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A brief introduction
to the LPA
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The derivative expansion

1
koK T k[op] = *Tr( f)[(P] +Rk) kOK R«

el = [ { 20,00 1 it}

kak\/k( ) kakrk[ﬁp]hp —const. ’
0 52rk[90]

Op® dppdo—p

V Vol
kaka((p) = k(‘?k

(p=const., p2=0
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The local potential approximation(s)

7= 2;3/2/((2—0/)/2(/3

(@) =k Vi(e),  z(®@) = Z, 5 Z(e)

LPA + Z(p)=1
LPA" Zi(p) = Zko = const. in ¢

Ozk&&@)«>n:<Qﬂmﬁp
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Explicit cutoff dependence

1
KOVi(9) 7y eom, = | Gnkorms
Zh=const 2(2m)d J,
V@) (p)? Gk 29° %Gk 2
— AT Ik ) g2k
kakzk((pnzk:const. (27T)d /q (8q2 + d aq26q2> gk Ok R
1 /
kokv(p)l,og = —dv(p) + §(d —2+n)pv'(p)
+fy — AV (@) + KV (p)? — V" ()3 + ...
kokz(p)|,.y = —n+gov"(9)? — gV ()" (9)* + ...
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Unitary multicritical models
and the e-expansion
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©°" critical model
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An appropriate rescaling

2f11/2
0= mx, u(x) = v(p)
2d u”(x)

KOv(),oy o u(x) — xu(x) +

d—2 2
—hu"(x)?> + K" (x)3 + ...

kokz(@),—; o< —n+ gou™” (x)? — gru” (x)u"” (x)* + ...
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Initial ansatz for the solution

2d u"(x)
g 2u(x) — xu(x) + —

Define:

_ f2u//(X)2 + f3LI”(X)3 +...=0

1
Dy, = 58)% — x0x +2n

= Dopu(p) =0

Ansatz:
u(x) = ecpHan(x) + ...
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Advantages of using D,, and Hermite polynomials

Dy, generates terms orthogonal to Hy,(x) according to the norm:

/ dx e Hp(x)Hm(x) = 2"7Y21(n + 1)6p.m

1
/dxeX2Hn(x)Hm(x)H/(x) #0 for m,n, I < §(m+n+/) € 2N

Any desired order in € corresponds to a finite sum:

2n—2
u(x) = ecaton(x)+ €D anmHam(x) + O(€)

m=0

n = écim+0(e)
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Interesting exploit: the anomalous dimension

n is determined by projecting kOxz(p)|,_, onto Ho(x) =1
which is effectively a new way of computing 7 in the LPA

n = a—1/2 /dxe_x2 {gou///(x)2 —glu"(x)u"'(x)2+...}

v

n # 0 even when v"'(0) =0
n~ € fore—0

v

e’ decays fast: global solutions are not needed

v

v

admits a proper generalization to any d
see [Osborn & Twigg 2009] for Polchinski's version
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Iterative solution order by order in ¢

Forp#£n—1,n

(n—1)r(n)?1

A 22m+3=Pn2(2n — p — 1) (2n)? .
o (n—p)p?r(2n—p)r(p2 *
m = 4"™3n%(n—1)(2n—1)I(2n)go

Cn

and a couple of ugly formulas for a,_1,, and a, »

see [0'Dwyer & Osborn 2007] for Polchinski's version
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2

A criterion for cutoff optimization: ¢= matching

LPA does not contain all operators generated at 1-loop,
so it is not 2-loops exact.

[Demmel et al. 2013; several others]

We can however match n = npr

n(n—1)I(n)%2  n?(n—1)3(2n — 1)[(n)°e? go
2r(2n)3 - 2r(2n)3 2

In the original (non-rescaled) quantities:

(d +2)figo = df?

fi and g; are (derivatives of) 1-loop integrals involving the IR
regulator. Polchinski's eqn. does this automatically.
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Spectrum

u(x) = u(x) + e Mou(x)

Dsdu(x) — 2hu" (x)ou" (x) + 3h0"(x)%0u"(x) +--- =0
« _2(\=4d)
A= 5

Solve D;du(x) = 0 with spectrum:

~

du(x) = Hi(x), A=keN

and use QM perturbation theory to compute futher orders in e.
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Universality of the spectrum at order ¢

2n—k k—2 (n—1I(k+1)(n)
A= m—l+€{ 2 T(k—n+1)r(2n) } ()

It agrees with the scaling dimensions of :
Lucky coincidence: simple mixing of o and ©*k=27(9y)?

Ising n =2
1
A= 4—k—<6k(k—4)+1>6

€ € €
= {4—673—572—5,1—5,—6,...}

Tricritical n =3
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Beyond the ¢ expansion

Comparison with the numerical method of the scaling solutions:

0.008

e=1/10; d =3.9 » e=1,d=3

0.006

0.004

PN

o 1
\\/ -0.002 \/

The expansion fails at ex? ~ 1 and for d ~ 2

Numerics and CFT of M(n+ 1, n+ 2) are better suited for d = 2
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Non-unitary multicritical models
and the ¢!/%-expansion
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ip?"*1 critical model

The most general protected symmetry under reflection:

Vi(p) = Vi (—¢)

Therefore:

Vi(p) = Sk(p)+iAk(w) s Sk(—¢) = Sk(®), Ax(—¢) = —Ak(»)

Where are the critical models v(y) ~ ign?"t17?

2n+1 10 14
A
dn 2n_1 {6’3757 Y }
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New ansatz for the solution

At lowest order Dy,1u(x) =0

A consistent expansion is:

2n—1
u(x) = €PcoHanp1(x) +ec? Y anmtom(x) + O(e%)

m=0

n = ecim+ O(e?)

Physical quantities are analytic in ¢, but u(x) expands in €/2

Parity implies: ¢, € IR, apm € R
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Lee-Yang model

The n =1 solution is the Lee-Yang model

e=1/10; d =5.9

-
- ~

-0.005

e ~Se...)

(][]

n=-§, A={6—€4—362—
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A conjecture and the Blume-Capel model

Conjecture:
these solutions interpolate with the CFTs M(2,2n + 3)

Corollary:
n =2 is in the same universality class as the Blume-Capel model
(spin chain) which has a non-trivial PT at imaginary magnetic field
(non-Hermitian tricriticality)

[von Gehlen 1994]

Interesting observation:

Upper critical dim is d3A = 10/3 = 3 so e-expansion is expected to
work well (more to come)
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N =1 Wess-Zumino model in the LPA
and emergent supersymmetry
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N =1 Wess-Zumino model

Superfield:
_ 1 _
S =+ (0Y) + E(¢90)F
SUSY transformation is linear:
O D+6P=P+eQP + QP

Manifestly SUSY covariant formulation:

Wz d G 1
vz — /dx/ﬁmw(—24¢K¢+2wu¢»

Z

i_ - Z 1 -
= /ddx(zaﬂgpéwgo - Ekadﬁw + 71(/:2 -3 VY + W,iF)

Linearity => IR SUSY regulator very straightforward
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On-shell action

Use EOM of F to unveil its “auxiliary” role:

POt = W)/ 24

On shell action:

Zk W2(p) i - -
onsh. _ d o _ _ Zw!"
re /H <26 ot =55 — 52 — 5 A@w@
Compare for a moment a Yukawa model:
P _
e = / ax( uwa“so +V(p) = 520 )i
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SUSY LPA

wi(@r) = k™2 Wi()/ Zk

d—2+n

kokw(p) = (1= d)w(p)+ ¢+ F(w")

with
F(—w") = -F(w")

e-expansion can be related to that of i@?"*1 in the limit 5 — 0

d = 3: N =1 generalization of Ising universality with spectrum
n~0.16 and {3,1.41 +0.01,0.58 + 0.01, —0.37 £ 0.02, ...}
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The Yukawa model

Parametrize the Yukawa model as a soft breaking of WZ on shell
(assume Z¢ = Z} for simplicity):

Yukawa(, ] = roushp g + /ddX<Vo + h(SO)@?ﬁ)

Introduce an auxiliary field F which completes SUSY off shell

FQ(YUkawa[(p,'(ﬂ, F] _ FXVZ[%% F] + /ddx<\/0 + h(ﬁp)%ﬁ)

Problem! RG step forces Vo — Vo(p)

28/33



Counting of DOF
The RG spans:
r/kYukawa[(’D?TZ)7 F] _ rZVZ[(pﬂﬁ’ F] + /ddx<\/o(<,0) — h(‘P)Eqb)

which is characterized by three “potentials”:

{W(p), Vo(e), h(v)}

Only two “physical” interactions:

w! 2
Scalar potential V(p) = gSD) + Vo(yp)
1
Yukawa interact. M) = > W () + h(p)
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Field redefinition

Our suggested solution is to redefine F — Fy along the flow
such that Vo(¢) — Vo = const.

This can be done at the level of renormalized quantities
and even maintaining the 1P| nature of the flow:

or 1)
koTk = kol kola — (S,:I}:kakaﬁL/gk‘m(Rkkaka)

for the formalism see [Gies, Pawlowski 2007]

Useful insights for asymptotic safety and gravity?
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Emergent SUSY 1.

For d = 3 the Yukawa spectrum differs by WZ only through
irrelevant deformations

el,break = _2'73 92,break ~ 5.1

Microscopic deformations from SUSY in the UV are suppressed in
the IR for large scale separations = Same universality class!

Superscaling relations are expected to occur for the scaling
dimensions at observable scales.

see also CFT and Bootstrap’s literatures [Fei et al. 2016, ...]

Our work is new in that it does use a formalism that explicitly
depends on an IR scale.
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Emergent SUSY 2.

The idea of emergent SUSY in the IR is rather old...
[Niopoulos et al. 1980]

but experimental setups have been recently suggested using
superfluid Hes

[Grover et al. 2014]

For more details on all the above and more
[T. Hellwig’s poster]
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Conclusions

Several features of Wetterich's flow and the LPA approach can
be appreeciated by solving it with either e- or €l/2_expansions

Approach suggests new ways to compute 1 from a local
potential, and new criteria for optimization

LPA approach admits a simple SUSY generalization

The formalism can be used to evince that SUSY might
emerge as a symmetry in systems with appropriate DOF
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