Spatial validation

Radan HUTH

Faculty of Science, Charles University,
Prague, CZ
Institute of Atmospheric Physics, Prague, CZ

What?

- point-to-point spatial dependencies
 - spatial autocorrelation
- regions of similar temporal behaviour
 - temporal behaviour: e.g.
 - full time series (daily, monthly)
 - annual cycle
 - tools
 - cluster analysis
 - principal component analysis

Why?

- important for various impact sectors
 - hydrology
 - ecology

— . . .

Spatial autocorrelation

- correlations with values at a single site (station, gridpoint)
- mapped

autocorrelation, Tmax, with NW-most point

Spatial autocorrelation

- many autocorrelation maps → need to aggregate information
- autocorrelation vs. distance plot (dots)
- with logarithmic fit overlaid (lines)
- another level of aggregation → single number: autocorrelation distance

Spatial autocorrelation - precip occurrence

- binary variable
- Heidke "skill" score is used as a measure of binary correlation
- HSS = 2(ad-bc)/[(a+c)(c+d) + (a+b)(b+d)]

Event forecast	Event observed					
	Yes	No	Marginal total			
Yes	a	b	a + b			
No	С	d	c + d			
Marginal total	a + c	b + d	a + b + c + d = n			

- attains values from -∞ to +1 (perfect forecast)
- here, not in the context of forecasting
- "observation" = value at the reference site
- "forecast" = value at the other (target) site

spatial autocorrelation of precip occurrence - Heidke score, DJF

spatial autocorrelation of precip occurrence - Heidke score

Spatial autocorrelation - precip amount

 precip – highly non-Gaussian → nonparametric correlation measure to be used

Tmean, DJF, various SDS methods

Table 8. Correlations (×1000) with Norderney (Germany) for pairs of close mountain/lowland stations in observations and selected downscaling methods.

	Zürich (CH)	Säntis (CH)	Poprad (SK)	Štrbské Pleso (SK)	Teplice (CZ)	Milešovka (CZ)
Observed	704	494	657	543	728	827
Pointwise regression, inflation	829	631	804	650	916	929
Pointwise regression, white						
noise	653	521	589	542	633	727
Full regression, 3 PCs	978	889	922	880	999	999
Full regression, 11 PCs	896	756	848	710	971	963
CCA, 1 mode	1000	1000	1000	1000	1000	1000
CCA, 11/9 PCs, 4 modes	752	543	751	586	949	924
CCA, 11/9 PCs, 7 modes	736	529	744	570	772	916

Regionalization

- goal dividing area into regions with homogeneous (temporal) behaviour
- as usual with climate, there are no clearly separated regions
- no 'correct' solution to this task
- useful tool, nevertheless
- two (groups of) techniques
 - cluster analysis
 - principal component analysis

Regionalization

- different partitions (results of regionalization) obtained for
 - different normalizations of data
 - raw data, anomalies (from what?), standardized data
 - i.e., if we are interested in absolute values, deviations from long-term mean, deviations from areal average, ...
 - different variables to cluster
 - daily time series
 - annual cycle

Regionalization

- comparison of partitions reality vs. model
 - by eye (if not too many sites)
 - contingency tables

 several indices to quantify the correspondence
 - Rand, adjusted Rand, Jaccard, ...

Cluster analysis

- hierarchical vs. non-hierarchical techniques
- hierarchical
 - succession of partitions
 - tree diagram (dendrogram)
 - no. of clusters (regions) to be determined by an 'experienced eye' of the researcher from the tree diagram
- non-hierarchical
 - no. of clusters to be determined prior to analysis

Principal component analysis

- S-mode
 - most common arrangement of input matrix
 - sites (stations, gridpoint) in columns
 - time (days, months, ...) in rows
- choice of similarity matrix (correlation, covariance, ...) has a strong effect on results
- results must typically be rotated in order to get regionalization
- rotation = mathematical transformation of a subset of relevant (not noise) components
- no. of retained relevant components = no. of regions
- output from PCA:
 - eigenvalues ('strength' or 'importance' of components)
 - loadings (weights) maps
 - scores (amplitudes) time series
- every site assigned to the component (region) on which it has the highest loading

Example of regionalization

regionalization based on PCA (correlation matrix, obliquely rotated)

Climate classification

- specific way to assess spatial characteristics of model outputs, together with inter-variable consistency
- usually used to validate GCMs
- suitable to compact description of future climate changes
- classifications used for this purpose
 - Köppen-Geiger-Trewartha
 - Thornthwaite

Thornthwaite climate types
OBS (top)
CMIP5 ensemble for recent climate (bottom)
Elguindi et al.,
Clim. Change 2014

Fig. 3. Differences (in %) between the Köppen climatic types derived from GCMs and real data (for the period of 1961–1990).

A sort of conclusions...

- a wide variety of validation criteria
- criteria driven by
 - model developers
 - model users (end-users)
- studies comparing performance of a wide range of DS methods (e.g., RCMs with SDS models) are rather scarce
- performance of different DS methods is comparable – none can be seen as 'best' or 'worst'
- model good in one aspect may fail in another aspect
- impossible to rectify all the aspects of downscaled variables at the same time