## ERG2016 Trieste

# Local and Functional RG 

## Alessandro Codello

In collaboration with G. D'Odorico, C. Pagani
JHEP 07 (2014) 040 [1312.7097]
PRD 91 (2015) 125016 [1502.02439]

## Outline of the talk

RG theory: what we know about the flow?
Fixed points and Wess-Zumino actions

> Away from criticality

Weyl consistency conditions and Local RG

Exact RG flow for the c-functions

Some examples

## $R G$ theory



## RG theory



## RG theory

## scaling regions

under the reach of (CFT)
perturbation theory
universal quantities: critical exponents, universal ratios, scaling functions
relevant vs irrelevant perturbations

CFT data: scaling dimensions, structure constants

## RG theory



## Exact RG flows

RG flow of the effective average action


$$
\partial_{t} \Gamma_{k}[\varphi]=\frac{1}{2} \operatorname{Tr}\left(\frac{\delta^{2} \Gamma_{k}[\varphi]}{\delta \varphi \delta \varphi}+R_{k}\right)^{-1} \partial_{t} R_{k}
$$

## c- and a-theorem


$\Delta c$ and $\Delta a$ are universal quantities depending on a whole trajectory! Integrated (or weak) c- and a-theorems:

$$
\Delta c>0 \quad \Delta a>0
$$

## c- and a-theorem


$\Delta c$ and $\Delta a$ are universal quantities depending on a whole trajectory!
Strong c- and a-theorems:

$$
\partial_{t} c>0 \quad \partial_{t} a>0
$$

Fixed point action
$\Gamma_{U V}$
$\Gamma_{!}{ }^{R}$

## Fixed point action



$$
\Gamma_{U V / I R}[\varphi, g]=S_{C F T_{U V / I R}}[\varphi, g]+c_{U V / I R} S_{P}[g]
$$

Weyl invariant
(covariantization of the CFT action)

Conformal anomaly (Polyakov action)

$$
S_{P}[g]=-\frac{1}{96 \pi} \int d^{2} x \sqrt{g} R \frac{1}{\Delta} R
$$

Wess-Zumino action
$\Gamma_{U V}$
$\Gamma_{!R}$
$\Gamma\left[e^{w \tau} \varphi, e^{2 \tau} g\right]-\Gamma[\varphi, g]=\underbrace{S_{C F T}\left[e^{w \tau} \varphi, e^{2 \tau} g\right]-S_{C F T}[\varphi, g]}_{=0}+c(\underbrace{\left.S_{R}\left[e^{2 \tau} g\right]-S_{R}[g]\right)}_{\Gamma^{W Z}[\tau, g]}$

Wess-Zumino action


FP Wess-Zumino relation:

$$
\Gamma\left[e^{w \tau} \varphi, e^{2 \tau} g\right]-\Gamma[\varphi, g]=c \Gamma^{W Z}[\tau, g]
$$

FP Wess-Zumino action:
$\Gamma^{W Z}[\tau, g]=-\frac{1}{24 \pi} \int d^{2} x \sqrt{g}[\tau \Delta \tau+\tau R]$

## Away from the fixed point



Wess-Zumino relation away from criticality:

$$
\Gamma_{k e^{-\tau}}\left[e^{w \tau} \varphi, e^{2 \tau} g\right]-\Gamma_{k}[\varphi, g]=\Gamma_{k}^{W Z}[\tau, g]
$$

Running Wess-Zumino action:

$$
\begin{aligned}
\Gamma_{k}^{W Z}[\tau, g]=- & \frac{1}{24 \pi} \int \sqrt{g}\left[\tilde{\mathcal{C}}_{k} \tau \Delta \tau+\mathcal{C}_{k} \tau R\right]+\beta \text {-terms } \\
& \text { Running c-function(s) } \quad \text { Everything that vanishes at a FP... }
\end{aligned}
$$

## Running WZ action



Identifying the running central charge

$$
\begin{gathered}
\Gamma_{k}^{W Z}[\tau, g]=-\frac{1}{24 \pi} \int \sqrt{g}\left[\tilde{\mathcal{C}}_{k} \tau \Delta \tau+\mathcal{C}_{k} \tau R\right]+\beta \text {-terms } \\
\mathcal{C}_{k}-\tilde{\mathcal{C}}_{k}=O(\beta) \Rightarrow O(\beta)=24 \pi \omega_{i} \beta^{i}+\ldots \quad \begin{array}{c}
\text { Which is } \\
\text { the form of } \\
\text { the beta } \\
\text { terms? }
\end{array} \\
\Gamma_{k}^{W Z}[\tau, g]=-\frac{1}{24 \pi} \int \sqrt{g}\left[\left(\mathcal{C}_{k}+24 \pi \omega_{i} \beta^{i}\right) \tau \Delta \tau+\mathcal{C}_{k} \tau R\right]+\beta \text {-terms } \\
c_{k}=\mathcal{C}_{k}+24 \pi \omega_{i} \beta^{i}
\end{gathered}
$$

## Scale anomaly

Scale anomaly (classical + quantum):

$$
\int \sqrt{g}\left\langle T_{\mu}^{\mu}\right\rangle=-\sum_{i}\left(\beta^{i}-d_{i} g^{i}\right) \int \sqrt{g} \mathcal{O}_{i}
$$

Dimensionless couplings and beta functions:

$$
\begin{aligned}
& g^{i}=k^{d_{i}} \tilde{g}^{i} \quad \beta^{i}-d_{i} g^{i}=k^{d_{i}} \tilde{\beta}^{i} \\
& \beta-\operatorname{terms}=-\sum_{i} k^{d_{i}} \tilde{\beta}^{i} \int \sqrt{g} \tau \mathcal{O}_{i}+\ldots
\end{aligned}
$$

First interaction contribution to the flow of c !

Derivative expansion for the running $W Z$ action

$$
\Gamma_{k}^{W Z}[\tau, g]=\int \sqrt{g}\left[V_{k}(\tau)+Z_{k}(\tau) \partial_{\mu} \tau \partial^{\mu} \tau+F_{k}(\tau) R\right]+O\left(\partial^{4}\right)
$$

We already know:

$$
\begin{aligned}
V_{k}(\tau) & =-\tau \beta^{i} \mathcal{O}_{i}+\ldots \\
Z_{k}(\tau) & =-\frac{\mathcal{C}_{k}}{24 \pi}+\omega_{i} \beta^{i}+\ldots \\
F_{k}(\tau) & =-\frac{\mathcal{C}_{k}}{24 \pi} \tau+\ldots
\end{aligned}
$$

## Stuckelberg trick

Stuckelberg trick:

$$
k \rightarrow e^{-\tau} k
$$

Couplings become spacetime dependent!

$$
g_{k}^{i} \rightarrow g_{k e^{-\tau}}^{i}
$$

Natural way to introduce beta functions:

$$
\begin{aligned}
g_{k e^{-\tau}}^{i} & =g_{k(1-\tau+\ldots)}^{i} \\
& =g_{k}^{i}-\tau k \partial_{k} g_{k}^{i}+\ldots \\
& =g_{k}^{i}-\tau \beta_{k}^{i}+\ldots
\end{aligned}
$$

Apply to the c-function:

$$
\mathcal{C}_{k e^{-\tau}}=\mathcal{C}_{k}-\tau \partial_{t} \mathcal{C}_{k}+O\left(\tau^{2}\right)
$$

## Stuckelberg trick

## The CFT actions

delete each
Recovering the scale anomaly:
others

$$
\begin{aligned}
\Gamma_{e^{-\tau} k}\left[e^{w \tau} \varphi, e^{2 \tau} g\right]-\Gamma_{k}[\varphi, g] & =\int \sqrt{g}\left[\left(g_{k}^{i}-\tau \beta^{i}\right) \mathcal{O}_{i}-g_{k}^{i} \mathcal{O}_{i}\right]+O\left(\tau^{2}\right) \\
& =-\int \sqrt{g} \tau \beta^{i} \mathcal{O}_{i}+O\left(\tau^{2}\right)
\end{aligned}
$$

New higher order terms:

$$
\begin{aligned}
g_{k e^{-\tau}}^{i} & =g_{k}^{i}-\tau \beta_{k}^{i}+\frac{1}{2} \tau^{2} \beta^{j} \partial_{j} \beta^{i}+O\left(\tau^{3}\right) \\
V_{k}(\tau) & =\left[-\beta^{i} \tau+\frac{1}{2} \beta^{j} \partial_{j} \beta^{i} \tau^{2}\right] \mathcal{O}_{i}+O\left(\tau^{3}\right)
\end{aligned}
$$

## Stuckelberg trick

$$
\begin{aligned}
\beta \text {-terms }= & \int \sqrt{g}\left\{\left[-\tau \beta^{i}+\frac{1}{2} \tau^{2} \beta^{j} \partial_{j} \beta^{i}+\ldots\right] \mathcal{O}_{i}\right. \\
& \left.+\left(-\omega_{i} \beta^{i}\right) \partial_{\mu} \tau \partial^{\mu} \tau+\left[\partial_{t}\left(\omega_{i} \beta^{i}\right)+\ldots\right] \tau \partial_{\mu} \tau \partial^{\mu} \tau\right\}+O\left(\tau^{4}\right)
\end{aligned}
$$

Non-rivial structure emerges:

$$
\begin{aligned}
V_{k}(\tau) & =\left[-\beta^{i} \tau+\frac{1}{2} \beta^{j} \partial_{j} \beta^{i} \tau^{2}\right] \mathcal{O}_{i}+O\left(\tau^{3}\right) \\
Z_{k}(\tau) & =-\frac{\mathcal{C}_{k}}{24 \pi}-\omega_{i} \beta^{i}+\left[\partial_{t}\left(\frac{\mathcal{C}_{k}}{24 \pi}+\omega_{i} \beta^{i}\right)+\ldots\right] \tau+O\left(\tau^{2}\right) \\
F_{k}(\tau) & =-\frac{\mathcal{C}_{k}}{24 \pi} \tau+\left[\partial_{t}\left(\frac{\mathcal{C}_{k}}{24 \pi}\right)+\ldots\right] \tau^{2}+O\left(\tau^{3}\right)
\end{aligned}
$$

... = missing terms that are not scale derivatives of lower order terms and define new RG quantities

## Local RG

Osborn's ansatz:
All possible
terms involving dilaton, couplings and curvatures
$\Gamma_{k}^{W Z}[\tau, g]=\int \sqrt{g}\left[-\tau \beta^{i} \mathcal{O}_{i}+\chi_{i j} \partial_{\mu} g_{k}^{i} \partial^{\mu} g_{k}^{j} \tau+\omega_{i} \partial_{\mu} \tau \partial^{\mu} g_{k}^{i}-\frac{\mathcal{C}_{k}}{24 \pi} \tau R\right]+O\left(\tau^{2}\right)$

LRG: insert Osborn's ansatz in WZ consistency conditions away from criticality to derive non-trivial $R G$ relations

Connection with the derivative expansion:

$$
\begin{aligned}
\partial_{\mu} g^{i}= & -\beta^{i} \partial_{\mu} \tau+O\left(\tau^{2}\right) \\
\chi_{i j} \partial_{\mu} g^{i} \partial^{\mu} g^{j}= & \chi_{i j} \beta^{i} \beta^{j} \partial_{\mu} \tau \partial^{\mu} \tau+O\left(\tau^{3}\right) \\
\omega_{i} \partial_{\mu} \tau \partial^{\mu} g^{i}= & -\omega_{i} \beta^{i} \partial_{\mu} \tau \partial^{\mu} \tau \\
& +\partial_{t}\left(\omega_{i} \beta^{i}\right) \tau \partial_{\mu} \tau \partial^{\mu} \tau+O\left(\tau^{4}\right)
\end{aligned}
$$

## Wess-Zumino consistency conditions

## Weyl transformations are Abelian:

$$
\Gamma^{W Z}\left[\tau_{1}, e^{2 \tau_{2}} g\right]-\Gamma^{W Z}\left[\tau_{1}, g\right]=\Gamma^{W Z}\left[\tau_{2}, e^{2 \tau_{1}} g\right]-\Gamma^{W Z}\left[\tau_{2}, g\right]
$$

Infinitesimal FP WZ consistency conditions:

$$
\begin{aligned}
\Gamma^{W Z}\left[\tau_{1}, e^{2 \tau_{2}} g\right]=\Gamma^{W Z}\left[\tau_{1}, g\right]+\delta_{\tau_{2}} \Gamma^{W Z}\left[\tau_{1}, g\right]+\ldots \\
\delta_{\tau} \equiv \int 2 \tau g_{\mu \nu} \frac{\delta}{\delta g_{\mu \nu}}
\end{aligned}
$$

$$
\delta_{\tau_{2}} \Gamma^{W Z}\left[\tau_{1}, g\right]=\delta_{\tau_{1}} \Gamma^{W Z}\left[\tau_{2}, g\right]
$$

# Wess-Zumino consistency conditions 

The Wess-Zumino consistency conditions
are also valid away from criticality

$$
\Gamma_{k e^{-\tau}}^{W Z}\left[\sigma, e^{2 \tau} g\right]=\Gamma_{k}^{W Z}[\sigma, g]+\Delta_{\tau} \Gamma_{k}^{W Z}[\sigma, g]+O\left(\tau^{2}\right)
$$

$$
\Delta_{\tau} \equiv \int d^{2} x \tau\left\{2 g_{\mu \nu} \frac{\delta}{\delta g_{\mu \nu}}-\beta^{i} \frac{\delta}{\delta g^{i}}\right\}
$$

Infinitesimal WZ consistency conditions away from a FP:

$$
\Delta_{\tau_{2}} \Gamma_{k}^{W Z}\left[\tau_{1}, g\right]=\Delta_{\tau_{1}} \Gamma_{k}^{W Z}\left[\tau_{2}, g\right]
$$

## Local RG

Consistency condition deriving from the terms $\tau \partial_{\mu} \tau \partial^{\mu} \tau$

$$
\begin{gathered}
\partial_{t}\left(\frac{\mathcal{C}_{k}}{24 \pi}+\omega_{i} \beta^{i}\right)=\chi_{i j} \beta^{i} \beta^{j} \\
\\
\partial_{t} c_{k}=24 \pi \chi_{i j} \beta^{i} \beta^{j}
\end{gathered}
$$

Consistency conditions (LRG) don't tell us how to compute things...

## The flow of the c-function

$$
\partial_{t} \Gamma_{k}^{W Z}[\tau, g]=\partial_{t} \Gamma_{e^{-\tau_{k}}}\left[e^{w \tau} \varphi, e^{2 \tau} g\right]-\partial_{t} \Gamma_{k}[\varphi, g]
$$

$$
\partial_{t} c_{k}=-\left.12 \pi \operatorname{Tr}\left(\frac{\delta^{2}}{\delta \varphi \delta \varphi} \Gamma_{k}\left[e^{w \tau} \varphi, e^{2 \tau} \delta\right]+R_{k}[\delta]\right)^{-1} \partial_{t} R_{k}[\delta]\right|_{(\partial \tau)^{2}}
$$

## Exact flow for the c-function!

$$
\partial_{t} c_{k}=\left.12 \pi \operatorname{Tr} \tilde{\partial}_{t}\left\{G_{k} \frac{\delta^{3} \Gamma_{k}^{W Z}}{\delta \tau \delta \delta \varphi \varphi} G_{k} \frac{\delta^{3} \Gamma_{k}^{W Z}}{\delta \tau \delta \varphi \delta \varphi}\right\}\right|_{p^{2}}-\left.12 \pi \operatorname{Tr} \tilde{\partial}_{t}\left\{G_{k} \frac{\delta^{4} \Gamma_{k}^{W Z}}{\delta \tau \delta \tau \delta \delta \varphi}\right\}\right|_{p^{2}}
$$

The flow is driven by matter-dilaton interactions...

$$
\partial_{t} \Gamma_{k}^{W Z}[\tau, g]=\partial_{t} \Gamma_{e^{-\tau_{k}}}\left[e^{w \tau} \varphi, e^{2 \tau} g\right]-\partial_{t} \Gamma_{k}[\varphi, g]
$$

$$
\partial_{t} c_{k}=-\left.12 \pi \operatorname{Tr}\left(\frac{\delta^{2}}{\delta \varphi \delta \varphi} \Gamma_{k}\left[e^{w \tau} \varphi, e^{2 \tau} \delta\right]+R_{k}[\delta]\right)^{-1} \partial_{t} R_{k}[\delta]\right|_{(\partial \tau)^{2}}
$$

## Exact flow for the c-function!



The flow is driven by matter-dilaton interactions...

## Zamolodchikov's metric



## Zamolodchikov's metric



## Zamolodchikov's metric



$$
\chi_{i j}=\frac{1}{24 \pi} \int \frac{d^{2} q}{(2 \pi)^{2}} \tilde{\partial}_{t}\left\{G_{k}\left(q^{2}\right) G_{k}\left((q+p)^{2}\right)\right\} \mathcal{O}_{i}^{(2)}(q, q+p) \mathcal{O}_{j}^{(2)}(-q-p,-q)
$$

## Massive deformation Gaussian FP

$$
\begin{gathered}
\Gamma_{k}[\phi, g]=\frac{1}{2} \int \sqrt{g} \phi\left(\Delta+m^{2}\right) \phi-\frac{c_{k}}{96 \pi} \int \sqrt{g} R \frac{1}{\Delta} R \\
\Gamma_{k}\left[\phi, e^{2 \tau} \delta\right]=\frac{1}{2} \int \phi\left(\Delta+e^{2 \tau} m^{2}\right) \phi-\frac{c_{k}}{24 \pi} \int \tau \Delta \tau \\
\partial_{t} c_{k}=\frac{4 a k^{2} m^{4}}{\left(a k^{2}+m^{2}\right)^{3}} \\
c_{k}=1-\frac{m^{4}}{\left(a k^{2}+m^{2}\right)^{2}} \\
c_{\infty}=1 \quad R_{k} \\
c_{0}=0 \quad \Delta c=1
\end{gathered}
$$



Massive deformation Wilson-Fisher FP

$$
\begin{gathered}
\Gamma_{k}[\bar{\psi}, \psi, g]=\int \sqrt{g} \bar{\psi}(\nabla+m) \psi-\frac{c_{k}}{96 \pi} \int \sqrt{g} R \frac{1}{\Delta} R \\
\Gamma_{k}\left[e^{\tau / 2} \bar{\psi}, e^{\tau / 2} \psi, e^{2 \tau} \delta\right]=\int \bar{\psi}\left(\nabla+e^{\sigma} m\right) \psi-\frac{c_{k}}{24 \pi} \int \tau \Delta \tau \\
\partial_{t} c_{k}=\frac{a k m^{2}}{(a k+m)^{3}} \\
c_{k}=\frac{1}{2}-\frac{m^{2}}{2(a k+m)^{2}} \\
c_{\infty}=\frac{1}{2} \quad c_{0}=0 \quad \Delta c=\frac{1}{2}
\end{gathered}
$$



## Conclusions \& Outlook

> Understanding of how to parametrize the effective (average) action away from criticality

Non-perturbative definition of the c- and a-functions

Framework to calculate approximated c- and a-functions

A proof of the strong $c-$ and a-theorems using the $f R G$ ?

## Thank you

## The c-function in the LPA

## extend a given truncation:

$$
\begin{array}{r}
\Gamma_{k}[\varphi]=\int\left[V_{k}(\varphi)+\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi+\ldots .\right] \\
\Gamma_{k}[\varphi, g]=\int \sqrt{g}\left[V_{k}(\varphi)+\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi+\ldots\right. \\
-\frac{1}{2} \partial_{t} V_{k}(\varphi) \frac{1}{\Delta} R+\ldots \\
\left.-\frac{c_{k}-c_{\Lambda}}{96 \pi} R \frac{1}{\Delta} R+\ldots\right]
\end{array}
$$

## The c-function in the LPA

non-perturbative flow for the c-function:

$$
\partial_{t} c_{k}=-\left.24 \pi \partial_{t} \Gamma_{k}\left[e^{-w \tau} \varphi, e^{2 \tau} g\right]\right|_{\int \tau \Delta \tau}
$$

the c-function with in the LPA:

$$
\begin{aligned}
\partial_{t} c_{k} & =\frac{12}{\left(1+\tilde{m}_{k}^{2}\right)^{4}}\left(\tilde{\beta}_{m^{2}}\right)^{2} \\
& =\frac{12}{\left(1+\tilde{m}_{k}^{2}\right)^{4}}\left(2 \tilde{m}_{k}^{2}+\frac{1}{4 \pi} \frac{\tilde{\lambda}_{k}}{\left(1+\tilde{m}_{k}^{2}\right)^{2}}\right)^{2}
\end{aligned}
$$

the c-theorem is satisfied within our truncation!

$$
\partial_{t} c_{k} \geq 0
$$




universal quantity that depends on the full
RG trajectory between two fixed points


## Sine-Gordon model

$$
S_{S G}[\phi]=\int\left[\frac{1}{2} \phi \Delta \phi-\frac{m^{2}}{\beta^{2}}(\cos (\beta \phi)-1)\right]
$$



## c- \& a-functions in the loop expansion

$\tilde{\beta}_{2}$
$\tilde{\beta}_{4}$

$\tilde{\beta}_{6}$

## c- \& a-functions in the loop expansion

## Diagonal contributions:

$$
\begin{gathered}
\partial_{t} \Gamma_{L, k}=-\frac{1}{2(L+1)!} \tilde{\beta}_{L+1}^{2} k^{4} \int d^{2} x \int d^{2} y \tau_{x} \tau_{y} \tilde{\partial}_{t}\left[G_{k}(x-y)\right]^{L+1} \\
\partial_{t} \Gamma_{L, k}=\left.\frac{k^{4}}{(L+1)!} \tilde{\beta}_{L+1}^{2} \int d^{2} x \tau_{x} \Delta \tau_{x} \int d^{2} y \frac{y^{2}}{2(2 \pi)^{L+1}} \partial_{a}\left[K_{0}\left(|y| \sqrt{a k^{2}}\right)\right]^{L+1}\right|_{a \rightarrow 1} \\
\partial_{t} c_{L, k}=\mathcal{A}_{L}\left(|x-y| \sqrt{a k^{2}}\right) \\
\mathcal{A}_{L} \equiv \frac{3}{2^{L} \pi^{L-1} L!} \int_{L+1}^{2} d x x^{4}\left[K_{0}(x)\right]^{L} K_{1}(x)
\end{gathered}
$$

# c- \& a-functions in the loop expansion 

## Diagonal contributions:



$$
\begin{aligned}
\mathcal{A}_{L} & >0 \\
\partial_{t} c_{k}^{(\text {diagonal })} & =\sum_{i=1}^{\infty} \mathcal{A}_{2 i-1} \tilde{\beta}_{2 i}^{2}
\end{aligned}
$$

The c-theorem is satisfied by the diagonal contributions:

$$
\partial_{t} c^{\text {diagonal }}>0
$$

## c- \& a-functions in the loop expansion

Non-unitary case:

$$
S_{L Y}[\phi]=\int d^{2} x\left[\frac{1}{2} \phi \Delta \phi+i g \phi^{3}\right]
$$



$$
\partial_{t} c_{k}=-\mathcal{A}_{2} \tilde{\beta}_{3}^{2}<0
$$

$$
\mathcal{A}_{2}>0
$$

# c- \& a-functions in the loop expansion 

$$
\begin{gathered}
d=4 \\
\partial_{t} a_{k}^{(\text {diagonal })}=\mathcal{A}_{3} \tilde{\beta}_{4}^{2}+\ldots \\
\mathcal{A}_{3}=\frac{1}{2^{12} \pi^{6}(4!)^{2}} \\
\text { Scheme independent! } \\
\partial_{t} a_{k}^{\text {diagonal }}>0
\end{gathered}
$$

## Switch on gravity!

$$
\begin{gathered}
\mathcal{O}=R \\
\Gamma_{k}[g]=\int \sqrt{g}\left[-\frac{1}{16 \pi G_{k}} R+\ldots\right. \\
\left.-\frac{1}{4} \partial_{t}\left(-\frac{1}{16 \pi G_{k}}\right) R \frac{1}{\Delta} R+\ldots\right] \\
=\int \sqrt{g}\left[-\frac{1}{16 \pi G_{k}} R+\ldots\right. \\
\left.-\frac{c_{k}-c_{\Lambda}}{96 \pi} R \frac{1}{\Delta} R+\ldots\right] \\
\downarrow
\end{gathered}
$$

## Switch on gravity!

$$
\partial_{t} c_{k}=\frac{3}{2 G_{k}^{2}}\left(\partial_{t} \beta_{G_{k}}-2 \frac{\beta_{G_{k}}^{2}}{G_{k}}\right)
$$

minimally coupled scalar:

$$
\begin{gathered}
c_{k}=\frac{a k^{2}}{a k^{2}+b m^{2}} \quad \partial_{t} c_{k}=\frac{2 a b k^{2} m^{2}}{\left(a k^{2}+b m^{2}\right)^{2}} \\
R_{k}(z)=\frac{a z}{e^{b z / k^{2}}-1}
\end{gathered}
$$

## Switch on gravity!

minimally coupled scalar:


## Switch on gravity!

interacting scalar:

$$
c_{k}=\frac{a k^{2}}{a k^{2}+b V_{k}^{\prime \prime}\left(\varphi_{0}\right)}
$$

$$
\partial_{t} c_{k}=-\frac{a b k^{2}\left(\partial_{t} V_{k}^{\prime \prime}\left(\varphi_{0}\right)-2 V_{k}^{\prime \prime}\left(\varphi_{0}\right)\right)}{\left(a k^{2}+b V_{k}^{\prime \prime}\left(\varphi_{0}\right)\right)^{2}}
$$

$$
\partial_{t} c_{k}=\left\{\begin{array}{cl}
-\frac{a b \partial_{t} \tilde{m}_{k}^{2}}{\left(a+b \tilde{m}_{k}^{2}\right)^{2}} & \text { ordered phase } \\
\frac{2 a b \partial_{t} \tilde{m}_{k}^{2}}{\left(a-2 b \tilde{m}_{k}^{2}\right)^{2}} & \text { broken phase }
\end{array}\right.
$$

## Switch on gravity!

interacting scalar:


