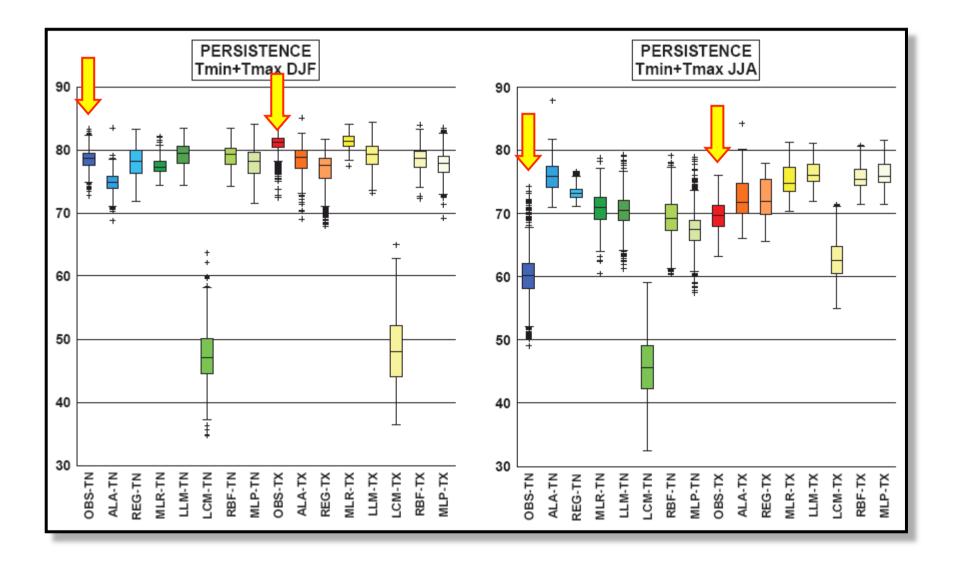




Tmax, 1-day lag persistence, whole year difference from OBS, x100



Tmax & Tmin, 1-day lag persistence, DJF & JJA



Day-to-day changes

- different aspect of short-term variability
- time series with identical persistence may have very different distributions of day-to-day changes
- characteristics of statistical distribution (histogram) of day-to-day changes are evaluated, namely
 - standard deviation
 - skewness (asymmetry)
- reflects the ability of models to include (and correctly simulate) various physical processes (radiation, advection, ...)

day-to-day max.temperature change, summer

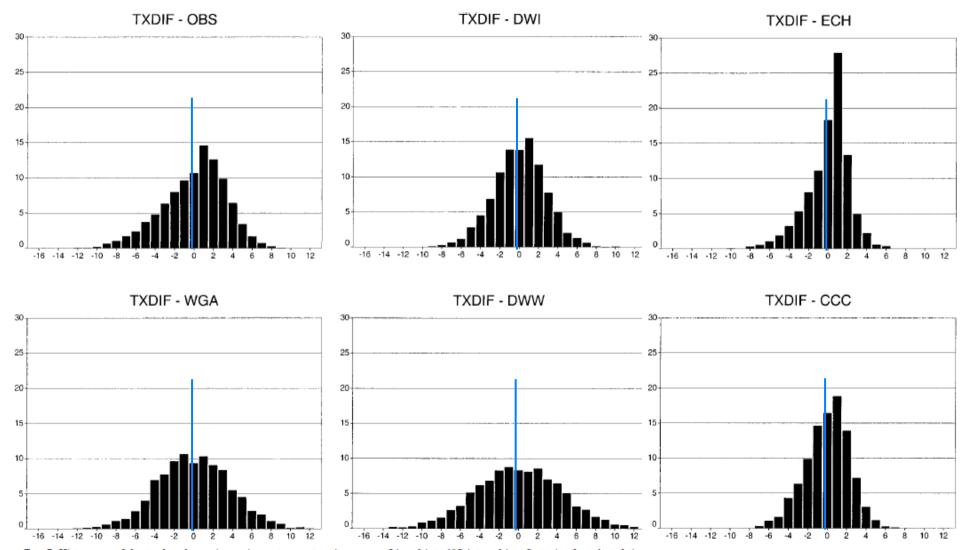
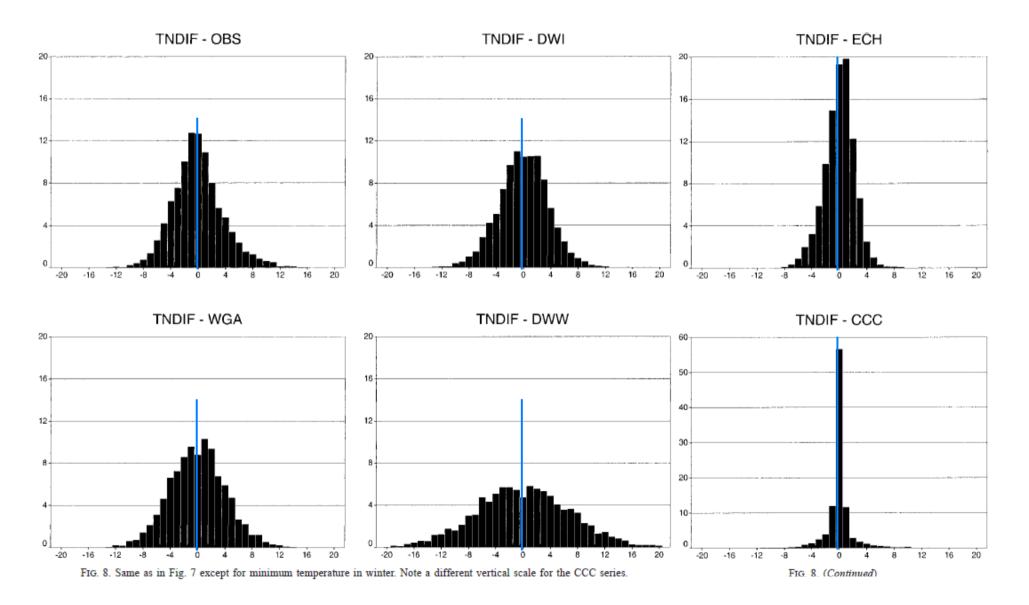
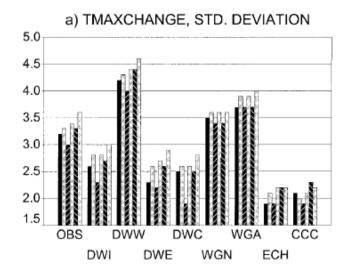


FIG. 7. Histograms of day-to-day change in maximum temperature in summer (binned into 1° C intervals) at Strážnice for selected time series. On the horizontal axis is temperature difference in degrees Celsius, on the vertical axis is frequency in percent. See Table 1 for definitions of time series.

day-to-day min.temperature change, winter

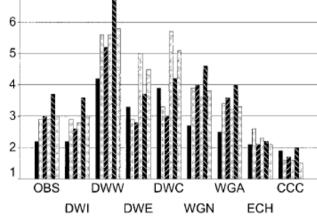


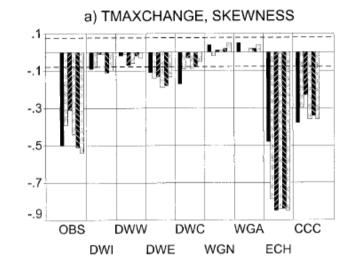
day-to-day temperature change



b) TMINCHANGE, STD. DEVIATION

7





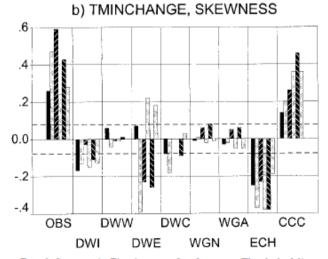


FIG. 6. Same as in Fig. 4 except for skewness. The dashed lines indicate the critical value for skewness to be different from zero at the 95% significance level, assuming autocorrelation of 0.1 (typical observed value in both seasons).

Extended extreme events

- important characteristics of extreme weather
- potentially big difference if extremes occur individually or in sequences
- examples
 - heat waves
 - cold spells
- typical definition periods of a certain minimum duration with temperature exceeding a threshold (absolute or percentile-based)
- integral characteristic integrates different aspects o temperature (extremes, persistence, annual cycle, ...)
- possible characteristics to validate
 - frequency
 - duration
 - percentage of extreme days included in extended events (reflects mainly persistence)
 - intensity (highest temperature or highest temperature exceedance over threshold during the event)
 - date of occurrence (reflects the ability to simulate annual cycle)

heat waves, cold spells

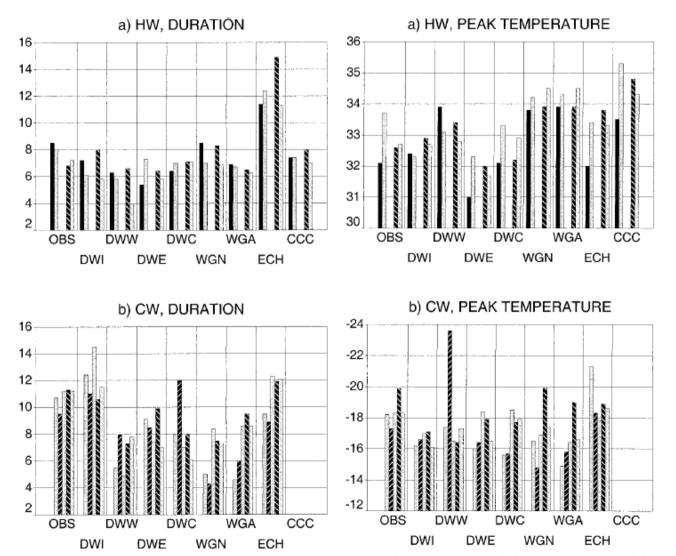
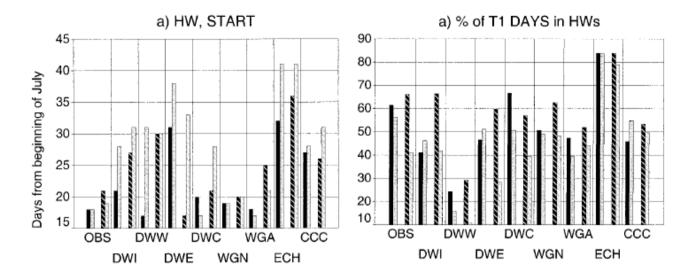
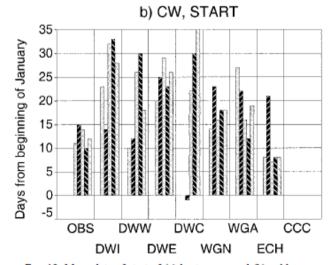


FIG. 10. Mean duration (in days) of (a) heat waves and (b) cold waves. The stations with a low incidence of PETEs are not shown. Legends as in Fig. 3; in (b) the CCC series are omitted.

FIG. 11. Mean peak temperature (in °C) for (a) heat waves and (b) cold waves. Otherwise as in Fig. 10.

heat waves, cold spells





b) % of T1 DAYS in CWs

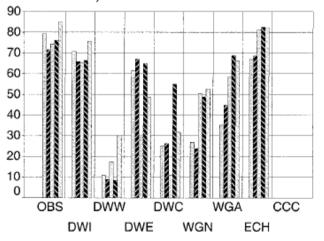


FIG. 12. Mean date of start of (a) heat waves and (b) cold waves. Numbers on the ordinate indicate the number of days from the beginning of Jul and Jan, respectively: e.g., for HWs 20 means 20 Jul. Otherwise as in Fig. 10.

FIG. 13. Inclusion of T_i days into (a) HWs and (b) CWs in percent. For definition see the text. Otherwise as in Fig. 10.

heat waves

• Vautard et al., *Clim. Dyn.* 2013

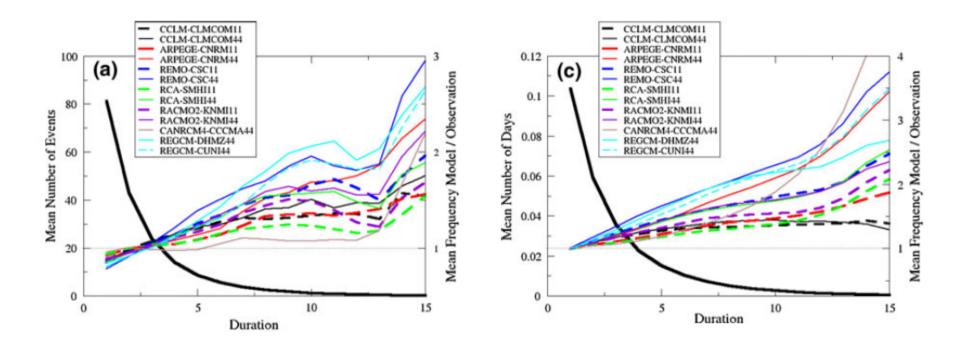
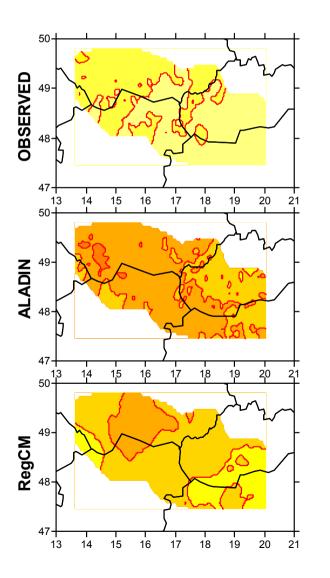
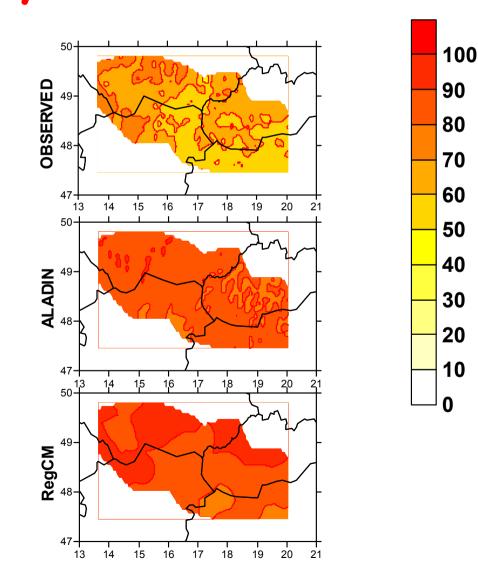


Fig. 5 a, b Average observed number of heat wave events of duration larger than a given number of days, as a function of this number of days (*heavy black decreasing curve*). The average is performed over the ECA&D stations lying in the [20 W, 40E: 30 N, 70 N] domain. The figure also shows the ratio of the number of simulated to observed events for each model (*other curves* with model legend given in the *graph* itself). To improve readability the ensemble

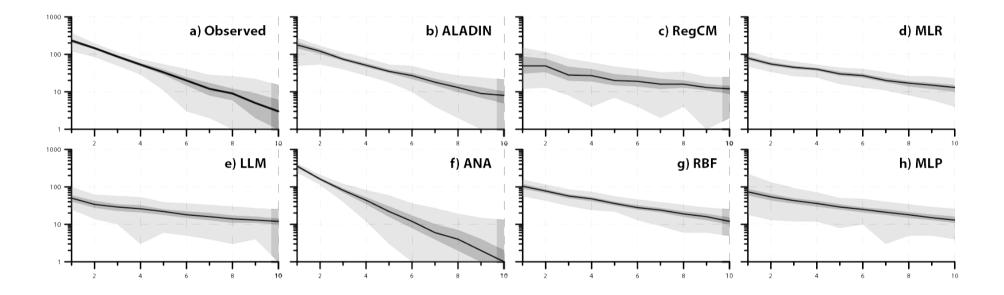
is split into two sub-ensembles: non-WRF simulations (a) and WRF simulations (b). c, d Same as a, b for the frequency of days (instead of number of events) in spells with durations larger or equal to the value in abscissa (instead of the number of events). High-resolution simulations are highlighted with *dashed lines* and have the *same color* as the low-resolution simulations

Precipitation transition probabilities: dry-wet, wet-wet





Wet periods



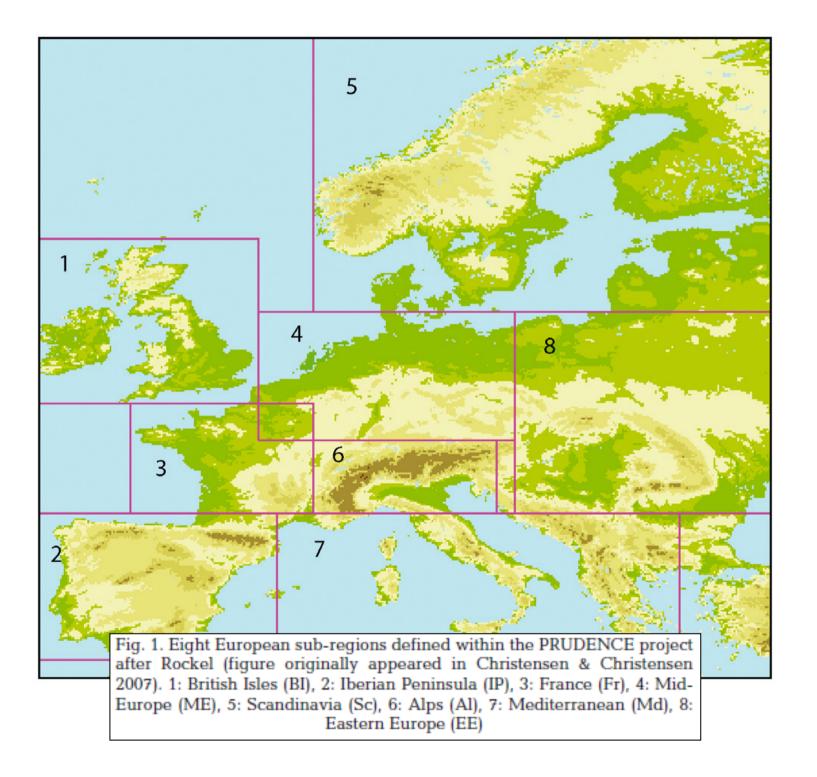
 Number of uninterrupted periods of wet days 1 to 10 days long. Shown are the median value in the set of grid points in the validation domain (bold line), the interquartile range (darker shading) and min-max range (lighter shading).

Trends (long-term variations)

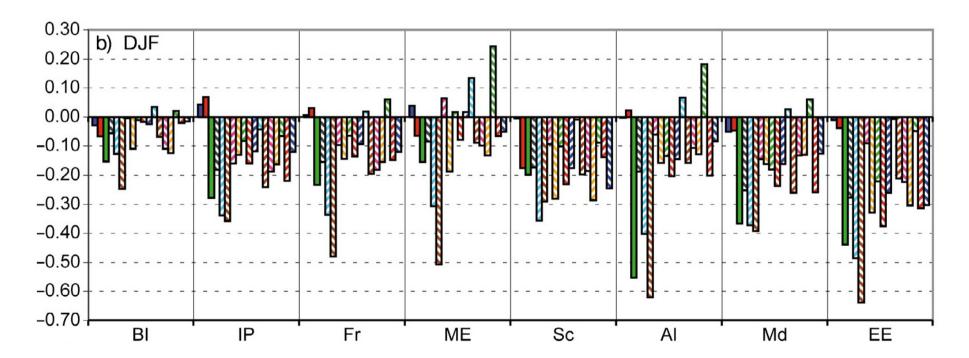
- long-term variations essential for climate change assessment, impacts etc.
- if a model is not able to simulate current trends, how can we rely on it for future climate change?
- in spite of it, trend validation studies are scarce
- model's time series must correspond to real time series
- i.e., applicable only if model is driven by observed data (typically represented by reanalysis)
 - RCM nested in reanalysis
 - SDS model trained on reanalysis
 - GCM nudged towards reanalysis (very rarely done so far)
- two possible approaches
 - trends as linear regression fits variable vs. time
 - differences for contrasting periods (warm vs. cold; wet vs. dry)

Trends (long-term variations)

- three examples
- all for temperature
- Lorenz & Jacob, Clim. Res. 2010
 - 8 European domains
 - 13 RCMs driven by ERA40
 - ENSEMBLES project
- Bukovsky, J. Climate 2012
 - North America
 - 6 RCMs driven by NCEP-2
 - NARCCAP programme
- Huth et al., Theor. Appl. Climatol. 2015
 - central Europe
 - 2 RCMs driven by ERA40
 - 5 SDS models trained on ERA40
 - CECILIA project

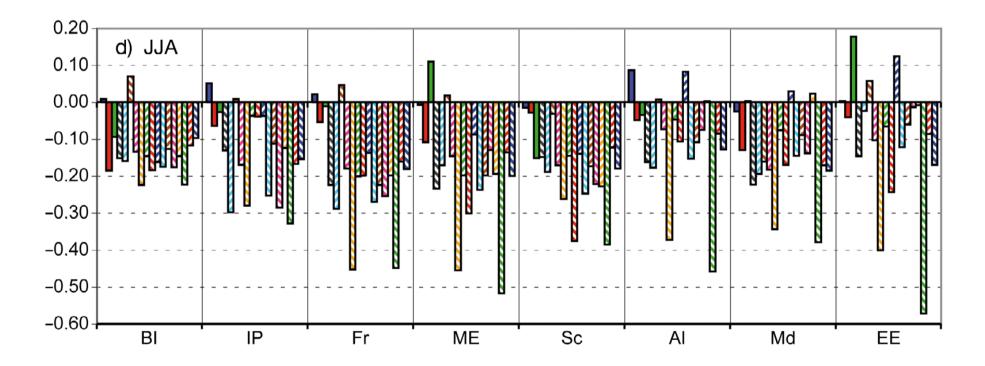


- trend difference (in °C / decade) from E-OBS
- note discrepancies between observed data / reanalyses

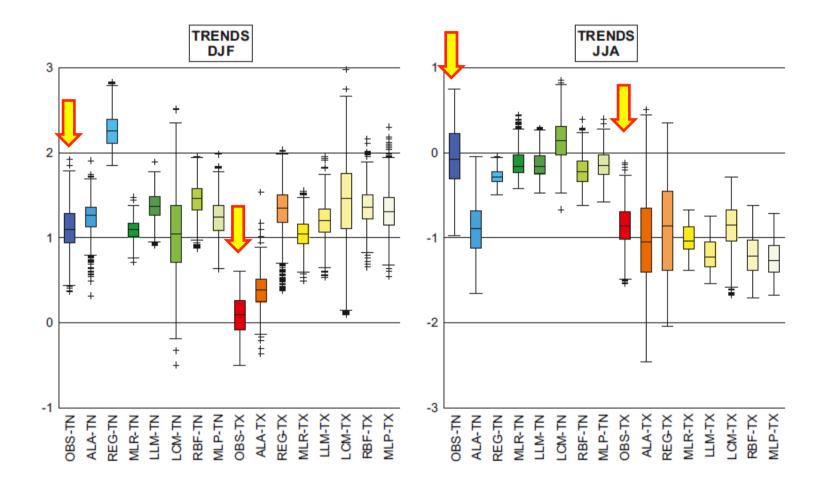


- trend difference (in °C / decade) from E-OBS
- note discrepancies between observed data / reanalyses

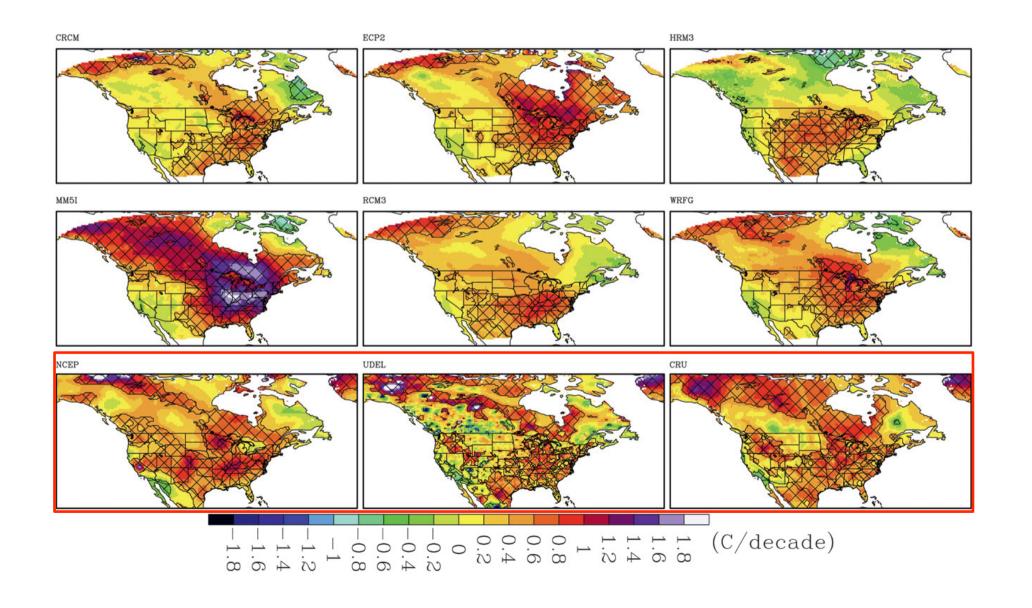
CRU	ERA40	■ NCEP	⊠C4I	Z CHMI	S CNRM
🛛 DMI	Ν ETHZ	ØHC-Q0	🔀 HC-Q3	🛛 HC-Q16	NICTP
🛛 KNMI	🔊 METNO	💋 MPI-M	S OURANOS	💋 SMHI	NUCLM



trends (in °C / decade)



- trends (in °C / decade)
- DJF



trends (in °C / decade)

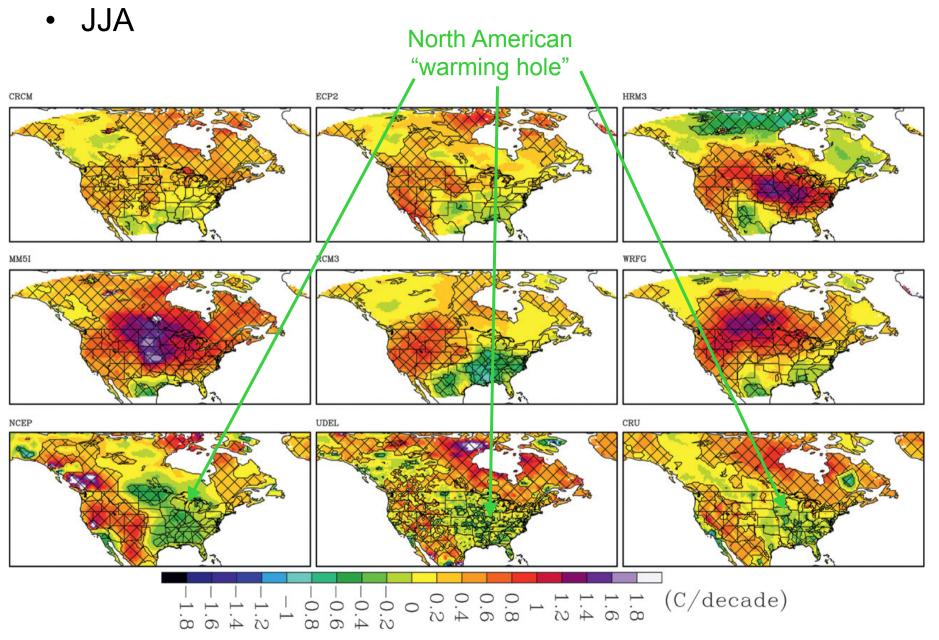


TABLE 1. Percentage of domain with trends that are statistically different from those in CRU.					
	DJF	MAM	JJA	SON	
CRCM	10.69	8.86	26.89	18.78	
ECP2	12.10	12.69	26.68	15.69	
HRM3	25.92	51.07	59.08	23.22	
MM5I	26.66	36.12	53.25	19.08	
RCM3	7.31	7.02	40.52	34.00	
WRFG	11.14	30.69	49.98	32.01	
NCEP-2	11.26	23.82	46.06	19.45	
UDEL	11.21	12.71	28.15	14.37	

- not a great success, is it ...
- where do the differences from reality come from?
 - problems inside the models
 - imprecise reference climate data (trends differ between databases / reanalyses)
 - problems in the driving reanalyses (e.g. presence of artificial trends in upper level fields)
 - sampling variations
- difficult to distringuish model errors from other potential error sources

persistence, DJF, Tmean

TABLE 7. Lag-1 autocorrelations ($\times 1000$) averaged over all stations for different downscaling methods (persistence) and their difference from observations (bias).

Method	Persistence	Bias
Observed	863	
Pointwise regression, inflation	855	-8
Pointwise regression, white noise	656	-207
Full regression, 3 PCs	939	+76
Full regression, 5 PCs	939	+76
Full regression, 7 PCs	922	+59
Full regression, 11 PCs	909	+46
CCA, 3/9 PCs, 3 modes	889	+26
CCA, 5/9 PCs, 3 modes	889	+26
CCA, 7/9 PCs, 4 modes	884	+21
CCA, 11/9 PCs, 4 modes	883	+20
CCA, 11/4 PCs, 4 modes	899	+36
CCA, 11/7 PCs, 4 modes	905	+42
CCA, 11/9 PCs, 4 modes	883	+20
CCA, 11/9 PCs, 1 mode	885	+22
CCA, 11/9 PCs, 2 modes	875	+12
CCA, 11/9 PCs, 3 modes	888	+25
CCA, 11/9 PCs, 4 modes	883	+20
CCA, 11/9 PCs, 5 modes	904	+41
CCA, 11/9 PCs, 6 modes	900	+37
CCA, 11/9 PCs, 7 modes	898	+35

persistence, DJF, Tmax

	Soda	Zugs	Sala	Bamb	Hohe	Vale	Smol	Prag	MAE
Observed	717	737	737	825	778	707	810	850	0.0
Pointwise regr.	748	793	769	822	804	746	795	827	28.1
4 PCs regr.	920	921	914	928	925	927	923	931	_
12 PCs regr.	902	896	888	922	903	904	904	921	_
20 PCs regr.	846	855	891	887	859	846	898	892	_
NN pointwise	825	855	756	796	783	767	840	838	47.6
NN 20 PCs	837	_	855	_	835	_	_	869	_
T-mode, Z5, 4 cl.	736	782	737	781	786	730	750	786	32.9
T-mode, Z5, 11 cl.	672	761	605	698	764	689	712	709	_
T-mode, Z5, 18 cl.	653	749	558	641	743	662	660	666	_
T-mode, Z0, 4 cl.	730	790	727	777	795	731	764	765	37.0
k-means, Z5, 4 cl.	730	780	721	779	789	712	781	786	28.4
k-means, Z0, 4 cl.	744	784	721	766	795	713	768	778	35.7