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Introduction
In quantum gravity we would like to compute observables: 

!

!

This formal expression needs to be regulated in order to obtain a 
meaningful result. 

Then the parameters of the theory should depend on a cutoff scale 
such that observables are renormalisation group (RG) invariants: 
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Introduction
Typically beta functions are derived from the RG invariance of 
correlation functions: 

!

These break diffeomorphism and re-parameterisation invariance 
and as consequence beta functions depend on the gauge fixing and 
the parameterisation of the fields. 

Instead I consider the RG invariance of diffeomorphism invariant 
observables directly:
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Beta function for Newton’s constant

One loop beta function for Newton’s constant (Weinberg ’79): 

!

The beta function depends on the gauge and parameterisation (talk by A. Pereira). 

Furthermore different beta functions are found if the Einstein-Hilbert or Gibbons-
Hawking-York boundary term are considered. This breaks the required balance between 
the two terms (Gastmans, R. Kallosh, and C. Truffin  1978; Becker and Reuter 2012; 
Jacobson and Satz 2014). 

!

These problems are acute when we consider asymptotic safety close to two spacetime 
dimensions i.e. simplest approximation that the continuum limit of Gravity can be studied.
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Functional measure
Here I consider Einstein theory within a semi-classical regime 

!

 	 with the ellipsis denoting required  boundary terms. 

The functional measure should be the one obtained by canonical 
quantisation giving the functional integral: 

!

What is the field? 

!

Choice should not affect the physics.
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Functional measure
The measure must be re-parameterisation invariant in order to manifestly 
preserve the invariance of the functional integral. 

!

!

Involves a metric on the ‘space of geometries’ which provides the 
invariant volume element. 

Fields are just coordinates in the space of geometries. 

Invariant line element:
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Functional measure
Correct form of the measure can be determined by BRST invariance 
(Fujikawa ’83) or canonical quantisation (Fradkin and Vilkovisky ’73, 
Toms ’87). 

Use Fujikawa’s measure which agrees with Toms.  The metric is of 
the DeWitt type:
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Where does the gauge and parameterisation dependence come from? 

Standard approach: Faddeev-Popov functional integral with sources 

!
!
Fields now include ghosts and the diffeomorphisms are factored out 

!
Source term breaks re-parameterisation and diffeomorphism invariance.  

Effective action: 

Gauge and parameterisation independence only realised by going on shell or computing an 
observable.  

Illustrative example: quantum corrections to the trajectory of a test particle (Dalvit and 
Mazzitelli  ’97; KF 2015).  

Origin of gauge and parameterisation dependence
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One-loop beta functions from the Legendre effective action effective action 

!

Contribution from the action and the measure  

Hessian has the form: 

Considering a ultra-local re-parameterisation: 

The coefficient of the Laplacian transforms as a metric of the space of 
geometries:
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Typically only the super-trace  

!

	 is regulated. Which leaves behind a divergent part: 

!

However for the correct BRST measure one has 

One either uses the correct measure or one has additional UV divergencies 
which are ignored in the effective average action approach. 
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Origin of gauge and parameterisation dependence

Standard effective average action scheme (Reuter ’96) 

!

!

Regardless of the measure we get the same flow equation: 

!

!

The measure is not the origin of differences in beta functions for different 
parameterisations.
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Origin of gauge and parameterisation dependence

One-loop beta functions from the Legendre effective action effective action 

!

Contribution from the action and the measure  

Hessian has the form: 

Considering a different parameterisation: 

The second term is proportional to the equation of motion and is the origin 
of parameterisation dependence. 

Gauge dependence has the same origin since only the on shell hessian is 
guaranteed to be gauge invariant (Benedetti 2011; KF 2015) .
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Generating function for 
observables

Generating function: 

!

!

Observables obtained by taking derivatives with respect to couplings: 

!

!

Derive RG flow from: 
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One-loop flow equation
Perturbation theory around a saddle point: 

Saddle point geometry dependent on the couplings: 

!

Gauge and parameterisation independent  

!

Last term is the contribution of Killing vector diffeomorphisms which 
are left out of the vector trace (see e.g.  Volkov and Wipf ’00).
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One-loop flow equation
Proper-time regulator implemented as a modification of the measure 

One-loop flow equation: 

Heat kernel expansion: 

!

!

Beta function for the gravitational coupling: 

!

Agrees with the previous gauge independent result (KF 2015)
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Amplitudes
On spacetime manifolds with boundaries we can consider amplitudes: 

!

We need to provide diffeomorphism invariant boundary conditions. 
Generically there is a lack of boundary conditions in quantum gravity 
which are diffeomorphism  invariant and lead to a well defined heat kernel. 

On boundaries with extrinsic curvature: 

	 Moss and Silva ’97 have found suitable boundary conditions. 
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Amplitudes
Results can be generalised to manifolds with two disjoint boundaries with the 
addition of the Gibbons-Hawking-York term in the action. 

!

!

!

This construction requires that there is only one Newton’s constant for the bulk 
and boundary terms. 

Saddle point boundary geometry:
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Amplitudes
Results can be generalised to manifolds with two disjoint boundaries with the addition of the 
Gibbons-Hawking-York term in the action. 

!

!

!

This construction requires that there is only one Newton’s constant for the bulk and boundary 
terms. Otherwise the action does not have a well defined variational principle (Hawking and 
Gibbons 1977) and the functional integral doesn’t have the composition properties of an amplitude 
(Hawking 1980). 

All previous calculations have found this is not possible after renormalisation. However 
diffeomorphism invariance has been broken either by the action or the boundary conditions (or 
both). Jacobson and Satz (2014) showed the balance can be achieved on shell in four dimensions. 

Here we preserve diffeomorphism invariance…
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Amplitudes
Flow equation derived from: 

!

The one loop flow equation takes the same form but now the boundary terms 
are generated: 

!

Bulk and boundary terms are renormalised preserving the required balance! 

Universal result near two dimensions:
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Summary
Gauge and parameterisation dependent beta functions come from 
looking at correlation functions (even if we take care of the 
measure).  

This prevents a direct physical interpretation of fixed points. 

We can avoid these problems by looking at observables. 

At one-loop three important problems are solved: 

• Gauge independence 

• Parameterisation independence 

• Bulk/boundary balance is preserved


