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Analogy: What is the microscopic structure of honey?

It’s about 1/3 glucose,  
1/3 fructose and 1/3 water 

molecules It’s about  
1/2 fructose and 1/2 water 

molecules

A
B

No ``smoking-gun’’ signal for any particular QG model,  

but: could rule out models this way!

low-energy data: viscosity of honey  
(measurement at scales >> molecular scale; calculable from microscopic model)  

matched by model A
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Motivation: Why matter & quantum gravity?
Observational viability of quantum gravity models:

- must reduce to GR in classical limit
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! Higgs discovery: Standard Model consistent up to high scales

(charges, interaction strengths, masses….)
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V [H] = �H4

triviality

vacuum stability

MH = � · 246GeV

only for narrow window of values of  
Higgs masses can we reach high scales 

without requiring new physics

[Ellis et al. ‘09]

Does gravity provide UV completion for the SM?        



A window into Planck-scale physics at the electroweak scale

Vacuum stability and the Higgs Boson

1. Extrapolating the SM to Very High Scales and the Higgs Potential Instability

The main result of the first run of the LHC was the discovery of the Higgs boson, with mass
MH ' 126 GeV [1], which further study has shown to be compatible with the properties expected
for a Standard Model (SM) Higgs, although there is still room for some deviation in its properties
[2]. Besides this great success, no trace of physics beyond the SM (BSM) has been found, and this
typically translates into bounds on the mass scale of different BSM scenarios, supersymmetric or
otherwise, of order the TeV [3]. If one is willing to hold on to the paradigm of naturalness, the
hierarchy problem that afflicts the breaking of the electroweak (EW) symmetry would imply that
BSM physics should be around the corner, probably on the reach of the LHC. In this talk I take a
different attitude: I disregard naturalness as a requisite for the physics associated to the breaking of
the EW symmetry and I explore the possibility that the scale of new physics, L, could be as large
as the Planck scale, MPl .

From that perspective, we have now in our hands a quantum field theory, the SM, that should
then describe physics in the huge range from MW to MPl . All the model parameters have been
determined experimentally, the last of them being the Higgs quartic coupling, fixed in this model
by our knowledge of the Higgs mass. Fig. 1, left plot, shows the running of the most important SM
couplings extrapolated to very high energy scales using renormalization group (RG) techniques. It
shows the three SU(3)C ⇥ SU(2)L ⇥U(1)Y gauge couplings getting closer in the ultraviolet (UV)
but failing to unify precisely. It also shows how the top Yukawa coupling gets weaker in the UV
(due to as effects, see below). The Higgs quartic coupling is also shown: it starts small at the EW
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Figure 1: Left: Evolution of SM couplings from the EW scale to MPl. Right: Zoom on the evolution of the
Higgs quartic, l (µ), for Mh = 125.7 GeV, with uncertainties in the top mass, as and Mh as indicated. (Plots
taken from [9]).
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low-energy data:  
viscosity of honey: matched by model A
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Higgs sector & quantum gravity
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Figure 1: Renormalisation of the SM gauge couplings g1 =
p
5/3gY , g2, g3, of the top, bottom

and ⌧ couplings (yt, yb, y⌧), of the Higgs quartic coupling � and of the Higgs mass parameter m.
All parameters are defined in the ms scheme. We include two-loop thresholds at the weak scale
and three-loop RG equations. The thickness indicates the ±1� uncertainties in Mt,Mh,↵3.
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All Yukawa couplings, other than the one of the top quark, are very small. This is the well-
known flavour problem of the SM, which will not be investigated in this paper.

The three gauge couplings and the top Yukawa coupling remain perturbative and are fairly
weak at high energy, becoming roughly equal in the vicinity of the Planck mass. The near
equality of the gauge couplings may be viewed as an indicator of an underlying grand unification
even within the simple SM, once we allow for threshold corrections of the order of 10% around
a scale of about 1016 GeV (of course, in the spirit of this paper, we are disregarding the acute
naturalness problem). It is amusing to note that the ordering of the coupling constants at
low energy is completely overturned at high energy. The (properly normalised) hypercharge
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of fixed point in matter sector
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strong gravity fluctuations appear 
incompatible with existence 

of fixed point in matter sector
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Conclusions
• properties of the matter sector offer observational 

consistency tests for quantum gravity

• microscopic model must admit all observed 
properties of matter (values of masses etc)

• toy model of Higgs sector coupled to asymptotically safe 
quantum gravity:  

gravity does not exceed critical strength for 
fixed-point annihilation in Yukawa sector 

y(MPl) ⇡ 0

Outlook: Realistic Yukawa sector (top-bottom asymmetry)

!
!

! momentum-dependent scalar-fermion  
interactions


