Scaling, superscaling, emergent SUSY and the Lee-Yang model from the FRG

O. Zanusso TPI Jena

Sept. 20th 2016 ERG2016 An updated title:

MULTICRITICALITY AND EMERGENT SUSY

O. Zanusso TPI Jena

 $\underset{\mathsf{ERG2016}}{\mathsf{Sept.}} \begin{array}{c} 20^{\mathrm{th}} \\ 2016 \end{array}$

Plan

- Introduction
- Unitary multicritical models and the ϵ -expansion
- ▶ Non-unitary multicritical models and the $\epsilon^{1/2}$ -expansion
- Emergent SUSY

A brief introduction to the LPA

The derivative expansion

$$k\partial_{k}\Gamma_{k}[\varphi] = \frac{1}{2}\mathrm{Tr}\left(\Gamma_{k}^{(2)}[\varphi] + \mathcal{R}_{k}\right)^{-1}k\partial_{k}\mathcal{R}_{k}$$
$$\Gamma_{k}[\varphi] = \int \mathrm{d}^{d}x \left\{\frac{Z_{k}(\varphi)}{2}\partial_{\mu}\varphi\partial^{\mu}\varphi + V_{k}(\varphi)\right\}$$

$$\begin{split} k\partial_k V_k(\varphi) &= \frac{1}{\text{Vol}} \left. k\partial_k \Gamma_k[\varphi] \right|_{\varphi = \text{const.}} \,, \\ k\partial_k Z_k(\varphi) &= \left. k\partial_k \frac{\partial}{\partial p^2} \left. \frac{\delta^2 \Gamma_k[\varphi]}{\delta \varphi_p \delta \varphi_{-p}} \right|_{\varphi = \text{const.}, \, p^2 = 0} \end{split}$$

The local potential approximation(s)

$$\begin{split} \overline{\varphi} &\equiv Z_{k,0}^{-1/2} k^{(2-d)/2} \varphi \\ v_k(\overline{\varphi}) &\equiv k^{-d} V_k(\varphi) \,, \qquad z_k(\overline{\varphi}) \equiv Z_{k,0}^{-1} Z_k(\varphi) \end{split}$$

$$LPA \quad \leftrightarrow \quad Z_k(\varphi) = 1 \\ LPA' \quad \leftrightarrow \quad Z_k(\varphi) \equiv Z_{k,0} = \text{const. in } \varphi$$

$$0 = k \partial_k Z_k(\varphi) \quad \leftrightarrow \quad \eta = -Z_{k,0}^{-1} k \partial_k Z_{k,0}$$

6/33

Explicit cutoff dependence

$$\begin{aligned} k\partial_k V_k(\varphi)|_{Z_k=\text{const.}} &= \frac{1}{2(2\pi)^d} \int_q \mathcal{G}_k \, k\partial_k \mathcal{R}_k \\ k\partial_k Z_k(\varphi)|_{Z_k=\text{const.}} &= \frac{V^{(3)}(\varphi)^2}{(2\pi)^d} \int_q \left(\frac{\partial \mathcal{G}_k}{\partial q^2} + \frac{2q^2}{d} \frac{\partial^2 \mathcal{G}_k}{\partial q^2 \partial q^2}\right) \mathcal{G}_k^2 \, k\partial_k \mathcal{R}_k \end{aligned}$$

$$\begin{aligned} k\partial_k v(\varphi)|_{z=1} &= -dv(\varphi) + \frac{1}{2}(d-2+\eta)\varphi v'(\varphi) \\ &+ f_0 - f_1 v''(\varphi) + f_2 v''(\varphi)^2 - f_3 v''(\varphi)^3 + \dots \\ k\partial_k z(\varphi)|_{z=1} &= -\eta + g_0 v'''(\varphi)^2 - g_1 v''(\varphi) v'''(\varphi)^2 + \dots \end{aligned}$$

Unitary multicritical models and the ϵ -expansion

$$\varphi^{2n}$$
 critical model

$$v(\varphi) \sim \lambda_n \varphi^{2n}$$
$$d_n = \frac{2n}{n-1} = \left\{ \infty, 4, 3, \frac{8}{3}, \frac{5}{2}, \dots, 2 \right\}$$
$$d = d_n - \epsilon$$

$$\epsilon \to 0 \implies \lambda_n \to 0$$

An appropriate rescaling

$$\varphi = \frac{2f_1^{1/2}}{(d-2+\eta)^{1/2}}x, \quad u(x) \equiv v(\varphi)$$

$$\left. k \partial_k v(\varphi) \right|_{z=1} \propto \frac{2d}{d-2} u(x) - x u(x) + \frac{u''(x)}{2} \\ -f_2 u''(x)^2 + f_3 u''(x)^3 + \dots$$

 $k\partial_k z(\varphi)|_{z=1} \propto -\eta + g_0 u'''(x)^2 - g_1 u''(x) u'''(x)^2 + \dots$

10/33

Initial ansatz for the solution

$$\frac{2d}{d-2}u(x) - xu(x) + \frac{u''(x)}{2} - f_2u''(x)^2 + f_3u''(x)^3 + \dots = 0$$

Define:

$$\mathcal{D}_{2n} \equiv \frac{1}{2}\partial_x^2 - x\partial_x + 2n$$

$$\frac{2d_n}{d_n - 2}u(x) - xu'(x) + \frac{u''(x)}{2} = \mathcal{D}_{2n}u(\varphi) = 0$$
$$\implies \quad u(x) \propto H_{2n}(x)$$

Ansatz:

$$u(x) = \epsilon c_n H_{2n}(x) + \ldots$$

Advantages of using \mathcal{D}_{2n} and Hermite polynomials

 \mathcal{D}_{2n} generates terms orthogonal to $H_{2n}(x)$ according to the norm:

$$\int \mathrm{d}x \,\mathrm{e}^{-x^2} H_n(x) H_m(x) = 2^n \pi^{1/2} \Gamma(n+1) \delta_{n,m}$$
$$\int \mathrm{d}x \,\mathrm{e}^{-x^2} H_n(x) H_m(x) H_l(x) \neq 0 \quad \text{for} \quad m, n, l \leq \frac{1}{2} (m+n+l) \in 2\mathbb{N}$$

Any desired order in ϵ corresponds to a finite sum:

$$u(x) = \epsilon c_n H_{2n}(x) + \epsilon^2 c_n^2 \sum_{m=0}^{2n-2} a_{n,m} H_{2m}(x) + \mathcal{O}(\epsilon^3)$$

$$\eta = \epsilon^2 c_n^2 \eta_2 + \mathcal{O}(\epsilon^3)$$

Interesting exploit: the anomalous dimension

 η is determined by projecting $k\partial_k z(\varphi)|_{z=1}$ onto $H_0(x) = 1$ which is effectively a new way of computing η in the LPA

$$\eta = \pi^{-1/2} \int dx e^{-x^2} \left\{ g_0 u'''(x)^2 - g_1 u''(x) u'''(x)^2 + \dots \right\}$$

- $\eta \neq 0$ even when u'''(0) = 0
- $\eta \sim \epsilon^2$ for $\epsilon \to 0$
- e^{-x^2} decays fast: global solutions are not needed
- admits a proper generalization to any d see [Osborn & Twigg 2009] for Polchinski's version

Iterative solution order by order in ϵ

For $p \neq n-1, n$

$$c_n = \frac{(n-1)\Gamma(n)^3}{2^{n+4}\Gamma(2n)^2} \frac{1}{f_2},$$

$$a_{p,n} = \frac{2^{2n+3-p}n^2(2n-p-1)\Gamma(2n)^2}{(n-p)p^2\Gamma(2n-p)\Gamma(p)^2} f_2$$

$$\eta_2 = 4^{n+3}n^2(n-1)(2n-1)\Gamma(2n)g_0$$

and a couple of ugly formulas for $a_{n-1,n}$ and $a_{n,n}$

see [O'Dwyer & Osborn 2007] for Polchinski's version

14/33

A criterion for cutoff optimization: ϵ^2 matching

LPA does not contain all operators generated at 1-loop, so it is not 2-loops exact.

[Demmel et al. 2013; several others]

We can however match $\eta = \eta_{\rm PT}$

$$\frac{n^3(n-1)^2\Gamma(n)^6\epsilon^2}{2\Gamma(2n)^3} = \frac{n^2(n-1)^3(2n-1)\Gamma(n)^6\epsilon^2}{2\Gamma(2n)^3} \frac{g_0}{f_2^2}$$

In the original (non-rescaled) quantities:

$$(d+2)f_1g_0 = df_2^2$$

 f_i and g_i are (derivatives of) 1-loop integrals involving the IR regulator. Polchinski's eqn. does this automatically.

Spectrum

$$u(x) \to u(x) + e^{-\lambda t} \delta u(x)$$
$$\mathcal{D}_{\hat{\lambda}} \delta u(x) - 2f_2 u''(x) \delta u''(x) + 3f_3 u''(x)^2 \delta u''(x) + \dots = 0$$
$$\hat{\lambda} \equiv \frac{2(\lambda - d)}{d - 2}$$

Solve $\mathcal{D}_{\hat{\lambda}} \delta u(x) = 0$ with spectrum:

$$\delta u(x) = H_k(x), \qquad \hat{\lambda} = k \in \mathbb{N}$$

and use QM perturbation theory to compute futher orders in ϵ .

Universality of the spectrum at order ϵ

$$\lambda = \frac{2n-k}{n-1} + \epsilon \left\{ \frac{k-2}{2} - \frac{(n-1)\Gamma(k+1)\Gamma(n)}{\Gamma(k-n+1)\Gamma(2n)} \right\} + \mathcal{O}(\epsilon^2)$$

It agrees with the scaling dimensions of : φ^k : Lucky coincidence: simple mixing of φ^k and $\varphi^{k-2n}(\partial \varphi)^2$

Ising n = 2

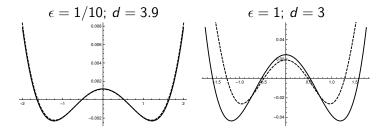
$$\lambda = 4 - k - \left(\frac{1}{6}k(k-4) + 1\right)\epsilon$$
$$= \left\{4 - \epsilon, 3 - \frac{\epsilon}{2}, 2 - \frac{\epsilon}{3}, 1 - \frac{\epsilon}{2}, -\epsilon, \dots\right\}$$

Tricritical n = 3

$$\lambda = 3 - \frac{k}{2} - \left(\frac{1}{30}k(k(k-3) - 13) + 1\right)\epsilon$$

Beyond the ϵ expansion

Comparison with the numerical method of the scaling solutions:



The expansion fails at $\epsilon x^2 \sim 1$ and for $d \sim 2$

Numerics and CFT of $\mathcal{M}(n+1, n+2)$ are better suited for d = 2

Non-unitary multicritical models and the $\epsilon^{1/2}\text{-expansion}$

$$i\varphi^{2n+1}$$
 critical model

The most general protected symmetry under reflection:

$$V_k(\varphi) = V_k^*(-\varphi)$$

Therefore:

$$V_k(\varphi) = S_k(\varphi) + iA_k(\varphi), \quad S_k(-\varphi) = S_k(\varphi), \quad A_k(-\varphi) = -A_k(\varphi)$$

Where are the critical models $v(\varphi) \sim ig_n \varphi^{2n+1}$?

$$d_n^A = 2\frac{2n+1}{2n-1} = \left\{6, \frac{10}{3}, \frac{14}{5}, \dots, 2\right\}$$

New ansatz for the solution

At lowest order $\mathcal{D}_{2n+1}u(x) = 0$

A consistent expansion is:

$$u(x) = \epsilon^{1/2} c_n H_{2n+1}(x) + \epsilon c_n^2 \sum_{m=0}^{2n-1} a_{n,m} H_{2m}(x) + \mathcal{O}(\epsilon^3)$$

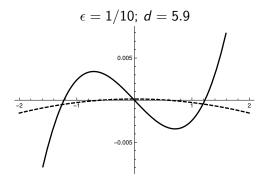
$$\eta = \epsilon c_n^2 \eta_1 + \mathcal{O}(\epsilon^2)$$

Physical quantities are analytic in ϵ , but u(x) expands in $\epsilon^{1/2}$

Parity implies: $c_n \in i\mathbb{R}$, $a_{n,m} \in \mathbb{R}$

Lee-Yang model

The n = 1 solution is the Lee-Yang model



$$\eta = -\frac{\epsilon}{9}, \quad \lambda = \left\{ 6 - \epsilon, 4 - \frac{4}{9}\epsilon, 2 - \frac{5}{9}\epsilon, -\frac{5}{6}\epsilon, \dots \right\}$$

A conjecture and the Blume-Capel model

Conjecture: these solutions interpolate with the CFTs $\mathcal{M}(2, 2n+3)$

Corollary:

n = 2 is in the same universality class as the Blume-Capel model (spin chain) which has a non-trivial PT at imaginary magnetic field (non-Hermitian tricriticality)

[von Gehlen 1994]

Interesting observation:

Upper critical dim is $d_3^A = 10/3 \gtrsim 3$ so ϵ -expansion is expected to work well (more to come)

$\mathcal{N} = 1$ Wess-Zumino model in the LPA and emergent supersymmetry

$\mathcal{N}=1$ Wess-Zumino model

Superfield:

$$\Phi = \varphi + (\bar{\theta}\psi) + \frac{1}{2}(\bar{\theta}\theta)F$$

SUSY transformation is linear:

$$\Phi o \Phi + \delta_{\epsilon} \Phi = \Phi + \overline{\epsilon} \mathcal{Q} \Phi + \epsilon \overline{\mathcal{Q}} \Phi$$

Manifestly SUSY covariant formulation:

$$\begin{split} \Gamma_{k}^{\text{WZ}} &= \int \mathrm{d}^{d} x \int \mathrm{d}\theta \, \mathrm{d}\bar{\theta} \Big(-\frac{1}{2} Z_{k} \Phi K \Phi + 2 W_{k}(\Phi) \Big) \\ &= \int \mathrm{d}^{d} x \Big(\frac{Z_{k}}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{i}{2} Z_{k} \bar{\psi} \bar{\partial} \psi + \frac{Z_{k}}{2} F^{2} - \frac{1}{2} W_{k}^{\prime \prime} \bar{\psi} \psi + W_{k}^{\prime} F \Big) \end{split}$$

 $\mathsf{Linearity} \Longrightarrow \mathsf{IR} \ \mathsf{SUSY} \ \mathsf{regulator} \ \mathsf{very} \ \mathsf{straightforward}$

On-shell action

Use EOM of F to unveil its "auxiliary" role:

 $F^{\mathrm{on\,sh.}} = W_k'(\varphi)/Z_k$

On shell action:

$$\Gamma_k^{\text{on sh.}} = \int \mathrm{d}^d x \Big(\frac{Z_k}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{W_k'^2(\varphi)}{2Z_k} - \frac{i}{2} Z_k \bar{\psi} \partial \psi - \frac{1}{2} W_k''(\varphi) \bar{\psi} \psi \Big)$$

Compare for a moment a Yukawa model:

26/33

SUSY LPA

$$w_k(\overline{\varphi}_{\rm R}) \equiv k^{-d/2} W_k(\varphi)/Z_k$$

$$k\partial_k w(\varphi) = (1-d)w(\varphi) + \frac{d-2+\eta}{2}\varphi + \mathcal{F}(w'')$$

with

$$\mathcal{F}(-w'') = -\mathcal{F}(w'')$$

 $\epsilon\text{-expansion}$ can be related to that of $i\varphi^{2n+1}$ in the limit $\mathit{f}_2\to 0$

d = 3: \mathcal{N} = 1 generalization of Ising universality with spectrum $\eta \simeq 0.16$ and $\{3, 1.41 \pm 0.01, 0.58 \pm 0.01, -0.37 \pm 0.02, \dots\}$

The Yukawa model

Parametrize the Yukawa model as a soft breaking of WZ on shell (assume $Z_k^{\varphi} = Z_k^{\psi}$ for simplicity):

$$\Gamma_{k}^{\text{Yukawa}}[\varphi,\psi] = \Gamma_{k}^{\text{on sh.}}[\varphi,\psi] + \int d^{d}x \Big(V_{0} + h(\varphi)\overline{\psi}\psi\Big)$$

Introduce an auxiliary field F which completes SUSY off shell

$$\Gamma_{k}^{\prime \, \mathrm{Yukawa}}[\varphi, \psi, F] = \Gamma_{k}^{\mathrm{WZ}}[\varphi, \psi, F] + \int \mathrm{d}^{d}x \Big(V_{0} + h(\varphi)\overline{\psi}\psi\Big)$$

Problem! RG step forces $V_0 \rightarrow V_0(\varphi)$

Counting of DOF

The RG spans:

$$\Gamma_{k}^{\prime\,\mathrm{Yukawa}}[\varphi,\psi,F] = \Gamma_{k}^{\mathrm{WZ}}[\varphi,\psi,F] + \int \mathrm{d}^{d}x \Big(V_{0}(\varphi) - h(\varphi)\overline{\psi}\psi \Big)$$

which is characterized by three "potentials":

 $\{W(\varphi), V_0(\varphi), h(\varphi)\}$

Only two "physical" interactions:

Scalar potential
$$V(\varphi) = \frac{W'(\varphi)^2}{2} + V_0(\varphi)$$

Yukawa interact. $\lambda(\varphi) = \frac{1}{2}W''(\varphi) + h(\varphi)$

Field redefinition

Our suggested solution is to redefine $F \to F_k$ along the flow such that $V_0(\varphi) \to V_0 = \text{const.}$

This can be done at the level of renormalized quantities and even maintaining the 1PI nature of the flow:

$$k\partial_k\Gamma_k = k\partial_k\Gamma_{k,\text{old}} - \int \frac{\delta\Gamma_k}{\delta F_k} k\partial_k F_k + \int \mathcal{G}_k \cdot \frac{\delta}{\delta F_k} (\mathcal{R}_k k\partial_k F_k)$$

for the formalism see [Gies, Pawlowski 2007]

Useful insights for asymptotic safety and gravity?

Emergent SUSY 1.

For d = 3 the Yukawa spectrum differs by WZ only through irrelevant deformations

$$\theta_{1,\mathrm{break}}\simeq -2.7\,,\quad \theta_{2,\mathrm{break}}\simeq -5.1$$

Microscopic deformations from SUSY in the UV are suppressed in the IR for large scale separations \implies Same universality class!

Superscaling relations are expected to occur for the scaling dimensions at observable scales.

see also CFT and Bootstrap's literatures [Fei et al. 2016, ...]

Our work is new in that it does use a formalism that explicitly depends on an IR scale.

Emergent SUSY 2.

The idea of emergent SUSY in the IR is rather old...

[lliopoulos et al. 1980]

but experimental setups have been recently suggested using superfluid He_3

[Grover et al. 2014]

For more details on all the above and more

[T. Hellwig's poster]

Conclusions

- Several features of Wetterich's flow and the LPA approach can be appreeciated by solving it with either ε- or ε^{1/2}-expansions
- Approach suggests new ways to compute η from a local potential, and new criteria for optimization

- ► LPA approach admits a simple SUSY generalization
- The formalism can be used to evince that SUSY might emerge as a symmetry in systems with appropriate DOF