Quantum-gravity effects on a Higgs-Yukawa model

Astrid Eichhorn
University of Heidelberg

with Aaron Held
and Jan Pawlowski

September 22, 2016
ERG 2016, ICTP, Trieste
Motivation:
Observational tests of quantum gravity
Motivation:
Observational tests of quantum gravity

Problem: It’s tough to probe the microscopic structure of spacetime directly

Idea: Let’s devise “indirect” tests using low-energy data
Motivation:
Observational tests of quantum gravity

Problem: It’s tough to probe the microscopic structure of spacetime directly

Idea: Let’s devise ``indirect” tests using low-energy data

Analogy: What is the microscopic structure of honey?
Motivation: Observational tests of quantum gravity

Problem: It’s tough to probe the microscopic structure of spacetime directly

Idea: Let’s devise “indirect” tests using low-energy data

Analogy: What is the microscopic structure of honey?

It’s about 1/3 glucose, 1/3 fructose and 1/3 water molecules

It’s about 1/2 fructose and 1/2 water molecules
Motivation:
Observational tests of quantum gravity

Problem: It’s tough to probe the microscopic structure of spacetime directly

Idea: Let’s devise “indirect” tests using low-energy data

Analogy: What is the microscopic structure of honey?

It’s about 1/3 glucose, 1/3 fructose and 1/3 water molecules

It’s about 1/2 fructose and 1/2 water molecules

low-energy data:
Motivation: Observational tests of quantum gravity

Problem: It’s tough to probe the microscopic structure of spacetime directly

Idea: Let’s devise “indirect” tests using low-energy data

Analogy: What is the microscopic structure of honey?

low-energy data: viscosity of honey (measurement at scales >> molecular scale; calculable from microscopic model)
Motivation:
Observational tests of quantum gravity

Problem: It’s tough to probe the microscopic structure of spacetime directly

Idea: Let’s devise “indirect” tests using low-energy data

Analogy: What is the microscopic structure of honey?

low-energy data: viscosity of honey
(measurement at scales >> molecular scale; calculable from microscopic model)
matched by model A
Motivation:
Observational tests of quantum gravity

Problem: It’s tough to probe the microscopic structure of spacetime directly

Idea: Let’s devise “indirect” tests using low-energy data

Analogy: What is the microscopic structure of honey?

No “smoking-gun” signal for any particular QG model, but: could rule out models this way!

low-energy data: viscosity of honey
(measurement at scales \gg molecular scale; calculable from microscopic model) matched by model A
Motivation: Why matter & quantum gravity?

Observational viability of quantum gravity models:

- must reduce to GR in classical limit

probes of dynamical gravity regime: experimental challenge
Motivation: Why matter & quantum gravity?

Observational viability of quantum gravity models:

- must reduce to GR in classical limit

probes of dynamical gravity regime: experimental challenge

- must accommodate all observed matter degrees of freedom
 example: chiral (i.e., light) fermions

asymptotic safety ✓
(in truncation) [A.E., Gies ’11; Meibohm, Pawlowski ‘15]

LQG ✓
[Gambini, Pullin ‘15]

causal sets: fermions ???
[Barnett, Smolin ‘15]

minimally coupled SM matter fields compatible with asymptotic safety in simple truncation ✓
[Dona, A.E., Percacci ‘13]
Motivation: Why matter & quantum gravity?

Observational viability of quantum gravity models:

- must reduce to GR in classical limit

probes of dynamical gravity regime: experimental challenge

- must accommodate all observed matter degrees of freedom
 example: chiral (i.e., light) fermions

asymptotic safety ✓
(in truncation)

LQG ✓

causal sets:
fermions ???

minimally coupled SM matter fields compatible with asymptotic safety in simple truncation

- must be consistent with the properties of matter at low energies
 (charges, interaction strengths, masses....)
Motivation: Why matter & quantum gravity?

Observational viability of quantum gravity models:

- must reduce to GR in classical limit
- must accommodate all observed matter degrees of freedom
 example: chiral (i.e., light) fermions

asymptotic safety ✓
(in truncation)
[A.E., Gies ’11; Meibohm, Pawlowski ’15]

LQG ✓
[Gambini, Pullin ‘15]

causal sets:
fermions ???
[Barnett, Smolin ’15]

minimally coupled SM matter fields compatible with asymptotic safety
in simple truncation
[Dona, A.E., Percacci ’13]

- must be consistent with the properties of matter at low energies
 (charges, interaction strengths, masses….)

→ Higgs discovery: Standard Model consistent up to high scales
Implications of the Higgs discovery

\[V[H] = \lambda H^4 \]

only for narrow window of values of Higgs masses can we reach high scales without requiring new physics

\[M_H = \lambda \cdot 246 \text{ GeV} \]

[Ellis et al. '09]
Implications of the Higgs discovery

\[V[H] = \lambda H^4 \]

only for narrow window of values of Higgs masses can we reach high scales without requiring new physics

\[M_H = \lambda \cdot 246 \text{ GeV} \]

→ Does gravity provide UV completion for the SM?
A window into Planck-scale physics at the electroweak scale

1. Extrapolating the SM to Very High Scales and the Higgs Potential Instability

The main result of the first run of the LHC was the discovery of the Higgs boson, with mass $M_H = 126$ GeV, which further study has shown to be compatible with the properties expected for a Standard Model (SM) Higgs, although there is still room for some deviation in its properties. Besides this great success, no trace of physics beyond the SM (BSM) has been found, and this typically translates into bounds on the mass scale of different BSM scenarios, supersymmetric or otherwise, of order the TeV. If one is willing to hold on to the paradigm of naturalness, the hierarchy problem that afflicts the breaking of the electroweak (EW) symmetry would imply that BSM physics should be around the corner, probably on the reach of the LHC. In this talk I take a different attitude: I disregard naturalness as a requisite for the physics associated to the breaking of the EW symmetry and I explore the possibility that the scale of new physics, L, could be as large as the Planck scale, M_{Pl}.

From that perspective, we have now in our hands a quantum field theory, the SM, that should then describe physics in the huge range from M_W to M_{Pl}. All the model parameters have been determined experimentally, the last of them being the Higgs quartic coupling, fixed in this model by our knowledge of the Higgs mass. Figure 1, left plot, shows the running of the most important SM couplings extrapolated to very high energy scales using renormalization group (RG) techniques. It shows the three $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge couplings getting closer in the ultraviolet (UV) but failing to unify precisely. It also shows how the top Yukawa coupling gets weaker in the UV (due to a_s effects, see below). The Higgs quartic coupling is also shown: it starts small at the EW but grows at higher scales, reaching a value of order unity at the Planck scale.

Figure 1:

- Left: Evolution of SM couplings from the EW scale to M_{Pl}.
- Right: Zoom on the evolution of the Higgs quartic, λ, for $M_h = 125.7$ GeV, with uncertainties in the top mass, a_s, and M_h as indicated. (Plots taken from [9]).

[Butazzo et al. ’13]

low-energy data: viscosity of honey: matched by model A

It's about 1/3 glucose, 1/3 fructose and 1/3 water

It's about 1/2 fructose and 1/2 water

low-energy data: viscosity of honey: matched by model A

A

B
Higgs sector & quantum gravity

\[\Gamma_k = \ldots + m_h^2 H^2 + \lambda H^4 + \sum_q y_q H \bar{q} q_L + \ldots \]

\[
y_t(M_{Pl}) \approx 0.4 \rightarrow M_{\text{top}} \approx 173 \text{ GeV}
\]

\[
y_b(M_{Pl}) \approx 0 \rightarrow M_{\text{bottom}} \approx 4 \text{ GeV}
\]

[Buttazzo et al. ‘13]
Higgs sector & quantum gravity

Assume:

No new physics below M_{Planck}

\rightarrow Quantum gravity must allow

$y_t(M_{\text{Pl}}) \approx 0.4 \rightarrow M_{\text{top}} \approx 173 \text{ GeV}$

$y_b(M_{\text{Pl}}) \approx 0 \rightarrow M_{\text{bottom}} \approx 4 \text{ GeV}$
Higgs sector & quantum gravity

assume:
no new physics below M_{Planck}

\rightarrow quantum gravity must allow

$y_t(M_{\text{Pl}}) \approx 0.4 \rightarrow M_{\text{top}} \approx 173 \text{ GeV}$

$y_b(M_{\text{Pl}}) \approx 0 \rightarrow M_{\text{bottom}} \approx 4 \text{ GeV}$

g_2: UV- attractive (relevant):
any value can be reached in IR

g_1: UV- repulsive (irrelevant):
IR-value fixed

\rightarrow Irrelevant couplings in the Higgs sector could allow predictions:

[Buttazzo et al. ‘13]
Yukawa coupling in quantum gravity
Yukawa coupling in quantum gravity

Toy model of the Higgs-Yukawa sector coupled to gravity:

\[\Gamma_k = \frac{Z_\phi}{2} \int d^4x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + i Z_\psi \int d^4x \sqrt{g} \bar{\psi} \mathcal{D} \psi + i y \int d^4x \sqrt{g} \phi \bar{\psi} \psi \]

\[- \frac{1}{16\pi G_N} \int d^4x \sqrt{g} (R - 2\lambda) + S_{gf} \]
Yukawa coupling in quantum gravity

Toy model of the Higgs-Yukawa sector coupled to gravity:

$$\Gamma_k = \frac{Z_\phi}{2} \int d^4x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + i Z_\psi \int d^4x \sqrt{g} \bar{\psi} \nabla \psi + i y \int d^4x \sqrt{g} \phi \bar{\psi} \psi$$

$$- \frac{1}{16\pi G_N} \int d^4x \sqrt{g} (R - 2\lambda) + S_{gf}$$

Quantum-gravity effects on Yukawa coupling

(Functional Renormalization Group)

See also

Zanusso, Zambelli, Vacca, Percacci, '09
Oda, Yamada '15
Yukawa coupling in quantum gravity

\[\alpha = 1, \beta = 1 \]

\[\beta_y = \left(\eta_\phi / 2 + \eta_\psi \right) y + \frac{60 - 5\eta_\phi - 6\eta_\psi}{480\pi^2} y^3 + G y \frac{32 + \eta_\psi}{10\pi} \]

\[\beta_G = 2G - G^2 \frac{43}{6\pi} + \ldots \]
Yukawa coupling in quantum gravity

for $\alpha = 1, \beta = 1$

\[
\beta_y = \left(\eta_\phi/2 + \eta_\psi \right) y + \frac{60 - 5\eta_\phi - 6\eta_\psi}{480\pi^2} y^3 + G y \frac{32 + \eta_\psi}{10\pi}
\]

\[
\beta_G = 2G - G^2 \frac{43}{6\pi} + ...
\]

\rightarrow fixed point at $y = 0$, $G > 0$
Yukawa coupling in quantum gravity

\[\alpha = 1, \beta = 1 \]

\[\beta_y = \left(\eta_\phi / 2 + \eta_\psi \right) y + \frac{60 - 5\eta_\phi - 6\eta_\psi}{480\pi^2} y^3 + Gy \frac{32 + \eta_\psi}{10\pi} \]

\[\beta_G = 2G - G^2 \frac{43}{6\pi} + \ldots \]

→ fixed point at \(y = 0, G > 0 \)
Yukawa coupling in quantum gravity

$$\alpha = 1, \beta = 1$$

$$\beta_y = (\eta_\phi/2 + \eta_\psi)y + \frac{60 - 5\eta_\phi - 6\eta_\psi}{480\pi^2} y^3 + G \frac{32 + \eta_\psi}{10\pi} y$$

$$\beta_G = 2G - G^2 \frac{43}{6\pi} + \ldots$$

UV repulsive

UV attractive

$$\rightarrow$$ fixed point at $$y = 0, \ G > 0$$

Prediction (within toy model): $$y(M_{Pl}) \approx 0$$
Yukawa coupling in quantum gravity

\[\alpha = 1, \beta = 1 \]

\[\beta_y = \left(\eta_\phi / 2 + \eta_\psi \right) y + \frac{60 - 5\eta_\phi - 6\eta_\psi}{480\pi^2} y^3 + G y \frac{32 + \eta_\psi}{10\pi} \]

\[\beta_G = 2G - G^2 \frac{43}{6\pi} + \ldots \]

\[\rightarrow \text{fixed point at } y = 0, \ G > 0 \]

prediction (within toy model): \(y(M_{\text{Pl}}) \approx 0 \)

gauge dependence:
\[F_\mu = \bar{D}_\nu h_\mu - \frac{1 + \beta}{4} \bar{D}_\mu h \]

UV repulsive

UV attractive

\[\text{w. graviton "mass" parameter from fluctuation calc.} \]
Yukawa coupling in quantum gravity

\[\alpha = 1, \beta = 1 \]

\[\beta_y = \left(\eta_\phi / 2 + \eta_\psi \right) y + \frac{60 - 5 \eta_\phi - 6 \eta_\psi}{480 \pi^2} y^3 + G y \frac{32 + \eta_\psi}{10 \pi} \]

\[\beta_G = 2G - G^2 \frac{43}{6\pi} + \ldots \]

→ fixed point at \(y = 0, \ G > 0 \)

prediction (within toy model): \(y(M_{Pl}) \approx 0 \)

\[y_t(M_{Pl}) \approx 0.4 \]

→ \(M_{top} \approx 173 \text{ GeV} \)

\[y_b(M_{Pl}) \approx 0 \]

→ \(M_{bottom} \approx 4 \text{ GeV} \)
Beyond canonical power counting

\[\Gamma_k = \frac{Z_\phi}{2} \int d^4x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + i Z_\psi \int d^4x \sqrt{g} \bar{\psi} \nabla \psi + i y \int d^4x \sqrt{g} \phi \bar{\psi} \psi \]

Can canonical interaction terms capture the full dynamics of matter in quantum gravity?
Beyond canonical power counting

\[\Gamma_k = \frac{Z\phi}{2} \int d^4x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + i Z\psi \int d^4x \sqrt{g} \bar{\psi} \nabla \psi + i y \int d^4x \sqrt{g} \phi \bar{\psi} \psi \]

Can canonical interaction terms capture the full dynamics of matter in quantum gravity?

Can

Can canonical interaction terms capture the full dynamics of matter in quantum gravity?

matter-gravity interaction vertices from kinetic term

generate new momentum-dependent matter self-interactions

A.E., H. Gies '11 A.E. '12
Beyond canonical power counting

\[\Gamma_k = \frac{Z_\phi}{2} \int d^4x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + i Z_\psi \int d^4x \sqrt{g} \bar{\psi} \nabla \psi + i y \int d^4x \sqrt{g} \phi \bar{\psi} \psi \]

Can canonical interaction terms capture the full dynamics of matter in quantum gravity?

Can canonical interaction terms capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

Can canonical interaction terms capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?

canonical interaction terms
capture the full dynamics of matter in quantum gravity?
Beyond canonical power counting

\[\Gamma_k = \frac{Z_\phi}{2} \int d^4x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + i Z_\psi \int d^4x \sqrt{g} \bar{\psi} \nabla \psi + i y \int d^4x \sqrt{g} \phi \bar{\psi} \psi \]
Beyond canonical power counting

\[\Gamma_k = \frac{Z_\phi}{2} \int d^4 x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + i Z_\psi \int d^4 x \sqrt{g} \bar{\psi} \nabla \psi + i y \int d^4 x \sqrt{g} \phi \bar{\psi} \psi \]

vertices depend on momenta of the matter fields:

\[\frac{\chi_{-1}}{k^4} \int_x \sqrt{g} \left[(\bar{\psi} \gamma^\mu \nabla_\nu \psi - (\nabla_\nu \bar{\psi}) \gamma^\mu \psi) \partial_\mu \phi \partial_\nu \phi \right] + \frac{\chi_{-2}}{k^4} \int_x \sqrt{g} \left[(\bar{\psi} \gamma^\mu \nabla_\mu \psi - (\nabla_\mu \bar{\psi}) \gamma^\mu \psi) \partial_\nu \phi \partial_\nu \phi \right] \]

A.E., A. Held, J. Pawlowski '16
Beyond canonical power counting

\[\Gamma_k = \frac{Z_\phi}{2} \int d^4 x \sqrt{g} g^{\mu \nu} \partial_\mu \phi \partial_\nu \phi + i Z_\psi \int d^4 x \sqrt{g} \bar{\psi} \nabla \psi + i y \int d^4 x \sqrt{g} \phi \bar{\psi} \psi \]

vertices depend on momenta of the matter fields:

\[\frac{\chi_1}{k^4} \int_x \sqrt{g} \left[(\bar{\psi} \gamma^\mu \nabla_\nu \psi - (\nabla_\nu \bar{\psi}) \gamma^\mu \psi) \partial_\mu \phi \partial_\nu \phi \right] + \frac{\chi_2}{k^4} \int_x \sqrt{g} \left[(\bar{\psi} \gamma^\mu \nabla_\mu \psi - (\nabla_\mu \bar{\psi}) \gamma^\mu \psi) \partial_\nu \phi \partial_\mu \phi \right] \]

strong gravity fluctuations appear incompatible with existence of fixed point in matter sector
Beyond canonical power counting

\[\Gamma_k = \frac{Z^d_\phi}{2} \int d^4x \sqrt{g} g^\mu\nu \partial_\mu \phi \partial_\nu \phi + i Z_\psi \int d^4x \sqrt{g} \bar{\psi} \nabla \psi + \bar{\psi} \gamma^\mu \partial_\mu \psi \]

vertices depend on momenta of the matter fields:

\[
\frac{X_{1-}}{k^4} \int_x \sqrt{g} \left[\bar{\psi} \gamma^\mu \nabla_\nu \psi - (\nabla_\nu \bar{\psi}) \gamma^\mu \psi \right] \partial_\mu \phi \partial_\nu \phi + \frac{X_{2-}}{k^4} \int_x \sqrt{g} \left[\bar{\psi} \gamma^\mu \nabla_\mu \psi - (\nabla_\mu \bar{\psi}) \gamma^\mu \psi \right] \partial_\nu \phi \partial_\nu \phi
\]

strong gravity fluctuations appear incompatible with existence of fixed point in matter sector
Beyond canonical power counting

\[\Gamma_k = \frac{Z\phi}{2} \int d^4x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + i Z\psi \int d^4x \sqrt{g} \bar{\psi} \nabla \psi + i y \int d^4x \sqrt{g} \phi \bar{\psi} \psi \]

vertices depend on momenta of the matter fields:

\[\frac{X_{1-}}{k^4} \int_x \sqrt{g} \left[(\bar{\psi} \gamma^\mu \nabla_\nu \psi - (\nabla_\nu \bar{\psi}) \gamma^\mu \psi) \partial_\nu \phi \partial_\nu \phi \right] + \frac{X_{2-}}{k^4} \int_x \sqrt{g} \left[(\bar{\psi} \gamma^\mu \nabla_\mu \psi - (\nabla_\mu \bar{\psi}) \gamma^\mu \psi) \partial_\nu \phi \partial_\nu \phi \right] \]

strong gravity fluctuations appear incompatible with existence of fixed point in matter sector but: critical interaction strength not exceeded (within truncation) → joint fixed point
Conclusions

• properties of the matter sector offer observational consistency tests for quantum gravity

• microscopic model must admit all observed properties of matter (values of masses etc)

• toy model of Higgs sector coupled to asymptotically safe quantum gravity:
 \[y(M_{Pl}) \approx 0 \]
 \[\rightarrow \text{gravity does not exceed critical strength for fixed-point annihilation in Yukawa sector} \]
 \[\rightarrow \text{momentum-dependent scalar-fermion interactions} \]

Outlook: Realistic Yukawa sector (top-bottom asymmetry)