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Abstract

We first review the method to calculate the spectral functions in the functional renomalization group (FRG) ap-
proach, which has been recently developed. We also provide the numerical stability conditions given by the present
authors for a generic nonlinear evolution equation that are necessary for obtaining the accurate effective potential from
the flow equation in the FRG. As an interesting example, we report the recent calculation of the spectral functions of
the mesonic and particle-hole excitations using a chiral effective model of Quantum Chromodynamics (QCD); we
extract the dispersion relations from them and try to reveal the nature of the soft modes at the QCD critical point (CP)
where the phase transition is second order. Our result shows that a clear development and the softening of the phonon
mode in the space-like region as the system approaches the CP; furthermore it turns out that the sigma mesonic mode
once in the time-like region gets to merge with the phonon mode in the close vicinity of the CP, implying a novel
possibility about the nature of the soft mode of the QCD CP.

1 Introduction

The functional renormalization group (FRG) [1–4] is a non-perturbative method of the field theory which enables us
to investigate strongly correlated systems with incorporation of fluctuation effects beyond the mean-field theory. The
FRG has been applied to a wide range of fields [5–14]. The FRG has proved powerful to study the equilibrium state
of many-body systems or the nonperturbative vacuum of a quantum field theory. Elucidating dynamical properties
of a physical system including possible emergence of collective excitations is important for fully understanding the
physical properties of the system. It is to be noted that a phase change of the system can manifest itself as those in the
properties of elementary excitations or more generally in the spectral functions in specific channels. Thus it is notable
that the calculation of spectral functions has become possible in the framework of FRG [15–18], and hence one can
extract the characteristics of system such as the possible development of collective modes and dispersion relations of
modes [18].

Usually, the FRG applied to finite-temperature (T) systems is formulated in the imaginary-time formalism. A
real-time analysis is, however, needed for extracting the spectral functions for excitation modes, which are essentially
given as the imaginary part of the retarded Green’s function, and an analytic continuation of two-point functions from
imaginary Matsubara frequencies to real frequencies is made to have the real-time two-point Green’s functions. It
is, however, not a simple task and can be even quite intricate to perform an analytic continuation to get the spectral
function in the nonperturbative method [19–22]. In the recent development [15–18], an unambiguous way of the
analytic continuation has been proposed in the imaginary-time formalism, which has turned out to lead to reasonable
results for the spectral functions in the O(4) model in vacuum [15], in the quark-meson model at finiteT and chemical
potentialµ [16,17].

The method has been adopted with some adaptation to elucidate the nature of the soft modes of the critical point
of Quantum Chromodynamics (QCD) at finiteT andµ [18]. The QCD phase diagram, i.e. the phase diagram for the
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system of quarks and gluons, is expected to have a rich structure and its clarification is one of the hot topics in the
high-energy and nuclear physics [23]. The QCD Lagrangian reads

LQCD = ψ̄(iγµD
µ − m)ψ − 1

4
Fa
µνF

µνa

whereDµ = ∂µ− ig taAa
µ is the covariant derivative withAa

µ being the gluon field with a colora (a = 1,2, · · · ,N2
c −1). γµ

denote Dirac matrices. Herem= diag (mu, md, . . . ) denotes the current quark mass matrix. One of the key concepts of
QCD is the chiral symmetry, which is the invariance under the following independent two transformations (collectively
called chiral transformation):

ψL → exp
(
iθi

LT i/2
)
ψL, ψR→ exp

(
iθi

RT i/2
)
ψR, (1)

where theψL andψR are left- and right-handed quark fields, respectively, defined asψL = (1 − γ5)ψ/2 andψR =

(1+ γ5)ψ/2 for quark fieldψ with γ5 = iγ0γ1γ2γ3. The matrixγ5 has the eigenvalues±1, which are called the chirality
(handedness);ψL(R) has the chirality−1 (+1), and hence the name of chiral symmetry. If we consider theNf flavor
case where the quark fieldψ = ψ f j hasNf components as well as the color degrees of freedom (j = 1,2, . . . ,Nc),
{T i} (i = 0, · · · ,Nf (Nf − 1)) are the generators for U(Nf ) transformation for flavor index.θi

L andθi
R are real global

parameters. Thus the transformations defined in (1) form a group U(Nf )L⊗U(Nf )R where the subscriptL (R) is attached
to discriminate the vector space to be transformed. The chiral group includes a subgroup UV(Nf ) ≃ UV(1)⊗ SUV(Nf )
which is realized when the constraint on the group parametersθi

L = θ
i
R ≡ θi (i = 0, 1, 2, . . . , Nf (Nf −1)) is imposed: In

fact, this transformation is simply represented in terms of the quark fieldψ asψ → exp
(
iθiT i/2

)
ψ.. We can also define

the transformation with another constraintθi
L = −θi

R, which is called UA(Nf ) ≃ UA(1)⊗ SUA(Nf ) transformation but
does not form any group. If the current quark masses are ignored, the chiral symmetry becomes an exact symmetry of
the (classical) QCD Lagrangian because the vector current is written in terms of left- and right-handed fields separately;
ψ̄γµψ = ψ̄LγµψL,+ ψ̄RγµψR, in contrast to the Dirac mass term or scalar densityψ̄ψ = ψ̄RψL + ψ̄LψR. One also readily
sees that chiral symmetry is explicitly broken due to the current quark mass termψ̄mψ, although the neglect of this term
is a good approximation in the low-energy regime for the lightest three flavors. An important remark is in order here:
It turns out that the UA(1) symmetry is broken due to a quantum effect of QCD called axial or UA(1) anomaly [24].
Thus QCD in the quantum level has a UV(1)⊗ SUV(Nf ) ⊗ SUV(Nf ) symmetry for the masslesNf flavors.

As Nambu first advocated [25, 26], the (approximate) chiral symmetry is spontaneously broken in the real world,
and the pions are the massless bosons associated with the symmetry breaking (now called the Nambu-Goldstone
bosons) with a small massmπ acquired due to the small explicit breaking of the chiral symmetry for the two fla-
vors. Indeed some low-energy theorem (Gell-Mann-Oakes-Renner relation [27]) tells us that the following formula
holds;

f 2
π m2

π = −
1
2

(mu +md)⟨ψ̄ψ⟩,

wherefπ ≃ 93 MeV is the pion decay constant with⟨ψ̄ψ⟩ ≡ σ0 denoting the vacuum expectation value of the (isoscalar)
scalar densitȳψψ = ūu+ d̄d. The existence of the finite scalar condensate (also called the chiral condensate) implies
that chiral symmetry is spontaneously broken and the chiral condensateσ0 can be regarded as an order parameter of
the chiral transition of the QCD vacuum.

Apart from the chiral symmetry breaking, elementary excitations on top of the nonperturbative QCD vacuum are
all color-singlet and called hadrons, which are the manifestation of the color confinement; colored quarks and gluons
do not exist as asymptotic states. Thus at low-temperature and low-density regime, we have the confined phase with the
chiral symmetry being spontaneously broken, which we call the hadronic phase. As in the usual many-body systems
with a spontaneous symmetry breaking, the chiral symmetry is to be restored at high temperature and/or density where
colors may be also liberated: Such a state of the matter is called a quark–gluon plasma (QGP).

Effective chiral models, i.e. models focusing on the chiral symmetry, has been utilized for an analysis of phase
transitions in QCD. One of such models is the celebrated Nambu–Jona-Lasinio (NJL) model [26, 28]. In the case of
Nf = 2, the model Lagrangian reads

L = ψ (i /∂ − m)ψ + g
[
(ψψ)2 + (ψiγ5τ

aψ)2
]
, (2)
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whereg is a coupling constant,τa is the Pauli matrix andm is a mass matrix. This model takes into account the axial
anomaly and has UV(1)⊗ SUV(2)⊗ SUA(2) chiral symmetry except for the mass term.

A remarkable features in the expected phase structure is the possible existence of the first-order phase boundary
between the hadronic phase and the QGP phase at large baryon chemical potentialµ. In particular, the phase transition
becomes second order at the end point of the first-order phase boundary, which is referred to the QCD CP.

In general, a system near the CP shows large fluctuations of and correlations between various quantities and thus
a method beyond the mean-field theory is desirable for describing the physical properties near the CP. The FRG is
expected to be a method to reveal the nature of the system more accurately than the mean-field theory and has been
found to be useful in the description of chiral phase transition in QCD via effective chiral models [8–14]. Moreover,
there exist specific collective modes which are coupled to the fluctuations of the order parameter and become gapless
and a long-life at the CP. Such a mode is called thesoft modeof the phase transition. As for the QCD CP, the nature
of the soft modes is nontrivial due to the current quark mass [29, 30]. In the case of finite current quark mass, the
universality class of the CP belongs to that ofZ2 CP and the soft mode is considered to be the particle-hole mode
corresponding to the density (and energy) fluctuations. It is noteworthy that the scalar-vector coupling [31] caused
by the finite quark mass at nonvanishingµ leads to a singular behavior of not only the chiral susceptibility but also
susceptibilities of the hydrodynamical modes such as the density fluctuation or the quark-number susceptibility at the
CP, as was shown in some model calculations [29, 30]. In Ref. [18], FRG has been applied to calculate the spectral
functions of the sigma meson and pion channels, and thus the nature of the soft mode at the QCD CP was clarified.

In this lecture note, which is essentially a rearrangement of Ref. [18] with a focus on the technical part, we show
the way to calculate the meson spectral functions in the two-flavor quark-meson model with FRG and its application
to the analysis of the soft mode at the QCD CP. Our results confirm the softening of the particle-hole mode in theσ
channel near the QCD CP, but not in the pion channel. In addition, we find that the low-momentum dispersion relation
of sigma-mesonic mode penetrates into space-like region and the mode merges into the bump of the particle-hole mode.

This note is organized as follows. In Sec. 2, we recapitulate the method developed in [16, 17] and describe details
for numerical calculation. The results are shown in Sec. 3. The phase diagram, the critical region and the precise
location of the CP are presented in Sec. 3.1. In Sec. 3.3 the results of the spectral functions are shown, and the soft
mode at the QCD CP is discussed. Sec. 4 is devoted to summary and outlook.

2 Method

In this section, we summarize the method to calculate the spectral functions in the FRG approach following Ref.
[16, 17], and present a numerical stability condition [18] for solving the flow equation as an evolution equation. The
method is applied to the two-flavor quark-meson model.

2.1 Procedure to derive spectral functions in meson channels

The FRG is based on the philosophy of the Wilsonian renormalization group [1–4] and realizes the coarse graining by
introducing a regulator functionRk, which has a role to suppress modes with lower momentum than the scalek for the
respective field. In this method, the effective average action (EAA)Γk is introduced such that it becomes bare action
SΛ at a large UV scalek = Λ and becomes the effective action atk→ 0 with an appropriate choice of regulators. The
flow equation for EAA, the Wetterich equation, can be derived as a functional differential equation [1]:

∂kΓk =
1
2

STr

 ∂kRk

Γ
(2)
k + Rk

 , (3)

whereΓ(n)
k is then-th functional derivative ofΓk with respect to fields. This equation has a one-loop structure and can

be represented diagrammatically as shown in Fig. 1 (a). In principle, one can get the effective actionΓk=0 by solving
Eq. (3) with the initial conditionΓΛ = SΛ.

The spectral functionρ(ω, p) for some field is derived from the imaginary part of the two-point retarded Green’s
functionGR(ω, p) for the field in momentum space:

ρ(ω, p) = −1
π

ImGR(ω, p). (4)
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Let us denote fields in a system as{φi}. Suppose that the average of{φi}, denoted by{φi0}, is obtained. Then, the inverse
of the second derivative of the effective action at{φi = φi0} leads to some two-point Green’s function. In the imaginary-
time formalism, the inverse of the second derivative of the effective action at{φi = φi0} is the Matsubara Green’s
function and the analytic continuation from imaginary to real frequency in the momentum space gives the retarded
Green’s function if it retains the analyticity of the Green’s function in the upper half-plane of complex frequency [32].
Therefore, one can get spectral functions by calculating second derivatives of EAA atk = 0 using Eq. (3). The flow
equation for the second derivative of EAA is derived from Eq. (3) as

∂kΓ
(2)
k,i j [φ0] = STr

[[
Γ

(2)
k + Rk

]−1

ab
Γ

(3)
k,bci

[
Γ

(2)
k + Rk

]−1

cd
Γ

(3)
k,de j

[
Γ

(2)
k + Rk

]−1

e f
∂kR

f a
k

]∣∣∣∣∣
φ=φ0

− 1
2

STr
[[
Γ

(2)
k + Rk

]−1

ab
Γ

(4)
k,bci j

[
Γ

(2)
k + Rk

]−1

cd
∂kR

da
k

]∣∣∣∣∣
φ=φ0

, (5)

whereΓ(n)
k,i1···in represents thenth derivative ofΓk with respect toφi1, · · · , φin. The diagrammatic expression of this

equation is shown in Fig. 1 (b). The RHS of Eq. (5) containsΓ(2)
k , Γ(3)

k andΓ(4)
k . In general the flow equation consists

of an infinite hierarchy of differential equations such that the flow equation forΓ(n)
k containsΓ(n+1)

k andΓ(n+2)
k . Some

simplification of this hierarchy is needed to solve Eq. (5). One of the simplifications is evaluating the RHS of Eq. (5)
with a truncated EAA and integrating the equation tok = 0. Adopting this simplification, we present the calculation of
the meson spectral functions in the quark-meson model below.

We employ the two-flavor quark-meson model as the low-energy effective model of QCD. This is a chiral effective
model consisting of the quark field and auxiliary fieldsσ and π⃗ corresponding toqq andqi⃗τγ5q, respectively. We
analyze in finite temperature and chemical potential. The bare action for this model in imaginary-time formalism is as
follows:

SΛ
[
ψ, ψ, ϕ

]
=

∫ 1
T

0
dτ

∫
d3x⃗

{
ψ

(
/∂ + gs(σ + iτ⃗ · π⃗γ5) − µγ0

)
ψ +

1
2

(∂µϕ)2 + V(ϕ2) − cσ

}
, (6)

whereϕ = (σ, π⃗). The quark fieldψ has the indices of four-component spinor, colorNc = 3 and flavorNf = 2. The
last termcσ represents the effect of the current quark mass, which explicitly breaks chiral symmetry.V(ϕ2) is the
potential term of the mesons. We remark that the essential part of the meson-quark model (6) may be obtained by a
Hubbard-Stratonovich transformation of the NJL model (2).

Now we take the local potential approximation (LPA) for the meson flow part as our truncation scheme. This
truncation corresponds to considering only the lowest-order of derivative expansion for the meson flow part. Our
truncated EAA is as follows [11]:

Γk

[
ψ, ψ, ϕ

]
=

∫ 1
T

0
dτ

∫
d3x

{
ψ

(
/∂ + gs(σ + iτ⃗ · π⃗γ5) − µγ0

)
ψ +

1
2

(∂µϕ)2 + Uk(ϕ
2) − cσ

}
, (7)

whereUk(ϕ2) satisfiesUΛ(ϕ2) = V(ϕ2). In this truncation, we also neglect the flow ofgs and the wave function
renormalization. Therefore, only the meson effective potentialUk has ak-dependence. The nonperturbative effects are
to be incorporated through Eq. (5) with the truncated EAA used as the initial condition.

The procedure to calculate two-point functions is as follows. We first calculate the effective potentialUk(ϕ2) using
Eq. (3). Then the chiral condensateσ0, i.e., the average ofσ, is obtained asσ satisfying the quantum equation of

Figure 1: Diagrammatic representations of (a) Eq. (3) and (b) Eq. (5).
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motion (EOM)δΓk=0/δσ = 0. In our case, this condition corresponds to obtainingσ that minimizesUk(σ2) − cσ,
under the assumptions that the condensate is homogeneous and⟨π⃗⟩ = 0⃗.

Next, we derive the flow equations for two-point Green’s functions from Eq. (5). We defineGk,σ(P) andGk,σ(P) as

δ2Γk

δσ(P)δσ(Q)

∣∣∣∣∣∣
ψ=0,ψ=0,π⃗=0⃗,σ=σ0

= (2π)4δ(4)(P+ Q)G −1
k,σ(P), (8)

δ2Γk

δπa(P)δπa(Q)

∣∣∣∣∣∣
ψ=0,ψ=0,π⃗=0⃗,σ=σ0

= (2π)4δ(4)(P+ Q)G −1
k,π (P), (9)

whereσ(P) andπa(P) are the momentum space representations of the sigma and pion fields, respectively, andP =
(iωn, p⃗) with ωn being the bosonic Matsubara frequency. These quantities become Matsubara Green’s functions at
k = 0. By inserting the average valuesσ = σ0, π⃗ = 0⃗, andψ = ψ = 0 and choosingφi = σ(P) andφ j = σ(Q)
(φi = πa(P) andφ j = πa(Q)) in Eq. (5), the flow equation forGk,σ(P) (Gk,π(P)) can be obtained. In our approximation,
theΓ(2)

k , Γ(3)
k andΓ(4)

k in the RHS of Eq. (5) are evaluated using Eq. (7).
We defineGR

k,σ(P) (GR
k,π(P)) as the function which is obtained by analytic continuation forGk,σ(P) (Gk,π(P)) from

imaginary Matsubara frequencies to real frequencies retaining the analyticity in the upper half-plane of complex fre-
quency. The solutions ofGR

k,σ(P) andGR
k,π(P) atk = 0 give the retarded Green’s functions in the sigma and pion channel,

respectively. Therefore, if analytic continuation of the flow equations forGk,σ(P) (Gk,π(P)) is performed and the flow
equation forGR

k,σ(P) (GR
k,π(P)) is obtained, one can calculate the retarded Green’s function using the flow equation. In

our case, such an analytic continuation is successfully carried as follows: As mentioned above, the analyticity of the
Green’s function in the upper half-plane ofω must be retained. In the present case, the flow equation itself should be
analytic in the upper half-plane after the analytic continuation. One can retain the analyticity in the upper half-plane
easily by taking into account the following points.

1. By choosingωn-independent regulators, one can avoid possible extra poles in theω plane in the flow equation
otherwise arising fromωn dependence of the regulators.

2. The next point is about the analytic continuation of thermal distribution functionsnB,F(E + iωn) obtained for a
discrete (multiple of 2πT) frequencyωn, where the subscriptB, F stands for a boson or fermion, respectively,
andE is ωn independent. Such factors appear in the flow equation after the Matsubara summation. Because of
the periodicity of the exponential function,nB,F(E+iωn) is equal tonB,F(E). However ifnB,F(E+ω) is substituted
for nB,F(E + iωn), such a factor breaks the analyticity of the flow equation in the upper half-plane. Therefore
nB,F(E + iωn) should be replaced bynB,F(E) before the analytic continuation.

By taking into account these points, the substitutionω + iϵ for iωn with ϵ being a positive infinitesimal gives the flow
equations forGR

k,σ(P) andGR
k,π(P).

Finally, the spectral functions in the meson channels are given in terms of the thus-obtained retarded Green’s
functionsGR

k→0,σ(P) andGR
k→0,π(P) using Eq. (4).

2.2 Flow equations

In the present work, we adopt the 3D Litim’s optimized regulators for bosons and fermions [33] asωn-independent
regulators:

RB
k (Q) = (k2 − q⃗2)θ(k2 − q⃗2), (10)

RF
k (Q) = i /⃗q


√

k2

q⃗2
− 1

 θ(k2 − q⃗2). (11)

Then the insertion of Eq. (7) into Eq. (3) leads to the following flow equation forUk:

∂tUk =
k5

12π2

[
−2Nf Nc

[
1

Eψ
tanh

Eψ + µ

2T
+

1
Eψ

tanh
Eψ − µ

2T

]
+

1
Eσ

coth
Eσ

2T
+

3
Eπ

coth
Eπ

2T

]
, (12)
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wheret = ln(k/Λ), Ea =
√

k2 +m2
a (a = ψ,σ, π), and

m2
ψ = g2

sσ
2, m2

σ = ∂
2
σUk, m2

π = ∂σUk/σ. (13)

According to the procedure presented in the previous subsection, the flow equations forΓ
(2)
k,σ(P) andΓ(2)

k,π(P) become:

∂kΓ
(2)
k,σ(P) =Jk,σσ(P)(Γ(0,3)

k,σσσ)2 − 1
2

I (2)
k,σΓ

(0,4)
k,σσσσ + 3Jk,ππ(P)(Γ(0,3)

k,σππ)
2 − 3

2
I (2)
k,πΓ

(0,4)
k,σσππ − 2NcNf J(σ)

k,ψ̄ψ
(P), (14)

∂kΓ
(2)
k,π(P) =Jk,σπ(P)(Γ(0,3)

k,σππ)
2 + Jk,πσ(P)(Γ(0,3)

k,σππ)
2 − 1

2
I (2)
k,σΓ

(0,4)
k,σσππ −

5
2

I (2)
k,πΓ

(0,4)
k,πππ̃π̃ − 2NcNf J(π)

k,ψψ
(P), (15)

respectively, whereπ, π̃ ∈ {π1, π2, π3} andπ , π̃. The loop-functionsJk,αβ(P), I (2)
k,α, and J(α)

k,ψψ
(P) (α, β = σ, π) are

defined as

Jk,αβ(P) = T
∑
qn

∫
d3q⃗

(2π)3
∂kR

B
k (q)GB

k,α(P)2GB
k,β(Q− P), (16)

I (2)
k,α = T

∑
qn

∫
d3q⃗

(2π)3
∂kR

B
k (q)GB

k,α(Q)2, (17)

J(α)

k,ψψ
(P) = T

∑
qn

∫
d3q⃗

(2π)3
tr

[
Γ

(2,1)

ψψα
GF

k,ψψ
(Q)∂kR

F
k (Q)GF

k,ψψ
(Q)Γ(2,1)

ψψα
GF

k,ψψ
(Q− P)

]
, (18)

whereQ = (iqn, q⃗) and

GB
k,α(Q) =

[
Q2 + m2

α

∣∣∣
σ=σ0
+ RB

k (Q)
]−1

, (19)

GF
k,ψψ

(Q) =
[
/Q− µγ0 + mψ

∣∣∣
σ=σ0
+ RF

k (Q)
]−1

. (20)

The three- and four-point verticesΓ(2,1)

ψψϕi
, Γ(0,3)

k,ϕiϕ jϕl
, andΓ(0,4)

k,ϕiϕ jϕlϕm
are defined as

δ

δϕi(P1)

→
δ

δψ(P2)
Γk

←
δ

δψ(P3)
= (2π)4δ(4)(P1 + P2 + P3)Γ(2,1)

ψψϕi
, (21)

δ3Γk

δϕi(P1)δϕ j(P2)δϕl(P3)
= (2π)4δ(4)(P1 + P2 + P3)Γ(0,3)

k,ϕiϕ jϕl
, (22)

δ4Γk

δϕi(P1)δϕ j(P2)δϕl(P3)δϕm(P4)
= (2π)4δ(4)(P1 + P2 + P3 + P4)Γ(0,4)

k,ϕiϕ jϕlϕm
, (23)

some of which are expressed in terms ofUk:

Γ
(2,1)

ψψϕi
=

gs (for i = 0)

gsiγ5τi (for i = 1,2,3)
, (24)

Γ
(0,3)
k,ϕiϕ jϕl

= 4U(2)
k (δi jϕm + δimϕ j + δ jmϕi) + 8U(3)

k ϕiϕ jϕm, (25)

Γ
(0,4)
k,ϕiϕ jϕlϕm

= 4U(3)
k (δi jδmn+ δinδ jm + δ jnδim)

+ 8U(3)
k (δi jϕlϕm + δ jlϕiϕm + δlmϕiϕ j + δ jmϕiϕl + δimϕ jϕl + δilϕ jϕm)

+ 16U(4)
k ϕiϕ jϕlϕm. (26)

Analytic continuation in Eq. (14) and Eq. (15) is carried out after the Matsubara summation in Eqs. (16)–(18). The
explicit forms of Eq. (16) - (18) after Matsubara summation is shown in [18].
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To solve these flow equations, we employ the following initial conditions at the UV scalek = Λ:

UΛ(ϕ2) = V(ϕ2) =
1
2

m2
Λϕ

2 +
1
4
λΛ(ϕ2)2, (27)

Γ
(2),R
Λ,σ (ω, p⃗) = −ω2 + p⃗2 + ∂2

σUΛ(σ2
0), (28)

Γ
(2),R
Λ,π (ω, p⃗) = −ω2 + p⃗2 + ∂σUΛ(σ2

0)/σ0. (29)

2.3 Numerical stability conditions

We employ the grid method to solve Eq. (12) numerically. This method reveals the global structure ofUk(σ2) on
discretizedσ. We employ the fourth-order Runge-Kutta method to solve Eq. (12).

In general when one solves a partial differential equation numerically, the discretization of derivatives may cause
numerical errors. Thus, one needs to impose numerical stability conditions to avoid the enhancement of the error due
to accumulation. The derivation of such conditions is concretely demonstrated in the case of linear partial differential
equations and briefly mentioned in the case of nonlinear partial differential equations in [34].

A numerical stability conditions for numerical calculation was given for the following partial differential equation
in [18]:

∂u(t, σ)
∂t

= f

(
t, σ,u(t, σ),

∂u(t, σ)
∂σ

,
∂2u(t, σ)
∂σ2

)
. (30)

where f is an arbitrary real function. This equation is a generalized equation of Eq. (12). The equation to describe
the evolution of numerical deviation foru(t, σ) can be derived from the descritized form of Eq. (30) fort andσ, from
which one can derive the conditions for suppressing the amplification of the numerical deviation, i.e., the numerical
stability conditions. If we choose forward difference fort-derivative and central three-point difference forσ-derivative
as the descritization the stability conditions for Eq. (30) are as follows [18]:

|∆t| ≤ 2|G|
F2

,

|∆t| ≤ ∆σ
2

2|G| , (31)

where

F ≡ ∂ f
∂u′

, G ≡ ∂ f
∂u′′

(
u′ =

∂u
∂σ

,u′′ =
∂2u
∂σ2

)
.

In the case of Eq. (12),t andu(t, σ) are identified with ln(k/Λ) andUk(σ2), respectively, andF andG are derived to
be: 

F = − k5

8π2σE3
σ

coth
Eπ

2T
+

Eπ

2T
1

sinh2 Eπ

2T

 , (32)

G = − k5

24π2E3
σ

coth Eσ

2T +
Eσ

2T
1

sinh2 Eσ
2T(

coth Eπ

2T +
Eπ

2T
1

sinh2 Eπ
2T

)2
. (33)

G is negative definite, and∆t is also negative because the direction of flow is fromk = Λ to k = 0.
We fix the intervals of discretization ofσ and t in Eq. (12) according to these conditions. Because the above

condition of Eq. (31) is too strict whenσ is close to zero, we neglect the condition aroundσ = 0 in practice.

2.4 Other numerical details

As stated before, the flow equation (12) should be integrated down tok = 0 from k = Λ to get the effective actionΓk=0

in principle. However, due to the conditions for stable calculation mentioned above, solving the flow equation to small
k is quite time-consuming for some regions of the (T, µ) plane, such as the low-temperature region of the hadronic
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phase. In such a region, the curvature ofUk, i.e.,m2
σ, can take a negative value, which leads to smallEσ for someσ.

This gives largeF and|G| (Eqs.(32) and (33)) ask decreases and the condition (31) becomes difficult to satisfy at small
k. Thus, some infrared scalek = kIR is introduced in practice, at which the numerical procedure is stopped. Of course,
kIR should be as small as possible so that sufficiently low-momentum fluctuations are taken into account to describe the
system around the CP where vanishingly low-momentum excitations exist. Thus we choose a much lower value ofkIR

than the 40 MeV adopted in Ref. [17], and setkIR = 1 MeV as being small enough to incorporate the low-momentum
fluctuations. Therefore our calculation will be reliable in the vicinity of the CP, except for the small surrounding region
where excitation modes with momentum scales lower than 1 MeV are strongly developed. Althoughϵ, which appears
after the analytic continuation, is defined as a positive infinitesimal, we set it to 1 MeV in the present calculation, which
should be small enough for present purposes.

3D momentum integrals remain after the Matsubara summation in Eq. (14) and Eq. (15). These integrals can be
fully calculated analytically for zero external momentum. Even for a finite external momentum, they can be nicely
reduced to 1D integrals, which are evaluated numerically. The numerical integrations involve a tricky point, and one
has to take care of the poles of each term in the integrands. As an example, we show the explicit form ofJk,αβ(P) after
Matsubara summation:

Jk,αβ(P) =
∫

D1

d3q

(2π)3

k
2

(1+ nB(Eα))
E2
α + E2

β − (2Eα + ip0)2

E3
α(E2

β − (Eα + ip0)2)2
+ nB(Eα)

E2
α + E2

β − (2Eα − ip0)2

E3
α(E2

β − (Eα − ip0)2)2

+
2(1+ nB(Eβ))

Eβ(E2
α − (Eβ − ip0)2)2

+
2nB(Eβ)

Eβ(E2
α − (Eβ + ip0)2)2

−
n′B(Eα)

E2
α(E2

β − (Eα − ip0)2)
−

n′B(Eα)

E2
α(E2

β − (Eα + ip0)2)


+

∫
D2

d3q

(2π)3

k
2

(1+ nB(Eα))
E2
α + Ẽ2

β − (2Eα + ip0)2

E3
α(Ẽ2

β − (Eα + ip0)2)2
+ nB(Eα)

E2
α + Ẽ2

β − (2Eα − ip0)2

E3
α(Ẽ2

β − (Eα − ip0)2)2

+
2(1+ nB(Ẽβ))

Ẽβ(E2
α − (Ẽβ − ip0)2)2

+
2nB(Ẽβ)

Ẽβ(E2
α − (Ẽβ + ip0)2)2

−
n′B(Eα)

E2
α(Ẽ2

β − (Eα − ip0)2)
−

n′B(Eα)

E2
α(Ẽ2

β − (Eα + ip0)2)

 , (34)

whereEα =
√

k2 +m2
α, Ẽα =

√
q⃗2 +m2

α, n′B,F(E) = dnB,F(E)/dE,

D1 =
{
q⃗ ∈ R3

∣∣∣ |q⃗− p⃗| < k and|q⃗| < k
}
, D2 =

{
q⃗ ∈ R3

∣∣∣ |q⃗− p⃗| < k and|q⃗| > k
}
,

andip0 = ω + iϵ. The first and the third terms of the integrand of the second integral in Eq. (34) have the same pole
Ẽα = Eα+ ip0. If such terms are integrated separately, a large cancellation can occur, which then leads to big numerical
errors. Therefore, we first combine such terms analytically in the integrand before numerical integrations.

2.5 Parameter setting

The truncated EAA Eq. (7) and the initial condition Eq. (27) have some parameters which are fixed so as to reproduce
the observables in vacuum: We use the same values of the parameters as those in [17] and list them in Table 1.

The chiral condensateσ0 is determined asσ which minimizeUk(σ2) − cσ and the constituent quark massMψ and
the sigma and pion screening massesMσ andMπ are calculated using Eq. (13):

Ma =
(
m2

a

∣∣∣
σ=σ0,k=kIR

) 1
2 , (a = ψ,σ, π). (35)

Our parameters reproduceσ0 = 93MeV, Mq = 286MeV,Mπ = 137MeV andMσ = 496MeV in vacuum.

3 Results

3.1 Phase diagram

We show the phase diagram on temperature (T) and chemical potential (µ) plane in Fig. 2, where a contour map of
the chiral condensate is also given. One sees that chiral restoration occurs as the temperature is raised, and the phase
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Λ mΛ/Λ λΛ c/Λ3 gs

1000MeV 0.794 2.00 0.00175 3.2

Table 1: Used values ofΛ and the parameters in the initial conditionΓk=Λ used in the calculation.

Figure 2: (a) Contour map of the chiral condensateσ0. (b) Enlargement of the area surrounded by dotted lines in (a).
The filled circle (red) is the CP and the solid (black) line is the first-order phase boundary. (Taken from [18])

transition is not a genuine one but a crossover, except for the low-temperature and large chemical potential region,
where the phase transition is of first order. This feature is qualitatively in accordance with the results given in the
literature, although the location of the CP here is in a somewhat smaller temperature region than that given in Ref. [17].
The detailed procedure for locating the CP is described below.

At the QCD CP, the chiral susceptibility diverges. Therefore, we locate the CP by searching for the point where
the sigma screening massMσ, the square of which is the inverse of the chiral susceptibility, becomes the smallest:
We seek the minimum position ofMσ using the data points whereMσ is greater than 1 MeV, because our choice of
kIR = 1 MeV enables us to take into account fluctuations whose momentum scales are greater thankIR so as to make the
result ofMσ reliable whenMσ is larger than 1 MeV. We also identify the first-order phase transition by a discontinuity
of the chiral condensate. The results atT = 5.0 MeV, 5.1 MeV, and 5.2 MeV are shown in Fig. 3 as functions of
µ − µt(T), whereµt(T) is the transition chemical potential for each temperature determined by the minimum point of
the sigma curvature mass and is found to beµt(5.0 MeV) = 286.517 02 MeV,µt(5.1 MeV) = 286.686 00 MeV, and
µt(5.2 MeV) = 286.853 20 MeV.

We find that the sigma screening mass becomes smallest betweenT = 5.0 MeV andT = 5.2 MeV and between
µ = µt(5.0 MeV) andµ = µt(5.2 MeV). Therefore, the critical temperatureTc and the critical chemical potentialµc

are estimated asTc = 5.1 ± 0.1 MeV andµc = 286.6 ± 0.2 MeV. The position of the CP is quite different from the
(T, µ) = (10 MeV,292.97 MeV) given in Ref. [17]. Such a difference may be attributed to the different choice ofkIR.
In the following discussion, we regardTc andµc as 5.1 MeV and 286.686 MeV, respectively. As seen in the behavior
of the chiral condensate shown in the right panel of Fig. 3, the phase transition along the chemical potential is of first
order whenT = 5.0 MeV and a crossover whenT = 5.2 MeV.

3.2 Examples of the results of the spectral function in theσ channel

We first show examples of the results of the spectral function in theσ channelρσ(ω, p). Figure 4 is the result of
ρσ(ω, p) at (T, µ) = (5.1MeV,286.3MeV). There is a sharp peak atω = 250MeV and a relatively small bump in the
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Figure 3: The sigma curvature massesMσ and the chiral condensatesσ0 at T = 5.0 MeV, 5.1 MeV, and 5.2 MeV.
(Taken from [18])

Figure 4: An example of results ofρσ(ω, p): (a) the result when|p⃗| = 50MeV at (T, µ) = (5.1MeV,286.3MeV) and (b)
the contour map ofρσ(ω, p) at the same temperature and chemical potential. In (a), the positions of the thresholds for
2σ and 2π decay channel determined by Eq. (36) are denoted bys⃝, p⃝.

space-like regionω < p in Fig. 4(a): They correspond to the sigma meson with a modified mass at finite temperature
and the phonon mode composed of particle-hole excitations, respectively, which is in accord with the result in RPA
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Figure 5: Contour maps ofρσ atT = Tc andµ = 286.3MeV, 286.575MeV and 286.59MeV. (Taken from [18])

in [29]. In Fig. 4(b), the dispersion relations of the sigma meson mode and particle-hole mode can be seen clearly.
The spectral function also tells us the decay and absorption processes of the particle excitations from the width

of the corresponding peaks or bumps. In our energy scale, the following processes contribute to the spectral function
ρσ(ω, p⃗):

σ∗ → σσ, σ∗ → ππ, σ∗ → ψψ, σ∗σ→ σ, σ∗π→ π, σ∗ψ→ ψ,

whereσ∗ denotes a virtual state in the sigma channel with energy-momentum (ω, p⃗). The energy-momentum conser-
vation gives constraints on the possible (ω, p⃗) region for the former three processes as follows:

ω ≥
√

p⃗2 + (2Mσ)2 for σ∗ → σσ,

ω ≥
√

p⃗2 + (2Mπ)2 for σ∗ → ππ, (36)

ω ≥
√

p⃗2 + (2Mψ)2 for σ∗ → ψψ,

which are all in the time-like region. On the other hand, the latter three processes are all collisional ones and possible
only in the space-like region, 0≤ ω < p. In particular, the last processσ∗ψ→ ψ corresponds to the absorption process
of theσ∗ mode into a thermally excited quark. In Fig. 4(a), the positions of the thresholds for 2σ and 2π decay channel
determined by Eq. (36) are shown, and the bumps corresponding to these processes can be seen.

3.3 Spectral functions near the QCD CP

We calculate the spectral function in theσ channel near the QCD CP, by increasing the chemical potential towardµc

along constant temperature lineT = Tc. As seen in Sec. 3.2, we can see the dispersion relations of the modes by
making contour maps of the spectral functions as functions ofω andp. Figure 5 shows the dispersion relations of the
sigma meson and particle-hole modes near the CP. Atµ = 286.3MeV, the sigma-mesonic peaks can be seen in the
time-like region as well as the particle-hole bump in the space-like region. As the chemical potential increases, the
dispersion relation of the sigma-mesonic mode shifts downward and it touches the light cone nearµ = 286.575MeV.
At µ = 286.59MeV, in low-momentum region the sigma-mesonic mode clearly penetrates into space-like region and
merges to the particle-hole bump, which has a flat dispersion relation in the small momentum region.

Next, we show the strength of peaks and bumps of the spectral function whenp is set to 50MeV. The results at
µ = 286.00MeV, µ = 286.50MeV andµ = 286.57MeV are shown in Fig. 6 (a). One can see the sigma-mesonic
peak as well as bumps corresponding to 2σ and 2π decay in the time-like region. The peak position of the sigma-
mesonic mode shifts to the lower energy as the system approaches the CP. The position of the 2σ threshold also shifts
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Figure 6: ρσ near the QCD CP atT = Tc: (a) the results in 286.00 MeV ≤ µ ≤ 286.57 MeV and (b) the results in
286.57 MeV ≤ µ ≤ 286.59 MeV. The spatial momentum is set top = 50 MeV and the inside of the blue box in each
figure is the space-like region. The 2σ decay thresholds for each chemical potential are denoted bys⃝. The 2π andψψ
decay thresholds hardly change and are represented byp⃝ and q⃝. (Taken from [18])

to a lower energy while those of the 2π andψψ thresholds hardly change. The spectral function in the space-like
region is drastically enhanced as the system is close to the CP. This behavior can be interpreted as the softening of the
particle-hole mode. In Fig. 6(b), we show the results at chemical potentials much closer to the CP. Because of numerical
instability in 286.60MeV≤ µ . 360MeV, we chooseµ = 286.58MeV andµ = 286.59MeV. For comparison, the result
atµ = 286.57MeV is also shown. These results are quite different from those inµ ≤ 286.57MeV. Inµ > 286.57MeV,
the peak of the sigma-mesonic mode penetrates into the space-like region and then merges into the particle-hole mode.
Our results indicate that the sigma-mesonic mode as well as the particle-hole mode can become soft near the CP.

One of the possible triggers of this phenomenon is the level repulsion between the sigma-mesonic mode and other
modes. In particular, the two-sigma (σσ) mode is considered to play an important role in the level repulsion since the
threshold of the two-sigma mode shifts downward as the system approaches the CP. Let us suppose that the particle–
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Figure 7:ρσ with a substituted three-point vertexaΓ(3)
k,σσσ atT = Tc, µ = 286.57 MeV, andp = 50 MeV. The inside of

the blue box is the space-like region.

hole mode, the sigma-mesonic mode, and the two-sigma mode can each be described by a state having a single energy
level. Then the system can be regarded as a three-level system. The interaction within the three states leads to a level
repulsion: If the interaction between theσ-mesonic mode and theσσ state becomes sufficiently strong as the system
approaches the CP, the energy level of the sigma meson will be so strongly pushed down that it penetrates into the
space-like region. To show that this scenario can be the case, we change the strength of the three-point vertexΓ

(0,3)
k,σσσ

by hand to investigate the behavior of the sigma-meson peak. The results in the cases of multiplyingΓ
(0,3)
k,σσσ by factors

0.8 and 1.02 are shown in Fig. 7. The position of the sigma meson goes up when the three-point vertex is weakened,
whereas it exhibits a downward shift to a lower energy when the three-point vertex is slightly enhanced. This result
suggests that the above interpretation in terms of a level repulsion can be correct.

Here it should be noted that our results exhibit a superluminal group velocity of the sigma-mesonic mode near
the CP, as seen in Fig. 5 forp = 100 MeV atµ = 286.59 MeV. Such an unphysical extreme behavior may be an
artifact of our truncation scheme, in which some of the higher-order terms in the derivative expansion and the use of
the three-dimensional regulator, Eqs. (10) and (11)1, although a drastic softening of the sigma-mesonic mode may
persist. We expect that such a drawback could disappear if one incorporates higher-derivative terms and/or uses a more
sophisticated regulator respecting the covariance as much as possible. One of the most important higher-derivative
terms may be the wave-function renormalization [35, 36], since the relative strengths of the modes should be properly
taken into account when collective modes are dynamically generated in addition to the modes described by the fields
existing in the bare Lagrangian, as is the case in the present work.

So far, we have concentrated on the spectral function in the sigma channel and seen interesting behaviors of it near
the CP. It would be intriguing to examine whether the spectral functionρπ(ω, p) in the pion channel shows any peculiar
behavior near the CP. In contrast toρσ, the dispersion relation of the pion mode stays in the time-like region andρπ
hardly changes near the CP indicating that there is no critical behavior in the isovector pseudo-scalar modes both in the
space-like and time-like regions.

1We thank J.Pawlowski for pointing out this possibility.
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4 Summary

In this note, we have demonstrated how to compute spectral functions in a relativisitic system at finite temperature and
density within the functional renormalization group approach. Our method is based on the local potential approxima-
tion (LPA) and Litim’s optimized regulator in three dimension, which enable us to carry out an analytic continuation
from imaginary to real frequency at the level of the flow equations for the two-point functions [16, 17]. We have also
given a detailed numerical procedure including a stability condition [18].

We have applied the method to the two-flavor quark-meson model which is composed of light quarks,σ andπ
mesons as an effective realization of spontaneous chiral symmetry breaking and restoration of QCD at low energies.
We have focused on the spectral function of the scalar (σ) channel in the vicinity of the CP which is located in large
quark chemical potential and low temperature. In this region, an explicit breaking of the chiral symmetry due to a
nonzero pion mass and the coupling of the quark density to the scalar channel give a non-trivial structure to the spectral
function. Indeed, it was suggested that the particle-hole mode is enhanced near the critical point and thus the density
fluctuations are the soft modes at the CP in a similar model calculation based on random phase approximation [29].
We have shown that the particle-hole mode has a growing support in the space-like region of the spectral function as
the system approaches to the CP. Furthermore, we have found an anomalous dispersion relation of theσ meson; it
penetrates into the space-like region as the system approaches to the CP, and then merges into the particle-hole mode.
This anomalous softening of theσ meson might be attributed to a level repulsion between theσ meson and the two-σ
mode.

Our results, obtained by calculating the spectral function of the scalar channel with FRG, may imply a novel pic-
ture of the soft modes of the QCD CP, which could influence the dynamical universality class. Since our method is
based on LPA and the specific regulator function, the results should be examined by improving the truncation scheme,
e.g., including the wave-function renormalization, and by exploring the regulator dependence. Nevertheless, our re-
sult paves the way for investigating emergent collective modes at finite temperature and density with the functional
renormalization group.
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