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A full comprehension of strong interactions represents a long standing issue. Perturbative

QCD works well at high energies (asymptotic freedom), while the low energy regime

is non-perturbative.

Various analytic approaches try to attack the problem

One possibility is to compute the theory numerically: Lattice QCD simulations

What I would like to do in my talk:

• Discuss the computational difficulty of such a task and its feasibility today

• Discuss a couple of issues where standard computations meet difficulties or fail:

– The QCD phase diagram at finite T and baryon density

– The study of topological properties in the high T phase and its connection to

axion phenomenology



LATTICE QCD IN BRIEF

The starting point is the path-integral approach to Quantum

Mechanics and Quantum Field Theory, opened by R. Feynman in

1948.
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−→ 〈0|O|0〉 ⇒

∫

Dϕe−S[ϕ]O[ϕ]

The QCD path integral is discretized on a finite space-time lattice

=⇒ finite number of integration variables

The path-integral is then computed by Monte-Carlo algorithms

which sample field configurations proportionally to e−S[U ]

〈O〉 =
1

Z

∫

DUe−S[U ]O[U ] ≃ Ō =
1

M

M
∑

i=1

O[U{i}]



An elegant gauge invariant regularization is given in terms of elementary

parallel transports: non-Abelian phases picked up by quarks moving

from one lattice site to the other (K. G. Wilson 1974)

(n’)U (n)µ
n n+µ ψ

Gauge fields are 3 × 3 unitary complex matrixes

living on lattice links (link variables)

Uµ(n) ≃ P exp

(

ig

∫ n+µ

n

Aµdxµ

)

Fermion fields are Grassman variable living on

lattice sites. Best way to deal with them is to

integrate them out.

∫

d4xGa
µνG

µν
a ⇒ SG

∫

d4xψ̄f
i

(

Dµ
ijγ

E
µ +mfδij

)

ψf
j ⇒ SF = ψ̄nM [U ]n,mψm

Z =

∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫

DUe−SG[U ] detM [U ]

- As long asDUe−SG detM [U ] is positive, a probabilistic interpretation is viable

- Sampling detM is the most challenging part. Numerically inconceivable in 1974



Sampling strategy

Hybrid Monte-Carlo algorithm

∫

DUe−SG[U ](detM [U ])2 =

∫

DHDΦ†DΦDUe−SG[U ]e−
1
2
H2

e−Φ†(MM†)−1Φ

- Introduce auxiliary fields Φ,Φ† to bosonize the determinant

- Introduce auxiliary conjugate momenta Hµ(n) ∈ su(3)

- Perform a dynamical Monte-Carlo (Markov chain)

Scheme of the elementary

dynamical Monte-Carlo step

The most expensive part is

the repeated computation of

(MM †)−1Φ, needed during

Molecular Dynamics.
Molecular dynamics evolution of gauge fields U

U(t), H(t)

U’(t’), H’(t’)  

and of conjugate momenta H

Computation of initial energy
Generation of momenta and pseudofermions (Gaussian distribution)

Φ,
Φ,

Metropolis test (accept or reject U’)
Computation of the final energy



Computational Complexity 1

How big and how ill-conditioned is the fermion matrix M

M is roughly a (L/a)4 × (L/a)4 sparse matrix (plus color-flavor indexes)

What are acceptable values for L and a to get reliable computations?

- L≫ largest length m−1
π ∼ 10−15 m = 1 fm

- a≪ shortest length∼ 10−16 m or shorter

=⇒ ideally L/a ∼ O(100) =⇒ M ∼ 108 × 108 matrix.

M ∼
(

Dµ
ijγ

E
µ +mfδij

)

=⇒ M = amf Id +K

Chiral symmetry breaking =⇒ small imaginary eigenvalues for K (anti-hermitean)

=⇒ for MM † we have λmin ∼ (amf )
2 and λmax ∼ O(10)

The problem becomes more and more challeging as we try to reach small, physical

quark masses and as we try to reach the continuum limit:

mu/d/ΛQCD ∼ 10−2 and a≪ Λ−1QCD =⇒ amf . 10−3



Computational Complexity 2

Fighting by thinking about new algorithms

2001 estimate of the numerical cost of Lattice QCD (A. Ukawa, Lattice2001)

3.10

(

Ls

3 fm

)5 (
Ls

2Lt

)(

0.2

m̂/ms

)3 (
0.1 fm

a

)7

TFlops · year

This is the time to get a sample of 100 well decorrelated field configurations.

ms ∼ 28mu, Ls ∼ 6 fm, a ∼ 0.04 fm) =⇒ ∼ 107 TFlops · year ∼ 1026 ops

WHERE WE CAN ACT (some significant examples):

- Higher order symplectic and multiple step integrators for MD

- Preconditioning by rewriting the determinant (Hasenbusch trick):

det(MM
†) =

det(MM†)

det(MM† + µ2
1)

det(MM† + µ2
1)

det(MM† + µ2
2)

· · · det(MM
† + µ

2
N )

- Preconditioning by deflation

compute the first N eigenvectors exactly and factorize them out

SITUATION TEN YEARS LATER (S. Schaefer, Lattice2012):

same estimate as above goes down to∼ 103 TFlops · year ∼ 1022 ops



Computational Complexity 3

Fighting by thinking/hoping for new machines

After Wilson’s dream (1974), M. Creutz started LQCD on a 10 Mflops machine (1979)

pure gauge theory (no dynamical quarks) with gauge group SU(2) on a 104 lattice

Computer power has grown a lot since then. LQCD simulations have been a major

stimulus for the development of High Performance Computing resources.

An example is the series of APE machines ”made in INFN” (N. Cabibbo et al )

first

APE project, 1988, 250 Mflops APEnext, 2006, 10 Tflops

or the series of BlueGene machines developed by IBM



Computational Complexity 4

Do we rely more on better algorithms or on better machines?

Let us look at improvements on both sides in a well defined period:

2001→ 2012

Computational effort for 100 independent

confs (L ∼ 6 fm, a ∼ 0.04 fm) goes from

107 to 103 Tflops · year

↓

Factor 104 improvement

Peak performance of the most powerful

parallel machine on Earth

goes from 10 Teraflop to 104 Teraflop

↓

Factor 103 improvement

Both machine and algorithmic improvements have been essential, with slightly more

success from the algorithmic side



We have reached the possibility of performing realistic computations

for several aspects of strong interactions

For instance, we can compute the hadron spectrum at

the 1% precision level

Aoki et al. Phys.Rev. D81, 074503, 2010

In the following I will focus on aspects regarding strong interactions

under extreme conditions (temperature, baryon density, ...).

Those are fundamental for various fields, including astrophysics cosmology, and

heavy ion collision experiments.



Lattice QCD at finite temperature

The thermal QCD partition function is naturally rewritten in terms of an Euclidean

path integral with a compactified temporal extension

1
T T =

1

τ
=

1

Nta(β,m)

τ is the extension of the compactified time

Sample averages give access to equilibrium properties (energy density, specific heat, etc.)

To understand the nature of phase transitions, we study different growing spatial

sizes and look for possible singularities in the infinite volume limit: finite size scaling

The computation of out-of-equilibrium or transport properties is far

less trivial



Finite T transition

Clear evidence for deconfinement is obtained both in the pure gauge theory (quenched

approximation) and in presence of dynamical fermions
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The confining potential between static color sources, which is present at low T , disappears at high T



The liberation of color degrees of freedom is clearly visible in thermodynamical

quantities and coincides with chiral symmetry restoration.

energy density u/d and s number fluctuations chiral condensate
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Temperature of the transition (from the chiral condensate)

S. Borsanyi et al. JHEP 1009, 073 (2010) Tc = 155(6) MeV (stout link stag. discretization, amin ≃ 0.08 fm)

A. Bazavov et al., PRD 85, 054503 (2012) Tc = 154(9) MeV (HISQ/tree stag. discretization, amin ≃ 0.1 fm)



Nature of the transition

No exact symmetries are known for QCD with physical masses. Then, it is not granted

that a true transition takes place

Indeed, the physical point (simulations with physical quark masses) is consistent

with a crossover (no discontinuity or divergence)

(Aoki et al., Nature 443, 675 (2006))

However, one can thus study the nature of the transition as a function

of u/d, s quark masses
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A true, first order transition is present for

very light or very heavy quark masses



The QCD phase diagram: not just temperature ...

(quark masses, background fields, ...)
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What we would like to know:

• Location and nature of deconfinement/chiral symmetry restoration as a function

of other external parameters (µB , external fields, ...)

• Properties of the various phases of strongly interacting matter

• Critical endpoint at finite µB?



Problems in lattice QCD at µB 6= 0

Z(µB, T ) = Tr
(

e−
HQCD−µBNB

T

)

=

∫

DUe−SG[U ] detM [U, µB]

detM [µB] complex =⇒ Monte Carlo simulations are not feasibile.

This is usually known as the sign problem

By now, we can rely on a few approximate methods, viable only for small µB/T , like

• Taylor expansion of physical quantities around µ = 0

Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2003

• Reweighting (complex phase moved from the measure to observables)

Barbour et al. 1998; Z. Fodor and S, Katz, 2002

• Simulations at imaginary chemical potentials (plus analytic continuation)

Alford, Kapustin, Wilczek, 1999; de Forcrand, Philipsen, 2002; M.D’E., Lombardo 2003.

Others are being developed but still not fully operative

(Langevin simulations, density of states method, Lefschetz thimble simulations, rewriting

the partition function in terms of dual variables, ...)



As a consequence, most present reliable results regards the physics at small chemical

potential. An example is the dependence of Tc on µB:

T (µB)

Tc
≃ 1− κ

(

µB
T (µB)

)2

= 1− 9κ

(

µ

T (µ)

)2

µ is the quark chemical potential, κ is the curvature of the pseudo-critical line at

µB = 0 and can be obtained either by Taylor expansion technique or by numerical

simulations at imaginary µB , assuming analyticity around µB = 0:

T (µI)

Tc
≃ 1 + 9κ

(

µI
T (µI)

)2



In the imaginary chemical potential approach, Tc is computed as a function of µI
from various quantities (from Bonati et al., arXiv:1507.03571) :
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The pseudo-critical line from analytic

continuation, compared with determinations of

the freeze-out line from heavy ion experiments
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various lattice determinations and comparison
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Convergence of most recent results indicates

good control over possible systematic effects.
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Unfortunately the determination of the critical endpoint is still far from that



QCD and θ-dependence: standard model and beyond

Gauge field configurations relevant to the QCD path integral divide in homotopy

classes, characterized by a winding number Q =
∫

d4x q(x)

q(x) =
g2

64π2
Ga

µν(x)G̃
a
µν(x) =

g2

64π2
ǫµνρσG

a
µν(x)G

a
ρσ(x) GG̃ ∝ ~Ea· ~Ba CPodd quantity

The QCD action can be modified by introducing a θ-parameter coupled to Q:

Z(θ) =

∫

[DA][Dψ̄][Dψ] e−SQCD eiθQ ∝
∑

Q

P (Q) eiθQ

The theory at θ 6= 0 is renormalizable and presents explicit CP -breaking

The euclidean path integral measure is complex (sign problem for numerical simulations)

F (θ, T )− F (0, T ) =
1

2
χ(T )θ2

[

1 + b2(T )θ
2 + b4(T )θ

4 + · · ·
]

χ =
1

V4
〈Q2〉0 = F (2) b2 = −

〈Q4〉0 − 3〈Q2〉20
12〈Q2〉0

b4 =
〈Q6〉0 − 15〈Q2〉0〈Q

4〉0 + 30〈Q2〉30
360〈Q2〉0

The probability distribution P (Q) is a non-perturbative property of QCD



Predictions about θ-dependence

Dilute Instanton Gas Approximation (DIGA) for high T (Gross, Pisarski, Yaffe 1981)

One can integrate quantum fluctuations around classical solutions with non-trivial

winding around the gauge group: instantons. Effective action known only perturbatively

1− loop exp
(

−8π2/g2(ρ)
)

where g(ρ) is the running coupling at the instanton radius scale ρ.

Breaks down for large instantons (1/ρ . ΛQCD), which however are suppressed

by thermal fluctuations at high T (in particular for ρ ≫ 1/T ), where instantons of

effective perturbative action 8π/g2(T ) dominate.

=⇒ instantons-antiinstantons form a dilute non interacting gas

χ(T ) ∼ T 4
(m

T

)Nf

e−8π2/g2(T ) ∼ mNfT 4− 11
3
Nc−

1
3
Nf ∝ T−7.66 (forNf = 2)

At low T , instead, chiral perturbation theory gives reliable estimates:

χ(T = 0)≃ (78 MeV)4



Experimental bounds on the electric dipole of the moment set stringent

limits to the amount of CP-violation in strong interactions

|θ| . 10−10

So: why do we bother about θ-dependence at all?

• θ-dependence←→ P (Q) at θ = 0 =⇒ it enters phenomenology anyway.

e.g., Witten-Veneziano mechanism: χYM = f 2
πm

2
η′/(2Nf )

• Strong CP-problem: why is θ = 0? mf = 0 is ruled out.

A possible mechanism (Peccei-Quinn) invokes the existence of a new scalar field

(axion) whose properties are largely fixed by θ-dependence

• Axions are popular dark matter candidates, so the issue is particularly important



The QCD axion

Main idea: add a new scalar field a, with only derivative terms acquiring a VEV 〈a〉

and coupling to the topological charge density. Low energy effective lagrangian:

Leff = LQCD +
1

2
∂µa∂

µa+

(

θ +
a(x)

fa

)

g2

32π2
GG̃+ . . .

• a is the Goldstone boson of a spontaneously broken (Peccei-Quinn) U(1) axial

symmetry (various high energy models exist)

• coupling to GG̃ involves the decay constant fa, supposed to be very large

• shifting 〈a〉 shifts θ by 〈a〉/fa. However θ-dependence of QCD breaks global shift

symmetry on θeff = θ + 〈a〉/fa, and the system selects 〈a〉 so that θeff = 0.

• Assuming fa very large, a is quasi-static and its effective couplings (mass, interaction

terms) are fixed by QCD θ-dependence. For instance

m2
a(T ) =

χ(T )

f 2
a

=
〈Q2〉T,θ=0

V4f 2
a



knowing F (θ, T ) fixes axion parameters during the Universe evolution

Main source of axion relics: misalignment. Field not at the minimum after PQ symmetry

breaking. Further evolution (zero mode approximation, H = Hubble constant):

ä(t) + 3H(t)ȧ(t) +m2
a(T )a(t) = 0 ; m2

a = χ(T )/f 2
a

T ≫ ΛQCD 2nd term dominates =⇒ a(t) ∼ const

ma & H oscillations start =⇒ adiabatic invariant

Na = maA
2R3 ∼ number of axions (∼ cold DM)

A = oscill. amplitude; R = Universe radius
t

UNIVERSE

m(T)

H

A larger χ(T ) implies larger ma and moves the oscillation time earlier (higher T ,

smaller Universe radius R)

Requiring a fixed Na (Ωaxion ∼ ΩDM )

χ(T ) grows =⇒ oscill. time anticipated =⇒ less axions =⇒ require larger fa to maintain Na

On the other hand, larger fa means smaller ma today



Numerical Results from Lattice QCD

Direct simulations at θ 6= 0 face a sign problem again, however lattice QCD represents

the ideal tool to sample the topological charge distribution P (Q) at θ = 0.

main technical and numerical issues

• topological charge renormalizes, naive lattice discretizations are non-integer valued.

Various methods devised leading to consistent results

– field theoretic compute renormalization constants and subtract

– fermionic definitions use the index theorem to deduce Q from fermionic zero modes

– smoothing methods use various techniques to smooth gauge fields and recover an integer

valuedQ (cooling, Wilson flow, smearing ...all substantially equivalent (see e.g. Panagopoulos,

Vicari 0803.1593, Bonati, D’Elia 1401.2441, Alexandrou, Athenodorou, Jansen, 1509.04259)

• Freezing of topological modes in the continuum:

configurations with different Q related by discontinuous field transformations;

tunneling probability by standard local algorithms decreases exponentially as the

continuum limit is approached



Some recent numerical results

from C. Bonati, M.D., M. Mariti, G. Martinelli, M. Mesiti, F. Negro, F. Sanfilippo and G. Villadoro, arXiv:1512.06746

We have performed simulations of Nf = 2 + 1 QCD, with stout improved staggered fermions, a

tree-level Symanzik gauge action, at the physical point (physical quark masses)

0 0.005 0.01 0.015 0.02

a2 [fm2]

50

100

150

200

χ1/
4  [

M
eV

]

ChPT

quenched At zero temperature, we compare with

predictions from chiral perturbation theory

The approach to the continuum limit is

quite slow and lattice spacing well below

0.1 fm are needed

continuum limit compatible with ChPT

(73(9)MeV against 77.8(4)MeV)
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As we approach the continuum limit, standard LQCD algorithms (Rational Hybrid

Monte Carlo in this case) face strong ergodicity problems: tunneling between different

topological sectors are strongly suppressed and a correct sampling ofP (Q) becomes

a hard theoretical task
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That sets a limit for high T simulations as well. T = 1/(Nta) can be increased by

diminishing either a or Nt :

a∼ 0.05 fm and Nt = 6 =⇒ T ∼ 6− 700 MeV∼ 4 Tc



Finite T results provide some surprises
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Our results translated in predictions for

fa, hence ma at our times, depending

on the required amount of axion dark

matter. fa factor 10 larger (ma smaller)

wrt perturbative DIGA predictions

order of magnitude prediction for present

ma ∼ 10 µeV

Other recent lattice studies report results more in line with DIGA at higher T

P. Petreczky, H.P. Schadler, S. Sharma, arXiv:1606.0315; Sz. Borsanyi et al, arXiv:1606.07494)

and lead to higher values of ma ∼ 100 µeV

the difference is fundamental (detectable or not detectable) for experiments trying to

detect axions

New algorithms are needed! Capable of correctly sampling topological modes

in the continuum limit

(Resampling methods? Metadynamics? ... work in progress)



CONCLUSIONS

• Numerical simulations of strong interactions are a computational challenge since

a few decades Progress is obtained both by developments in HPC architectures

and by advancements in numerical methods

• We have reached a mature era, where precise QCD predictions can be made for

several aspects of strong interaction physics (hadron masses, flavor physics, ... )

• Some hot issues however still need progress.

Not just algorithmic improvements, but breakthroughs, either in algorithms or in

the computational approach


