GOLDSTONE MODE & SOFT-MODE AT FINITE ISOSPIN DENSITY

Ziyue WANG and Pengfei ZHUANG

Tsinghua University, Beijing

@ ERG 2016, Trieste, Italy

September 19, 2016

Goldstone

ERG 2016

Goldstone

& Critical

Phenomenon

Soft-Mode & BEC-BCS Crossover

Background

&

Theoretical Setup

Goldstone

Critical

&

Phenomenon

Soft-Mode & BEC-BCS Crossover

Summar

Motivation:

• isospin imbalance in the interior of neutron stars

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover

Motivation:

isospin imbalance in the interior of neutron stars

[S. Barshay et al, Phys. Lett. B 47, 107 (1973)] [V. A. Khodel et al, Phys. Rev. Lett. 93, 151101 (2004)]

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover
- Thermodynamics in theoretical methods:

[D.T. Son and M.A. Stephanov, PRL.86,592]

Motivation:

isospin imbalance in the interior of neutron stars

[S. Barshay et al, Phys. Lett. B 47, 107 (1973)] [V. A. Khodel et al, Phys. Rev. Lett. 93, 151101 (2004)]

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover
- Thermodynamics in theoretical methods:

[W. Detmold, et al., Phys. Rev. D 86, 054507]

Motivation:

isospin imbalance in the interior of neutron stars

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover
- Thermodynamics in theoretical methods:

Perturbative QCD Lattice Simulation

[W. Detmold, et al., Phys. Rev. D 86, 054507]

Motivation:

isospin imbalance in the interior of neutron stars

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover
- Thermodynamics in theoretical methods:

[B. Klein et al., Phys. Rev. D 72, 015007]

Motivation:

isospin imbalance in the interior of neutron stars

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover
- Thermodynamics in theoretical methods:

Motivation:

isospin imbalance in the interior of neutron stars

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover
- Thermodynamics in theoretical methods:

Motivation:

isospin imbalance in the interior of neutron stars

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover
- Thermodynamics in theoretical methods:

Motivation:

isospin imbalance in the interior of neutron stars

[S. Barshay et al, Phys. Lett. B 47, 107 (1973)] [V. A. Khodel et al, Phys. Rev. Lett. 93, 151101 (2004)]

- free from lattice sign problem model comparison
- relativistic BEC-BCS crossover
- Thermodynamics in theoretical methods:

on phase boundary

BEC-BCS crossover in pion superfluidity

- QCD system (relativistic) : color-superconductivity & pion superfluidity...
 density induced: Tc < T*
 - T < Tc :

ERG 2016

Functional Renormalization Group (FRG)

- strongly coupled many-body system
- scale transformation (fixed point)
- based on effective action
- Analytical continuation

phase transition critical phenomenon $\Gamma \rightarrow \Gamma^{(2)} \dots \Gamma^{(n)}$

IR

real-time observables

Functional Renormalization Group (FRG)

- strongly coupled many-body system
- scale transformation (fixed point)
- based on effective action
- Analytical continuation

phase transition critical phenomenon $\Gamma \rightarrow \Gamma^{(2)} \dots \Gamma^{(n)}$

IR

real-time observables

Linear Sigma Model & Quark Meson Model

$$\begin{split} \Gamma_{k}[\Phi] &= \int_{x} \left\{ \bar{\Psi}S(i\partial)\Psi + \frac{1}{2}(\partial_{\mu}\sigma)^{2} + \frac{1}{2}(\partial_{\mu}\pi_{0})^{2} + U_{k}(\vec{\varphi}^{2}) - c\sigma \right. \\ &+ \left[(\partial_{\mu} - 2\delta_{\mu4}\mu_{I})\pi_{-} \right] \left[(\partial_{\mu} + 2\delta_{\mu4}\mu_{I})\pi_{+} \right] \right\} \\ S(i\partial) &= \left(\begin{array}{c} i(\partial \!\!\!/ + \gamma_{4}\mu_{I}) + ih\left(\sigma + i\gamma_{5}\pi_{0}\right) & -\sqrt{2}h\gamma_{5}\pi_{-} \\ -\sqrt{2}h\gamma_{5}\pi_{+} & i(\partial \!\!/ - \gamma_{4}\mu_{I}) + ih\left(\sigma - i\gamma_{5}\pi_{0}\right) \end{array} \right). \end{split}$$

Two flavor chiral effective model $~~\Psi$

$$= \left(\begin{array}{c} u \\ d \end{array}\right)$$

Symmetry breaking pattern: O(4) - O(3) - O(2) - Z(2)

RG Flow Equation

$$\partial_k \Gamma_k = \frac{1}{2} \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right) - \left(\begin{array}{c} & \\ & & \\ & & \end{array} \right)$$

8

Theoretical Setup

Goldstone & Critical Phenomenon

Soft-Mode & BEC-BCS Crossover

- Symmetry breaking pattern: O(4) O(3) O(2) Z(2)
- Second order phase transition Goldstone mode
- 🕨 Critical exponents & Universality class 🛛 🗲

$$\langle \pi \rangle = 0$$
 Goldstone mode
 $\langle \pi \rangle \neq 0$ μ_I

- Symmetry breaking pattern: O(4) O(3) O(2) Z(2)
- Second order phase transition Goldstone mode
- 🕨 Critical exponents & Universality class 🛛 🗲

- Symmetry breaking pattern: O(4) O(3) O(2) Z(2)
- Second order phase transition Goldstone mode
- 🕨 Critical exponents & Universality class 🛛 🦊

along the phase boundary @ $T_c - \Delta T$

Compare with a general O(N) MODEL, N=2, FIXED POINT

O(2) Universality Class with a dimension crossover

β

• Fit critical exponent:

$$\langle \pi \rangle \sim \left(\frac{\mu_I - \mu_I^c}{\mu_I^c} \right)^{\beta} \text{ or } \langle \pi \rangle \sim \left(\frac{T_c - T}{T_c} \right)$$

• FRG:

eta drops fast, then saturate at high T

$$\begin{array}{c} & & & \\ \langle \pi \rangle = 0 & & \\ & & \langle \pi \rangle \neq 0 \\ & & & \downarrow I \end{array}$$

Critical Exponent

• FRG: 0.5 - 0.3

T(MeV)	0	10	50	100	150	200	250
$\mu_I^c({ m MeV})$	135.0	135.2	138.0	146.3	164.5	199.4	248.9
β	0.5	0.445	0.380	0.347	0.328	0.318	0.314

MEAN FIELD: 0.5							
T(MeV)	0	10	50	100	150	200	250
$\mu_I^c({ m MeV})$	135.0	135.2	137.8	146.0	163.5	195.9	242.5
β	0.5	0.5	0.5	0.5	0.5	0.5	0.5

 β

• Fit critical exponent:

$$\langle \pi \rangle \sim \left(\frac{\mu_I - \mu_I^c}{\mu_I^c} \right)^{\beta} \text{ or } \langle \pi \rangle \sim \left(\frac{T_c - T}{T_c} \right)$$

• FRG:

 β drops fast, then saturate at high T

Dimension Reduction

$$\int_0^\infty d^d x \to \int_0^{T^{-1}} dt \int_0^\infty d^{d-1} \mathbf{x}$$

T=0 to high T limit:
$$S^1 imes R^{d-1} o R^{d-1}$$

$$d_{\text{eff}} = d \rightarrow d_{\text{eff}} = d - 1$$

Critical Exponent

• FRG: 0.5 - 0.3

T(MeV)	0	10	50	100	150	200	250
$\mu_I^c({ m MeV})$	135.0	135.2	138.0	146.3	164.5	199.4	248.9
β	0.5	0.445	0.380	0.347	0.328	0.318	0.314

MEAN FIELD: 0.5							
T(MeV)	0	10	50	100	150	200	250
$\mu_I^c({ m MeV})$	135.0	135.2	137.8	146.0	163.5	195.9	242.5
β	0.5	0.5	0.5	0.5	0.5	0.5	0.5

ERG 2016

Goldstone

& Critical

Phenomenon

Soft-Mode & BEC-BCS Crossover

Meson SPECTRAL function in QUARK MESON model @ T* > T > Tc

Free particle:	pole 🛶 mass
Interaction:	pole, branch-cut 🛶 mass, stability, decay channel

Meson SPECTRAL function in QUARK MESON model @ T* > T > Tc

Free particle: pole \rightarrow mass Interaction: pole, branch-cut \rightarrow mass, stability, decay channel

Flow equation of meson 2-point function

[K. Kamikado, et al., Eur. Phys. J. C 74, 2806 (2014)] [R. Tripolt, et al, Phys. Rev. D 89, 034010 (2014)] [R. Tripolt, et al, Phys. Rev. D 90, 074031 (2014)]

- Analytical continuation $\Gamma^{(2),R}(\omega,\vec{p}) = \lim_{\epsilon \to 0} \Gamma^{(2),E}(p_0 = -i(\omega + i\epsilon),\vec{p})$
- Spectral function $\rho(\omega) = -\frac{1}{\pi} \frac{\mathrm{Im}\Gamma^{(2),R}(\omega)}{\left(\mathrm{Re}\Gamma^{(2),R}(\omega)\right)^2 + \left(\mathrm{Im}\Gamma^{(2),R}(\omega)\right)^2}$

Flow equation of meson 2-point function Truncation: LPA, neglect momentum dependence of $\Gamma^{(3)}, \Gamma^{(4)}$

Flow equation of meson 2-point function

Truncation: LPA, neglect momentum dependence of $\Gamma^{(3)}, \Gamma^{(4)}$

Initial condition & Input

$$U_{\Lambda}(\rho) = \frac{1}{2}m_{\Lambda}^{2}\rho + \frac{1}{4}\lambda_{\Lambda}\rho^{2}$$

$$\Gamma_{\sigma\sigma,\Lambda}^{(2),R} = -\omega^2 + 2U'_{\Lambda} + 4\phi^2 U''_{\Lambda}, \qquad \Gamma_{\pi_0\pi_0,\Lambda}^{(2),R} = -\omega^2 + 2U'_{\Lambda}$$

$$\Gamma_{\pi_+\pi_-,\Lambda}^{(2),R} = -(\omega - 2\mu_I)^2 + 2U'_{\Lambda}, \qquad \Gamma_{\pi_-\pi_+,\Lambda}^{(2),R} = -(\omega + 2\mu_I)^2 + 2U'_{\Lambda}$$

ERG 2016

ERG 2016

Soft Mode - BEC-BCS Crossover

Goldstone Mode — Critical Phenomenon

ERG 2016

Summar

THANK YOU!

Backup I

Flow Equation of 2-point function

$$\begin{aligned} \partial_k \Gamma_{\sigma\sigma}^{(2)}(p_4) &= -\frac{1}{2} \Gamma_{\sigma\sigma\sigma\sigma\sigma}^{(4)} I_{\sigma}^{(2)} - \frac{1}{2} \Gamma_{\sigma\sigma\pi\pi}^{(4)} I_{\pi_0}^{(2)} - \frac{1}{2} \Gamma_{\sigma\sigma\pi+\pi-}^{(4)} \left(I_{\pi_+}^{(2)} + I_{\pi_-}^{(2)} \right) \\ &+ \left(\Gamma_{\sigma\sigma\sigma}^{(3)} \right)^2 J_{\sigma\sigma}(p_4) + \left(\Gamma_{\sigma\pi\pi\pi}^{(3)} \right)^2 \left(J_{\pi_0\pi_0}(p_4) + J_{++}(p_4) + J_{--}(p_4) \right) \right) \\ &- 2N_c h^2 \left(F_{++}^{\sigma}(p_4, \mu_I) + F_{--}^{\sigma}(p_4, \mu_I) \right) \\ \partial_k \Gamma_{\pi_0\pi_0}^{(2)}(p_4) &= -\frac{1}{2} \Gamma_{\sigma\sigma\pi\pi}^{(4)} I_{\sigma}^{(2)} - \frac{1}{2} \Gamma_{\pi_0\pi_0\pi_0\pi_0}^{(4)} I_{\pi_0}^{(2)} - \frac{1}{2} \Gamma_{\pi_0\pi_0\pi_0\pi_+\pi-}^{(4)} \left(I_{\pi_+}^{(2)} + I_{\pi_-}^{(2)} \right) \\ &+ \frac{1}{2} \left(\Gamma_{\sigma\pi\pi}^{(3)} \right)^2 \left(J_{\sigma\pi_0}(p_4) + J_{\pi_0\sigma}(p_4) \right) \\ &- 2N_c h^2 \left(F_{++}^{\pi}(p_4, \mu_I) + F_{--}^{\pi}(p_4, \mu_I) \right) \\ \partial_k \Gamma_{\pi_+\pi_-}^{(2)}(p_4) &= -\frac{1}{2} \Gamma_{\sigma\sigma\pi+\pi-}^{(4)} I_{\sigma}^{(2)} - \frac{1}{2} \Gamma_{\pi_0\pi_0\pi_+\pi-}^{(4)} I_{\pi_0}^{(2)} - \frac{1}{2} \Gamma_{\pi_+\pi_-\pi_+\pi-}^{(4)} \left(I_{\pi_+}^{(2)} + I_{\pi_-}^{(2)} \right) \\ &+ \left(\Gamma_{\sigma\pi\pi}^{(3)} \right)^2 \left(J_{\sigma-}(p_4) + J_{+\sigma}(p_4) \right) \\ &- 4N_c h^2 F_{-+}^{\pi}(p_4, \mu_I) \\ &+ \left(\Gamma_{\sigma\pi\pi}^{(3)} \right)^2 \left(J_{-\sigma}(p_4) + J_x \sigma + (p_4) \right) \end{aligned}$$

ERG 2016

Backup 2

Threshold Function-I

$$I_{\alpha}^{(2)}(\mu_{I}) = \frac{k^{4}}{3\pi^{2}} \frac{1}{4} \left\{ \frac{1 + n_{B}(E_{\alpha} - 2\mu_{I}) + n_{B}(E_{\alpha} + 2\mu_{I})}{E_{\alpha}^{3}} - \frac{n_{B}'(E_{\alpha} - 2\mu_{I}) + n_{B}'(E_{\alpha} + 2\mu_{I})}{E_{\alpha}^{2}} \right\}$$

$$J_{\alpha\alpha}(p_4,\mu_I) = \frac{k^4}{3\pi^2} \frac{1}{4} \left\{ \frac{12E_{\alpha}^2 + p_4^2}{E_{\alpha}^3 (4E_{\alpha}^2 + p_4^2)^2} \left(1 + n_B(E_{\alpha} + 2\mu_I) + n_B(E_{\alpha} - 2\mu_I)\right) - \frac{1}{E_{\alpha}^2 (2E_{\alpha} - ip_4)ip_4} n'_B(E_{\alpha} - 2\mu_I) + \frac{1}{E_{\alpha}^2 (2E_{\alpha} + ip_4)ip_4} n'_B(E_{\alpha} + 2\mu_I) \right\}$$

$$J_{\alpha\beta}(p_4) = \frac{k^4}{3\pi^2} \frac{1}{4} \left\{ \frac{E_{\beta}^2 - (E_{\alpha} - ip_4)(3E_{\alpha} - ip_4)}{E_{\alpha}^3((E_{\alpha} - ip_4)^2 - E_{\beta}^2)^2} (1 + n_B(E_{\alpha})) + \frac{E_{\beta}^2 - (E_{\alpha} + ip_4)(3E_{\alpha} + ip_4)}{E_{\alpha}^3((E_{\alpha} + ip_4)^2)^2 - E_{\beta}^2} n_B(E_{\alpha}) + \frac{1}{E_{\alpha}^2((E_{\alpha} - ip_4)^2 - E_{\beta}^2)} n_B'(E_{\alpha}) + \frac{1}{E_{\alpha}^2((E_{\alpha} - ip_4)^2 - E_{\beta}^2)} n_B'(E_{\beta}) + \frac{2}{E_{\beta}((E_{\beta} - ip_4)^2 - E_{\alpha}^2)^2} n_B(E_{\beta}) + \frac{2}{E_{\beta}((E_{\beta} - ip_4)^2 - E_{\alpha}^2)^2} n_B(E_{\beta}) + \frac{2}{E_{\beta}((E_{\beta} + ip_4)^2 - E_{\alpha}^2)^2} (1 + n_B(E_{\beta})) \right\}$$

ERG 2016

Backup 2

Threshold Function-II

$$J_{+\sigma}(p_4,\mu_I) = \frac{k^4}{3\pi^2} \frac{1}{4} \left\{ \frac{E_{\sigma}^2 - (E_{\pi} - ip_4 - 2\mu_I)(3E_{\pi} - ip_4 - 2\mu_I)}{E_{\pi}^3((E_{\pi} - ip_4 - 2\mu_I)^2 - E_{\sigma}^2)^2} (1 + n_B(E_{\pi} - 2\mu_I)) + \frac{n'_B(E_{\pi} - 2\mu_I)}{E_{\pi}^2((E_{\pi} - ip_4 - 2\mu_I)^2)} + \frac{E_{\sigma}^2 - (E_{\pi} + ip_4 + 2\mu_I)(3E_{\pi} + ip_4 + 2\mu_I)}{E_{\pi}^3((E_{\pi} + ip_4 + 2\mu_I)^2 - E_{\sigma}^2)^2} n_B(E_{\pi} + 2\mu_I) + \frac{n'_B(E_{\pi} + 2\mu_I)}{E_{\pi}^2((E_{\pi} + ip_4 + 2\mu_I)^2 - E_{\sigma}^2)} + \frac{2n_B(E_{\sigma})}{E_{\sigma}((E_{\sigma} - ip_4 - 2\mu_I)^2 - E_{\pi}^2)^2} + \frac{2(1 + n_B(E_{\sigma}))}{E_{\sigma}((E_{\sigma} + ip_4 + 2\mu_I)^2 - E_{\pi}^2)^2} \right\}$$

$$J_{+\sigma}(p_4,\mu_I) = \frac{k^4}{3\pi^2} \frac{1}{4} \Biggl\{ \frac{E_{\sigma}^2 - (E_{\pi} - ip_4 - 2\mu_I)(3E_{\pi} - ip_4 - 2\mu_I)}{E_{\pi}^3((E_{\pi} - ip_4 - 2\mu_I)^2 - E_{\sigma}^2)^2} (1 + n_B(E_{\pi} - 2\mu_I)) + \frac{n'_B(E_{\pi} - 2\mu_I)}{E_{\pi}^2((E_{\pi} - ip_4 - 2\mu_I)^2)} + \frac{E_{\sigma}^2 - (E_{\pi} + ip_4 + 2\mu_I)(3E_{\pi} + ip_4 + 2\mu_I)}{E_{\pi}^3((E_{\pi} + ip_4 + 2\mu_I)^2 - E_{\sigma}^2)^2} n_B(E_{\pi} + 2\mu_I) + \frac{n'_B(E_{\pi} + 2\mu_I)}{E_{\pi}^2((E_{\pi} + ip_4 + 2\mu_I)^2 - E_{\sigma}^2)^2} + \frac{2n_B(E_{\sigma})}{E_{\sigma}((E_{\sigma} - ip_4 - 2\mu_I)^2 - E_{\pi}^2)^2} + \frac{2(1 + n_B(E_{\sigma}))}{E_{\sigma}((E_{\sigma} + ip_4 + 2\mu_I)^2 - E_{\pi}^2)^2} \Biggr\}$$

ERG 2016

Backup 2

Threshold Function-III

$$\begin{split} F^0_{++}(p_4,\mu_I) &= \sum_{q}^{f} \left[-m^2 - \bar{q}_r^2 - (q_4 + i\mu_I)(q_4 + 2p_4 + i\mu_I) \right] D^2_+(q) D_+(q+p) \; 4k \Theta(k^2 - \bar{q}^2) \\ &= \frac{4k^4}{6\pi^2} \left\{ \frac{4E_q^2 - p_4^2}{E_q(4E_q^2 + p_4^2)^2} (n_F(E_q + \mu_I) + n_F(E_q - \mu_I) - 1) \right. \\ &- \frac{1}{2E_q(2E_q - ip_4)} n'_F(E_q - \mu_I) - \frac{1}{2E_q(2E_q + ip_4)} n'_F(E_q + \mu_I) \right\} \\ F^0_{++}(p_4,\mu_I) &= \sum_{q}^{f} D^2_+(q) D_+(q+p) \; 4k \Theta(k^2 - \bar{q}^2) \\ &= \frac{4k^4}{6\pi^2} \left\{ \frac{12E_q^2 + p_4^2}{4E_q^2(4E_q^2 + p_4^2)^2} (1 - n_F(E_q + \mu_I) - n_F(E_q - \mu_I)) \right. \\ &+ \frac{1}{4E_q^2(2E_q - ip_4)ip_4} n'_F(E_q - \mu_I) - \frac{1}{4E_q^2(2E_q + ip_4)ip_4} n'_F(E_q + \mu_I) \right\} \\ F^\pi_{+-}(p_4,\mu_I) &= \sum_{q}^{f} \left[-m^2 - \bar{q}_r^2 - (q_4 + i\mu_I)(q_4 + 2p_4 - 3i\mu_I) \right] D^2_+(q) D_-(q+p) \; 4k \Theta(k^2 - \bar{q}^2) \\ &= \frac{4k^4}{6\pi^2} \left\{ \frac{1}{2E_q(2E_q + ip_4 + 2\mu_I)^2} (2n_F(E_q + \mu_I) - 1) + \frac{1}{2E_q(2E_q - ip_4 - 2\mu_I)^2} (2n_F(E_q - \mu_I) - 1) \right] \right\} \end{split}$$

ERG 2016