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Outline:
•  Building an excellent x-ray source :

•  3.5 minute explanation
•  9.5 minute explanation

•  Essential details of synchrotron light
•  Coherence
•  Free electron lasers: the basic 

mechanism
•  X-ray Free electron lasers: subtle points
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This is how this presentation  started:
Must synchrotron 
sources be so 
formal and 
complicated?

NO!!!
What matters is 

the underlying 
physics
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Why x-rays and ultraviolet light?
To study something, it is better to use a probe with 

similar magnitude (size and energy)
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synchrotron
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small-angle scattering

fluorescence spectroscopy

photoelectrons, 
Auger electrons photoelectron/Auger 

spectroscopy

transmitted 
photons
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molecular
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fragmentation spectroscopy

solid
scattered photons scattering

photoelectrons, 
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Synchrotron x-rays:
Many different interactions

↓
Many different applications
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WE NEED X-RAYS AND SYNCHROTRONS GIVE 
THEM TO US: BUT HOW DO THEY WORK?



OUR “RELAXED APPROACH” TO 
UNDERSTANDING:



START! STEP A (3.5 minutes): why do synchrotrons 
emit x-rays?


OPTIONS: (1) relax for the day, or (2) go to step B


STEP B (9.5 minutes): 

Why synchrotron light is 
narrow like a laser? And, again, why do synchrotrons 
emit x-rays?



OPTIONS: (1) relax for the day, or (2) go to step C



STEP C (the rest of the time… maybe more): (almost) 
everything about synchrotrons and FELs
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Synchrotron light in 3.5 minutes for 
lazy students (and teachers):

Electron: 
Speed u ≈ c 





Magnet:


Lorentz force ⇒ 
acceleration ⇒ 
photon emission 



Photon 
detector



D

L



Photon pulse duration:  Δt = L/u + D/c – (L/c + D/c)= (L/u) (1-u/c) 


Characteristic frequency: ν = 1/Δt = u/[L(1-u/c)] = u γ2 (1+u/c)/L 


For u ≈ c ,  (1+u/c) ≈ 2  and ν ≈ 2cγ2/L 



At time zero, the 
electron enters the 

magnet, is accelerated 
and emits photons



The first photons 
arrive at the detector 
at the time (L + D)/c



At the time L /u, 
the electron 

leaves the magnet


The last photons 
arrive at the time 

L /u + D /c



γ2 = 1/(1-u2/c2)

For L = 0.1 m and γ = 4000, ν ≈ 1017 s-1 -- x-rays! 
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For the next step, you only need 
a bit of relativity:

R: electron 
reference frame 





y 




x 




R’: laboratory 


frame

-u

x ’

y ’

x ’ = γ (x + ut )


y ’ = y


t ’ = γ (t + ux/c 2)






vx ’ = (vx + u )/(1 + vxu/c 2)


vy ’ = (vy/γ )/(1 + vxu/c 2)






Lorentz contraction:


L ’ = x2’ – x1’ = γ (x2 – x1) = γL 


L ’ = L/γ
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Synchrotron light in 9.5 minutes for (not 
entirely) lazy students (and teachers):

Electrons circulating at a speed u ≈ c in 
a storage ring emit photons in a narrow 
angular cone, like a “flashlight”: why?


Answer: RELATIVITY



Seen in the electron 
reference frame, the 
photon are emitted in 
a wide angular range



But in the 
laboratory frame 
the emission 
shrinks to a 
narrow cone



photon
c

cy≈c

cx≈0

cx’≈u
cy’θ

Take a photon emitted in a near-transverse direction in the 
electron frame. In the (green) laboratory frame its velocity 
components become cx’≈u and cy’. But c, the speed of light, 
cannot change, so cy’≈(c 2-u 2)1/2 = c (1-u 2/c 2)1/2 = c/γ. 


The angle θ ’ is ≈ cy’/c = 1/γ -- narrow!!! 



Electron frame

Laboratory 


frame

u
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A torchlight-electron illuminates a 
small-area detector once per turn 
around the ring for a short time Δt



Seen from the side of the ring, each 
electron looks like an oscillating charge in 
an antenna, emitting photons with a 
frequency 2πR/c -- in the radio wave 
range.


What shifts the emission to the x-ray 
range? RELATIVITY AGAIN!



A second look -- the emission is x-rays: why?

Photon pulse duration: 


Δt = L/u + (D - L)/c - D/c = L/u - L/c = (L/u) (1-u/c) = (L/u)γ2/(1+u/c) 


For u ≈ c, (1+u/c) ≈ 2 and Δt ≈ L/(2cγ2) ≈ R/(2cγ3).


Characteristic frequency ν = 1/Δt ≈ 2cγ3/R -- again, x-rays 



≈1|γ

D



L ≈ R (1/γ) 

 Photons start to be 
detected at the time D/c



Detection ends at the 
time L/u + (D - L)/c
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So, synchrotrons emit x-rays: but why 
is this interesting? Consider  

fireplaces and torchlights:
A fireplace is not very effective 

in "illuminating" a specific 
target: its emitted power is 

spread in all directions

This can be expressed using the “brightness”

A torchlight is much more effective: it is a 
small-size source with emission 

concentrated within a narrow angular spread
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The “brightness” (or brilliance) of a 
source of light :

F
ξ2 Ω

Brightness = constant __________

Source 
area, ≈ ξ2

ξ
Flux, F

Angular 
divergence,
solid angle Ω
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What allows synchrotron light to be so 
bright? Three factors:

1.  Electrons in vacuum can emit more 
power than electrons in a solid because 
the power does not damage their 
environment ⇒ high flux

2.  The source size is not a single 
electron but the transverse cross 
section of the electron beam. The 
sophisticated electron beam 
controls make it very small

3.  Relativity drastically reduces the angular 
divergence of  the emission
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Let’s discover synchrotron light: this is a 
real facility -- Diamond (UK)
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Inside a 
synchrotron 
facility
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Undulator 
(periodic B-field, 

period L ≈ 
centimeters)

Objective: building a very bright x-ray source 
using an “undulator” and relativity

electron
Speed u ≈ c

Back to the laboratory frame, the wavelength L /γ emitted by the moving 
electron is Doppler-shifted by a factor ≈2γ, becoming L /(2γ 2). The “macroscopic” 
undulator period is transformed into x-ray wavelengths!

In the undulator (laboratory) 
frame, the electron moves 
at speed ≈c

In the electron frame:

The period L is 
Lorentz-contracted 
becoming ≈ L /γ

The periodic B-field is accompanied by a perpendicular periodic E-field. 
Moving at a speed ≈c towards the electron, the undulator looks like an 
electromagnetic wave with wavelength L /γ. Synchrotron radiation is produced 
by the elastic scattering of this wave by the electron.
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Undulators are one of the 3 types 
of synchrotron light sources: 

1. Undulators: small 
undulations 

detector 
continuously 
illuminated 

time 

long 
signal 
pulse 

frequency 

hν/(Δhν) ≈ N 

detector 

narrow 
band 



2016 ICTP School on Synchrotron and FEL based Methods 

Three types of sources: 

2. Bending magnets: 

short 
signal 
pulse 

broad 
band 

time frequency 
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Three types of sources: 

3. Wigglers: large 
undulations 

Series of 
short 
pulses 

broad 
band 

frequency time 

More intensity 
than bending 

magnets 
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Bending magnet emission spectrum:
The (relativistic) rotation frequency of the 
electron determines the (Doppler-shifted) 
central wavelength: 
λo = (1/2γ 2)(2πcmo/e)(1/B)

The “sweep time” δt of the emitted light 
cone determines the frequency spread δν 
and the wavelength bandwidth:
Δλ / λo = 1
 

A peak centered at λc 
with width Δλ: is this 
really the well-known 
synchrotron spectrum?
YES -- see the log-log 
plot:

λλ0

Δλ

log(λ)

λo

lo
g(

em
is

si
on

)
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L = period

Central wavelength: L/(2γ 2)

First correction: out of axis, the Doppler 
factor is not 2γ 2 but 2γ 2(1+ 2γ 2θ ’2)
Central wavelength: (L/2γ 2)/(1+ 2γ 2θ ’2)
(changes with θ ’ !)

θ ’

Second correction: stronger B-field 
means stronger undulations and less on-
axis electron speed. This changes γ so 
that:
Central wavelength: [L/(2γ 2)]/(1+ aB 2)

Undulator emission spectrum:
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…furthermore, an undulator also emits the 
harmonics of the central wavelength: 

[L /(2γ 2)]/µ , µ = integer number

Along the axis: only odd 
harmonics: 
L/(2µγ 2), µ = 1, 3, 5,… 

θ ’
Off-axis: both odd and 
even harmonics
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Synchrotron light polarization:

Electron in a storage ring:

TOP VIEW

TILTED VIEW

SIDE VIEW

Polarization:
Linear in the plane of 

the ring, 
elliptical out of the 

plane (weak intensity)
Special (elliptical) wigglers and 
undulators provide elliptically 

polarized light with high intensity
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Coherence: “the property that enables a wave 
to produce visible diffraction and interference 

effects” 

source 
(Δλ)

ξ

Example:

The diffraction pattern may or may not be visible on the 
fluorescent screen depending on the source size ξ, on its 
angular divergence θ and on its wavelength bandwidth Δλ

fluorescent 
screen

screen with 
pinhole

θ
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Longitudinal (time) coherence: 

•  Condition to see the pattern: Δλ/λ < 1
•  Parameter characterizing the longitudinal coherence: 

“coherence length”: Lc = λ2/Δλ
•  Condition of longitudinal coherence: Lc > λ

source 
(Δλ) δ

First minimum: in the 
direction (angle) λ/d
Direction broadening: Δλ/d
To see the first minimum 
(and the pattern): Δλ/d < λ/d 
or Δλ/d < 1 
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Lateral (space) coherence — analyzed with an 
extended source formed by two point sources: 

•  Two point sources produce overlapping patterns: diffraction 
effects are no longer visible.

•  However, if the two source are close to each other an overall 
diffraction pattern may still be visible: the condition is to have a 
large “coherent power” [2λ/(ξθ)]2

ξ
θ
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Coherence — summary: 
• Large coherence length Lc = λ2/Δλ
• Large coherent power [2λ/(ξθ)]2
• Both difficult to achieve for small 
wavelengths (x-rays)

• The conditions for large coherent 
power are equivalent to the 
geometric conditions for high 
brightness
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Conventional radiology

Refractive-index radiology (Giuliana Tromba, Trieste)

Early example of coherence-based 
imaging with synchrotron radiation
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Coherence-based 
phase contrast 

micro-tomography: 
housefly

Yeukuang 
Hwu, Jung 

Ho Je et al. 
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Coherence-based imaging of a firefly 
lantern: understanding how light is emitted

Yeukuang Hwu, et al. 
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Coherence-based imaging “reads” ancient 
manuscripts without opening them:

Fauzia Albertin, et al. 

visible picture radiograph
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New types of sources:
•  Ultrabright storage rings (SLS, new ESRF 

source) reaching the diffraction limit in a 
large part of the emitted spectrum

•  Inverse-Compton-scattering table-top 
sources

•  Energy-recovery machines 
•  VUV free electron lasers (FEL’s) (such as 

CLIO)
•  X-ray FEL’s
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Towards FEL’s – let’s start from a normal laser:

Active medium: provides 
the “optical amplification” 

of the photon beam

Optical cavity: increases the photon beam path 
and the optical amplification

Optical pump: 
puts in the 

active medium 
the energy to be 
converted into 

photons

Result: 
collimated, 

intense, bright 
and coherent 
photon beam
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from a normal laser to an x-ray FEL:

Active medium: no gas, solid or liquid but 
“free electrons” in an accelerator: hight 

power possible without damage 

No x-ray mirrors ⇒ no optical cavity ⇒ enough 
amplification needed for one-pass lasing

Optical pump: 
the free 

electrons 
provide the 
energy and 

transfer it to the 
photons

Result: 
collimated, 

intense, bright 
and coherent 

x-ray beam
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FEL’s: general scheme
To emit photons and produce optical 

amplification, the electrons brought to 
(almost) the speed of light by an 

accelerator (for example, a LINAC or 
a storage ring) must pass through a 

wiggler (or undulator) 

Wiggler

Electron 
accelerator

Electron beam

X-ray beam
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This is what happens in detail:

The combined wiggler+wave action 
progressively microbunches the 

electrons. The emission of 
microbunched electrons enhances 

the previously emitted waves 

A bunch of electrons 
enters the wiggler: 

some of them 
stochastically start 

emitting waves
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Correlated emission from 
microbunched electrons:

With no microbunching, 
as electrons enter the 

wiggler, they emit in an 
uncorrelated way

Instead, the electrons 
confined to the wiggler-
induced microbunches 

emit in a correlated way, 
enhancing previously 

emitted waves
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In summary, the wiggler induces 
transverse electron oscillations that:

1.  Accelerate the electron charges enabling 
them to emit photon waves 

2.  In collaboration with previously emitted 
waves, cause the microbunching of the 
electrons

Note: without microbunching, the wave intensity is 
proportional to the number of electrons, N. With 

microbunching, the electrons in each microbunch emit in a 
correlated way: the wave amplitude is proportional to N. 
The wave intensity is proportional to the square of the 

amplitude and therefore proportional to N 2. 
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But: what really creates the 
electron microbunches?

Wiggler-induced electron 
oscillations (v = transverse velocity)

Two key 
ingredients:

The wave B-field and the electron 
transverse velocity v produce a 

Lorentz force f pushing the electrons 
towards zero-field points: could this 

be the cause of microbunching?

Previously emitted photon wave 
with its E-field and B-field

B

E
v

f
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…maybe, but something seems wrong: after 1/2 wiggler period, the electron 
transverse velocity is reversed. If the wave travels together with the electron, the B-

field stays the same. Are the forces and the microbunching reversed? 

No! Electron and wave do not travel together: the electron speed is u < c. As the 
electron travels over L/2 in a time L/(2u), the wave travels over [L/(2u)]c. The 

difference is (L/2)(c/u - 1)≈ L/(4γ 2) = half wavelength 

L/2

B-fields, velocities are all reversed: the forces 
are not, and keep microbunching the electrons

L/2 + λ/2
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Why is microbunching (and 
lasing) more difficut for x-rays 

than for infrared photon? 
At short wavelengths the microbunches are 

closer to each other, and this should  
facilitate the microbunching

But: 
•  Short wavelengths require a high electron energy corresponding to a 

large γ - factor
•  The large γ makes the electrons “heavy” and therefore difficult to move 

towards the microbunches: their longitudinal relativistic mass (that 
governs microbunching) is γ 3mo 

•  This offsets the advantage of closer microbunches, making 
microbunching very difficult

λ
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…until maximum 
microbunching is reached 

and the gain saturates

Microbunching produces correlated 
emission and a progressive gain in the 
wave intensity

Because of the gain, the 
wave intensity increases 

exponentially with the 
distance in the wiggler… 

Wave 
intensity

Distance

As mentioned, for an x-ray FEL (no 2-mirror cavity), gain saturation must 
be reached before the end of the (very long) wiggler, in a single pass 
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Why the FEL exponential intensity increase?
•  The energy transfer rate from the electron beam to a pre-existing 

wave of intensity I is determined by: (1) the transfer rate for each 
single electron (2) the effects of microbunching

•  The one-electron transfer rate is given by the (negative) work 
proportional to E v , where E = wave (transverse) E-field and v = 
electron transverse velocity. 

•  E is proportional to I 1/2 so the energy transfer rate for one electron is 
proportional to I 1/2

•  The effects of microbunching are proportional to the Lorentz force 
that causes it, which is produced by vT and by the B-field B of the pre-
existing wave. Since B is proportional to I 1/2 , this corresponds to 
another factor proportional to I 1/2 

•  Overall, dI/dt is proportional to I 1/2 I 1/2 = I
•  This corresponds to an exponential increase as a function of t -- and 

therefore of the distance = ut
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Why does the intensity increase saturate?

For the electron→wave energy transfer, the directions of the electron 
transverse velocity v and of the wave E-field must produce negative work. In 
this case, the phase difference between v and E fullfills that condition   

v E
-e

•  But as the electron gives energy to the wave, it slows down and the 
phase of the transverse velocity relative to the wave changes.

•  Eventually, the conditions are reversed leading to  wave→ electron 
energy transfer

•  This accelerates the electrons until the conditions are restored for 
electron→wave energy transfer 

•  The mechanism goes on and on, producing an energy oscillation 
between electrons and wave rather than a continuing increase of the 
wave intensity: hence, saturation
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Claudio Pellegrini, 
UCLA -- father of 
the X-FEL theory
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The European 
X-FEL in 
Hamburg

The FERMI X-FEL 
at Elettra, Trieste

The Swiss X-FEL at the 
Paul-Scherrer Institut
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X-ray FEL coherence: 

Full lateral (space) 
coherence all the 

way to the hard x-
rays

First coherence 
experiments on 
the Tesla Test 
Facility in 
Hamburg: full 
lateral coherence 
at λ = 95 nm
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For the X-FEL longitudinal (time) 
coherence, a critical problem:

The  pulse time structure 
changes with each bunch, 

limiting the time coherence

Amplification starts with the first waves stochastically 
emitted when the electron bunch enters the wiggler

time

Solution: “seeding” – the process is triggered by an 
artificially injected wave

A complicated technology, recently implemented
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Example of seeded X-FEL:

First Wiggler
(SASE Emitter)

Electron Beam

Second Wiggler 
(Amplifier)

Monochromator

Electron Beam
Bypass

Electron 
Dump

Photon Beam

Note: seeding is also possible using radiation 
from an external laser source
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•  The EPFL colleagues: Marco Grioni, Davor Pavuna, Mike 
Abrecht, Amela Groso, Luca Perfetti, Eva Stefanekova, 
Slobodan Mitrovic, Dusan Vobornik, Helmuth Berger, 
Daniel Ariosa, Johanna Generosi, Vinko Gajdosic, Primoz 
Rebernik, Fauzia Albertin.

•  The POSTECH colleagues: group of Jung Ho Je.
•  The Academia Sinica Taiwan colleagues: group of 

Yeukuang Hwu.
•  The Vanderbilt colleagues: group of Norman Tolk.
•  The ISM-Frascati colleagues: group of Antonio Cricenti and 

Paolo Perfetti.
•  The facilities: PAL-Korea, Elettra-Trieste, Vanderbilt FEL, 

SRRC-Taiwan, APS-Argonne, SLS-Villigen, LURE-Orsay 

Thanks:
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Refinements: A different look at coherence: 

A source of size ξ and bandwidth Δλ can illuminate coherently a volume ΔxΔyΔz at 
the distance L. This is this coherence volume.
Along x: if two waves of wavelength λ and λ+Δλ are in phase ar a certain time, they 
will be out of phase after Δt such that ΔωΔt = 2π or Δt = 2π/Δω = λ2/(cΔλ) .
Thus, Δx = cΔt = λ2/Δλ = Lc .
Along y: the spread in k-vector is Δk = kξ/L = 2πξ/(Lλ).
If two waves with  k-vectors 0 and Δk along y are in phase at a certain point, they will 
be out of phase at a distance Δy such that ΔkΔy = 2π; thus, Δy = Lλ/ξ .
Along z: same as along y.
Coherence volume: ΔxΔyΔz = L2λ4/(ξ2Δλ)

L

ξ
Δλ

x
y

z
Δz

Δy

Δx

Behind this: Heisenberg! Photons in 
the coherence volume cannot be 
distinguished from each other
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The notion of “coherent power”: 

The solid angle corresponding to the area  ΔyΔz is ΔyΔz/L2.
If the solid angle of the emitted light is ≈θ 2, then only a portion (ΔyΔz/L2)/θ 2 
of the total emitted power illuminates the coherence volume. 
This is the coherent power.
Since ΔyΔz = (Lλ/ξ)2, the coherent power is ≈[λ/(ξθ)]2 .

Angular 
divergence: solid 
angle Ω ∝ θ 2

ξ
Δλ

x
y

z

L
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What is the number nc of  photons in the 
“coherence volume” for an X-FEL with full 

transverse coherence?
Full transverse coherence means that all the emitted photons 
are within the “coherence volume”. Thus, their number nc is 
given by the flux F times Lc/c = λ2/(cΔλ).
The brightness B is proportional to F/(ξθ); for full transverse 
coherence, F/(ξθ) ≈ F/(λ2) and F is proportional to λ2B.
The F-B proportionality factor contains the relative bandwidth 
Δλ/λ .
Thus, nc = Fλ2/(cΔλ) is proportional to (λ2B)[λ2/(cΔλ)](Δλ/λ): 

Overall, the number of photons in the “coherence volume” is 
proportional to Bλ3 :  high peak brightness helps, but short 
wavelengths are a problem! 


