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Introduction
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Background fields are often introduced in QFT computations with effective actions 
for several reasons

• Gauge theories

• Gravity

• Non linear sigma models

• For gauge fixing and to implement the background field method 
    which permits to have gauge invariance

• Apart because is a gauge theory, 
    background is also needed also to define the notion of a scale

• To have a covariant (under field reparameterization)  
    geometrical approach.



Gauge theories 
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• Dependence on the background field: (modified) Splitting Ward Identities

The construction of an RG flow in presence of a background field 
in the above problems induces a double field dependence

�0 = h(�) (1.30)

� = 'e⇠/' = '+ ⇠ +
1

2'
⇠2 + · · · (1.31)

J 0(h(�)) = [(h�1)0(h(�))]2J(�), V 0(h(�)) = V (�) (1.32)

�k[', ⇠̄] (1.33)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.34)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.35)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠]. (1.36)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [16–18]:

0 = �,i+�
;jh⇠j,ii�

1

2

h
⇥
(⇠�⇠̄)mRmn(⇠�⇠̄)n

⇤
,i
i = �,i+�

;jh⇠j,ii�
1

2

Gmn(Rnm),i�GnpRpmh⇠m,i i;n (1.37)

where GmnGnl = �ml with Gmn = �(2)

;mn + Rmn and we have left implicit in the regulator Rk the

dependence on the IR scale k. The flow with respect to the RG time t = log k
k0

of the e↵ective

average action �k is described by the equation

�̇k = 1

2

GmnṘmn , (1.38)
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This has been encoutered in gauge theories using the background  field method

Very complicated! They encode the fact that the dependence is just in one field.

Wetterich, Reuter, Freire, Pawlowski, Liitm, Morris …

The RG flowing effective average action depends on two gauge fields

• Slavnov-Taylor identities are modified because of the IR regulator.

 The two identities are related: formally gauge degrees of freedom could be 
                                                  disantangled by non local field reparameterizations



Gravity: asymptotic safety 
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�k[ḡ, g] (1.34)
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0 = �,i+�
;jh⇠j,ii�
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2

h
⇥
(⇠�⇠̄)mRmn(⇠�⇠̄)n

⇤
,i
i = �,i+�

;jh⇠j,ii�
1

2

Gmn(Rnm),i�GnpRpmh⇠m,i i;n (1.38)
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g = hhi
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- Single metric truncation (background)

• Physics should not depend on the background employed for the computation!

• Double gauge field dependence complicates enormously the analysis! 
    New relevant non physical operators can appear. 
    Difficulty in constructing reliable truncations!

Asymptotic safety looks to be there, but several disagreements.  
Approximation is not under control!

- Expansion in average fluctuations: vertex expansion

Quantum gravity: the presence of the background dependence is a serious 
                             obstacle for the asymptotic safety program



Non linear sigma models
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They are models where  the field configurations belong to a non trivial manifiold

Some analysis  (off-shell) for NLSM have been based on geometric approach, 
actually mainly at background level, but with an intrinsically 
double field dependence in the effective action. 

• Question: can one find a covariant and background independent approach?

One can compute S-matrix elements in perturbation theory  
as an effective theory using any parameterization of the fields

Honerkamp,Vilkovisky, DeWitt, Howe, Stelle…

This means that one can pick up a point on the manifold (background) 
and study fluctuations around it.

Codello, Percacci, Zanusso, Wipf,…



Next slides…
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No gauge theories
No complicated background-fluctuation splitting

Are there special solution to the modified splitting Ward Identities 
if for any reason we introduce a background?

The off-shell effective action is a point in theory space: it would be natural to have  
also a geometric description, i.e. be also a scalar under field reparameterization. 
In practice a recipe to compute it in any field frame consistently.

We shall then consider this problem for a generic scalar QFT, for both standard 
effective action and for the flowing effective average action. 

Based on   arXiv:1607.03053, arXiv:1607.07074 M. Safari, G.P.V.

Point of view

Essentially avoid the real complicated problem

http://arxiv.org/abs/arXiv:1607.03053
http://arxiv.org/abs/arXiv:1607.07074
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description which would be extremely useful to define a truncation.

In this Section we shall start from a solution we have found [24] for the splitting Ward identity in

the absence of an IR regulator for the standard e↵ective action and give a prescription to construct

a Wilsonian flow which continues to preserve the (unmodified) splitting Ward identities. The

functional RG flow we find is covariant, that is invariant under field reparameterization, so that

the e↵ective average action transforms as a scalar.

2.1 Modified splitting Ward identities

In a background field framework for scalar theories, where the field �(', ⇠) is split into a background

' and a quantum field ⇠, and in the presence of an infrared regulator which controls the contribution

of the fluctuation modes in the path integral, the generator of the connected n-point functions

W
k

[', J ] is a functional of the background field and a source field J
i

coupled to the quantum field

⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (2.1)

where we employ the infrared regulator S
k

[', ⇠] = 1
2 ⇠ ·Rk

(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�
k

[', ⇠̄] = W
k

[', J ]� J ·⇠̄ � S
k

[', ⇠̄], (2.2)

with ⇠̄ = h⇠i, which satisfies the following functional integro-di↵erential equation:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�⇠̄)i�Sk[', ⇠�⇠̄]. (2.3)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [16–18]:

0 = �
,i

+�;jh⇠j
,i

i� 1
2h
⇥
(⇠�⇠̄)mR

mn

(⇠�⇠̄)n
⇤
,i

i = �
,i

+�;jh⇠j
,i

i� 1
2G

mn(R
nm

),
i

�GnpR
pm

h⇠m,
i

i;n (2.4)

where GmnG
nl

= �m
l

with G
mn

= �;mn

+ R
mn

and we have left implicit in the regulator R
k

the

dependence on the IR scale k. The flow with respect to the RG time t = log k

k0
of the e↵ective

average action �
k

is described by the equation

�̇
k

= 1
2 G

mnṘ
mn

, (2.5)
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obtained by taking a derivative with respect to t (denoted with a ”dot”) of Eq. (2.3) and using the

property that h(⇠�⇠̄)m(⇠�⇠̄)ni = Gmn. For the case of the e↵ective average action it is important

to stress that the mspWI given in Eq. (2.4) in its most general form are consistent with the flow,

since one finds [18]

Ṅ
i

= �1
2(GṘG)qp(N

i

);pq. (2.6)

where N
i

stands for the expression on the right-hand side of (2.4). In the following we shall discuss

some possible solutions of the mspWI by restricting to a class of quantum-background splits for

which the mspWI is exactly solvable. It happens that for these class of splittings the solution is

independent of the particular dynamics. As we will show, with this choice of quantum-background

split, the e↵ective average action �
k

can be written as a function of just a single field �̄(', ⇠̄) and

will be naturally covariant under field reparametrizations.

In order to solve the mspWI we first ignore the regulator terms and solve the spWI for the

standard e↵ective action without the infrared regulator. Then we shall make a specific choice for

the regulator such that also the regulator dependent part of the modified splitting Ward Identity

given in Eq. (2.4) identically vanishes.

2.2 Flat splitting and the covariant single-field dependent e↵ective action

Here we briefly recall the class of splittings which we have referred to as “flat quantum-background

split” in [24] and, in this case, discuss the solution of the unmodified splitting WI

�,
i

+�;k h⇠̄k,i i = 0, (2.7)

for the e↵ective action � [24]. This solution was obtained by requiring the average quantity h⇠j
,i

i in
this equation to be independent of the QFT model described by �, a condition that can be obtained

by requiring the linear dependence

⇠k,
i

= ↵k

i

(')� �k

ij

(') ⇠j ) h⇠k,
i

i = ↵k

i

(')� �k

ij

(') ⇠̄j = ⇠̄k,
i

. (2.8)

Obviously, h⇠j
,i

i is a function of ⇠̄j independent of the dynamics. As a consequence the splitting

Ward identity (2.7) reduces to

�,
i

+�;k ⇠̄
k,
i

= 0 (2.9)

and is integrable if the following Frobenius conditions are satisfied:


@

@'
i

+ ⇠̄k
,i

@

@⇠̄
k

,
@

@'
j

+ ⇠̄l
,j

@

@⇠̄
l

�
= 0. (2.10)

Given the choice (2.8) made for ⇠̄k
,i

, Eq. (2.10) is equivalent to

d↵k + �k

j

^ ↵j = 0, d�k

j

+ �k

l

^ �l

j

= 0, (2.11)

5

µP =
✏

12
, �2 =

8⇡2

3
✏, ⌘P = � ✏

6
, ⇣P = ⇣O =

✏

12
, (1.6)

µO =
95+17

p
33

2304
✏, �2

2 =
23
p
6+11

p
22

48
✏, �3 = 0, ⌘O = �7+

p
33

72
✏, r =

3

16
(
p
33�1).

Moreover the spectral analysis of the stability matrix is able to show the other universal quan-

tities of the system, apart from the anomalous dimensions. In particular we find two negative

eigenvalues, associated to two relevant directions, and the corresponding critical exponents:

↵1 = �2 +
✏

4
! ⌫P =

1

2
+

✏

16

↵2 = �2 +
✏

12
! ⌫O =

1

2
+

✏

48
. (1.7)
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the
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where we employ the infrared regulator Sk[', ⇠] =
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integrations as well as internal index contractions.
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2 Covariant and single-field e↵ective action

In this section we shall consider a bosonic (non-gauge) quantum field theory and search

for possibly non linear splittings of the quantum field into a background and a quantum

fluctuation which, by means of a usual path integral quantization method, leads to a

quantum e↵ective action which is manifestly background independent, i.e. can be written

as a functional of a single total field. Our goal is to obtain a description which is also

covariant, that is to find an o↵-shell e↵ective action which transforms as a scalar under

field reparameterizations. Before getting into the main discussion let us review briefly the

notion of spWI.

2.1 Splitting Ward identities

Let us consider the quantization of a bosonic theory with bare action S[�], when the field

(multiplet) �i = �i(', ⇠) is split into a background field 'i and a quantum field ⇠i. The

generator of connected n-point functions W [', J ] is a functional of the background and a

source field J
i

coupled to the quantum field ⇠i, and is given in Euclidean space by the path

integral

e�W [',J ] =

Z
D� µ(�) e�S[�]�J ·⇠. (2.1)

We have allowed for a path integral measure that depends only on the field �i and not sep-

arately on the quantum field ⇠i. Deviations from total field dependence in the measure will

be irrelevant for example when using dimensional regularization. As usual, on performing

a Legendre transform, one defines the generator of the 1PI vertices, the e↵ective action:

�[', ⇠̄] = W [', J ]� J ·⇠̄, (2.2)

with ⇠̄ = h⇠i, which in general has a dependence on both the background and the fluctuation

field. The e↵ective action satisfies the following functional integro-di↵erential equation:
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Here a semicolon “;” denotes a derivative with respect to the quantum field ⇠ while a

comma will be used for the derivative with respect to the background field ' and in general

whenever convenient we shall use the DeWitt condensed notation.

Taking a functional derivative of this equation with respect to the background field 'i

one obtains the splitting Ward identity [13–18]:
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In the next subsection we will discuss some possible quantum-background splittings

for which the above equation can be easily solved. In such cases where the Ward identity
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2.2 Flat quantum-background split

The solution to the splitting Ward identity for the e↵ective action � given in Eq. (2.4) can

be in general extremely involved with a non trivial dependence on the particular dynamics

of the model considered. The source of complication is the average quantity h⇠j
,i

i appearing
in the equation. In general this term is a highly nonlocal function of the quantum and

background fields, with an implicit dependence on the e↵ective action itself. This makes

solving the equation very di�cult if not impossible. In order to avoid this complicated

dependence of h⇠j
,i

i on the fields and the e↵ective action, it is su�cient to require ⇠j
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to

depend at most linearly on the fluctuation fields. This way we avoid two-point and higher
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is because the first order di↵erential operator acting on � in (2.6) is simply the partial
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= 0, where as in the equation

itself, the derivatives are taken keeping the total field fixed. Of course, one would obtain

the same conditions (2.7) by plugging the right hand side of (2.5) in (2.6) and imposing the

condition that the commutator of the di↵erential operator in (2.6) vanish. The solution to

the equations (2.7), which are the same as the zero torsion and curvature Cartan structure
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where f is a vector-valued function and U is a matrix-valued function of the background

field. The minus sign in the solution for ↵ is there for convenience. With the integrability

conditions (2.7), Eq. (2.5) can be solved to give
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where g is an arbitrary function. We have therefore shown that the e↵ective action �

solution of Eq. (2.6) can be considered as a function of the single field �̄k(', ⇠̄), which is

a function of the background and quantum fields in the special form given above. This

functional dependence of �̄k on 'i, ⇠̄i is the same as that in the ultraviolet theory and is

unaltered through the functional quantization procedure. From the above relations, it is

also clear that the choice g = f�1 corresponds to the boundary condition ⇠k(',') = 0
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� given in eq. (1.18). This solution was obtained by requiring the average quantity h⇠j,ii in this
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Obviously, h⇠j,ii is a function of ⇠̄j independent of the dynamics. As a consequence the splitting

Ward identity (1.18) reduces to
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Given the choice (1.17) made for ⇠̄k,i, Eq. (1.19) is equivalent to
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ij are regarded as tensor valued one-forms and look like the zero torsion and curva-
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With the integrability conditions satisfied, any functional �[�(', ⇠̄)] of the total field �(', ⇠̄), where
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where g is an arbitrary function. Using this solution the e↵ective action �, which solves Eq. (1.18),

can be expressed as a function of the single field �̄ = �(', ⇠̄), which is a function of the background

and quantum fields obtained by inverting (1.22)
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Assuming that the functions f and g are invertible, one can choose without loss of generality g =

f�1. This is equivalent to rewriting the equation in terms of the new background field '̄ = g(f('))

and dropping the bar afterwards, or choosing the boundary condition �k(', 0) = 'k. We stick to

this choice from now on. It turns out that equation (1.23) is in fact related to the splitting through

an exponential map [Exp' ⇠]i�, with the flat connection
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.13)

where we employ the infrared regulator Sk[', ⇠] =
1
2 ⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.14)

3

This splitting is an exponential map if one redefines     so that  Ua
i (') = fa

,i(')⇠

the e↵ective action as well. This is of interest for the analysis of the Higgs sector of the

standard model and its extensions. In particular it applies to the so called Higgs E↵ective

Field Theory (HEFT). We plan to study in future analyses such e↵ective field theories,

also with the full electroweak symmetry, as well as the case of supersymmetric extensions

of the SM.

We believe that our approach may prove useful also for non perturbative analysis within

the framework of the Wilsonian functional renormalization group. One of the advantages

of having a covariant and single-field dependent description is the strong constraint on the

possible operators appearing in the e↵ective action. Investigation along this direction will

be presented elsewhere.

A Exponential splitting with a flat connection

In this section we explain how the splitting introduced in section (2.2) is related to the

splitting with the exponential map. Specifically we show that for a flat torsion-free connec-

tion �k

ij

the exponential map, which includes in its expansion all powers of the fluctuation

field, can be written as a function of a simple combination of the background and fluctu-

ation field which is linear in the fluctuations. More explicitly, denoting by [Exp
'

⇠]
�

the

exponential map based on the connection �k

ij

we will show that

[Exp
'

⇠]i
�

⌘ 'i + ⇠i �
1X

n=2

1

n!
�i

i1i2...in
(') ⇠i1 · · · ⇠in =

⇥
f�1 (f(') + @f⇠)

⇤
i

, (A.1)

where f is a coordinate transformation function under which the connection �k

ij

vanishes,

and �i

i1i2...in
are the covariant derivatives of the connection ignoring the upper index i. To

show this, we need to express the connection in terms of the function f . The flat connection

is the one generated from the vanishing connection by the transformation xi ! x0i

x0i = f�1(x), Ū i

a

=
@x0i

@xa
. (A.2)

This is found in the following way
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(Ū�1)b
j

=
@x0k

@xb
@xb

@x0i@x0j
= (f�1)k,

b

f b,
ij

⌘ �k

ij

(x). (A.3)

An expansion in the fluctuation field of the function on the right hand side of Eq. (A.1)

gives

⇥
f�1 (f(') + @f⇠)

⇤
i

=
1X

n=0

1

n!
(f�1)i,

i1···in
��
f(')

f i1,
j1 · · · f in,

jn ⇠j1 · · · ⇠jn , (A.4)

where f ik,
jk are evaluated at the background. It is easy to see that the first two terms in

this expansion match those in (A.1)

(f�1)i(f(')) = 'i, (f�1),i
k

(f(')) fk,
j

(') = �i
j

, (A.5)
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.14)

where we employ the infrared regulator Sk[', ⇠] =
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2 ⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.
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Covariance

11

We have therefore obtained an effective action which is

• covariant: field obtained by a geodesic construction from  
                                      a base point (background) and 
                                      a quantum field (vector)

• dependent on a total field (background independent) thanks to the flat connection.

The covariance and single-field properties of the e↵ective action are therefore summarized

in the following equation

�
G

0
,f

0 [�0] = �
G,f

[�], (or �0[�0] = �[�], �0 ⌘ �
G

0
,f

0 , � ⌘ �
G,f

) (2.14)

where we have made explicit the dependence of the e↵ective action on G which represents

not only the metric but all the field-space tensors present in the ultraviolet action S
G

[�],

and also the dependence on the flat connection through the function f .

Let us stress here that in such a case the vector ⇠, which satisfies also Eq. (A.13), is

generically written as

⇠k(',�) =
⇥
(@f('))�1

⇤
k

a

[fa(�)� fa(')] (2.15)

and transforms covariantly. In particular it can be seen originating from a standard linear

splitting (corresponding to the case f = id) followed by a reparameterization of the fields.

The covariant dependence on f , as well as the dependence in the total field only, can also

be seen explicitely by rewriting Eq. (2.3) as

e��[

¯

�] =

Z
D� µ(�) e

�S[�]+

��
��̄i

[(@f)�1
(f(

¯

�))]i
a
[f(�)�f(

¯

�)]a
, (2.16)

from which one can directly see that this expression can be obtained also performing

a change of variable on the case of the standard linear splitting (f = id) according to

Eq. (2.12). As we will show in the next Sections we shall be able to give a prescription for

the choice of the function f which allows for the UV symmetries to be preserved, making

the dependence of the e↵ective action � on f not an issue.

2.4 One-loop e↵ective action

We will demonstrate the rather abstract ideas of the previous sections through the explicit

computation of the e↵ective action at one-loop. The general expression for the one-loop

e↵ective action in the background-field formalism is

�1�loop = S[�] + i

2

Tr logS(2)[�] (2.17)

where S(2) is the second fluctuation derivative of the ultraviolet action. Before entering

into the explicit computation of S(2) for flat splitting, let us consider a general split �(', ⇠).

In this case the quantity S(2) can be written as

S
;ij

[�(', ⇠)] = S,
pq

�p

;i

�q

;j

+ S,
p

�p

;ij

. (2.18)

Now let us consider an exponential splitting with an arbitrary connection whose first few

terms in an expansion in ⇠ are

�i = 'i + ⇠i � 1

2

�i

pq

(') ⇠p⇠q + · · · (2.19)

Using this expansion in (2.18) one can see the well known fact that at leading order, setting

⇠ = 0 in a ⇠ expansion, the second fluctuation derivative of the action is nothing but its

second covariant derivative at the background

S
;ij

['] = r
i

r
j

S[']. (2.20)
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It is possible to write all in terms of the total field.
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�[�̄] (1.14)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.15)

3

or �k(', 0) = 'k. In such a case the quantum-background split introduced here is in

fact related to the exponential map [Exp
'

⇠]
�

, defined with a flat connection �k

ij

. This is

discussed explicitly in Appendix A, where we show that the construction is associated to

the flat connection3

�k

ij

= (f�1)k,
b

f b,
ij

= �(f�1),k
ab

fa,
i

f b,
j

(2.10)

and therefore give it the name “flat splitting”.

2.3 Covariance

We want to stress that this “exponential” splitting can be used to define an e↵ective action

covariant with respect to field reparametrization. This can be seen without referring to the

exponential expansion. Under a coordinate transformation h the total field is expected to

transform as � ! h(�)

(f�1)i (f(') + U⇠) ! h((f�1)i (f(') + U⇠))

= ((f �h�1)�1)i
�
(f �h�1)(h(')) + U(@h)�1@h⇠

�
. (2.11)

This means that � ! h(�) follows from

' ! h('), ⇠ ! @h ⇠, f ! f �h�1, U ! U(@h)�1. (2.12)

In particular, the quantum field ⇠ is seen to transform linearly under a change of coordi-

nates. This implies that the e↵ective action is invariant under the above transformations,

i.e. it is covariant. According to the single-field property of the e↵ective action the back-

ground and fluctuation dependencies are collected into its dependence on the total field �.

However there can in principle be a separate dependence on the function f , or equivalently

the flat connection we have introduced. This is explicitly seen in the one-loop e↵ective

action discussed in the next subsection. Also, a U dependence can appear only implicitly

through �. The reason is that the ultraviolet action has a symmetry ⇠ ! A⇠, U ! UA�1,

where A is any matrix valued function of the background. This is also a symmetry of the

e↵ective action, so a supposed explicit U dependence would be removed by such a transfor-

mation with A = U , and therefore it cannot appear explicitly. For this reason any choice

for the matrix U which has the right transformation property given in (2.12) will do the

job. In particular U = @f is a natural choice in the sense that it is related to the already

existing function f , and transforms in the correct way under a field redefinition. This

choice also leads exactly to the exponential splitting with a flat connection as discussed in

the appendix. So, except for the next subsection where we would like to show explicitly

how U drops out in the final expression for the one-loop e↵ective action, for the rest of the

paper we will stick to this choice, and by “flat splitting” we refer to

�k(', ⇠) = (f�1)k
⇥
fa(') + f,a

i

(') ⇠i
⇤
. (2.13)

3
For quantities depending on a single field, a comma should be understood as the derivative with respect

to their argument.
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existing function f , and transforms in the correct way under a field redefinition. This

choice also leads exactly to the exponential splitting with a flat connection as discussed in

the appendix. So, except for the next subsection where we would like to show explicitly

how U drops out in the final expression for the one-loop e↵ective action, for the rest of the

paper we will stick to this choice, and by “flat splitting” we refer to

�k(', ⇠) = (f�1)k
⇥
fa(') + f,a

i

(') ⇠i
⇤
. (2.13)

3
For quantities depending on a single field, a comma should be understood as the derivative with respect

to their argument.
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This family of splitting can be obtained by a linear splitting and a change of variable!

f
parameterization is chosen independently on the dynamics.



One loop effective action

12

How covariance and background independence are maintained at one loop? 

Some factors are cancelled by the Jacobian

µP =
✏

12
, �2 =

8⇡2

3
✏, ⌘P = � ✏

6
, ⇣P = ⇣O =

✏

12
, (1.6)

µO =
95+17

p
33

2304
✏, �2

2 =
23

p
6+11

p
22

48
✏, �3 = 0, ⌘O = �7+

p
33

72
✏, r =

3

16
(
p
33�1).

Moreover the spectral analysis of the stability matrix is able to show the other universal quan-

tities of the system, apart from the anomalous dimensions. In particular we find two negative

eigenvalues, associated to two relevant directions, and the corresponding critical exponents:

↵1 = �2 +
✏

4
! ⌫P =

1

2
+

✏

16

↵2 = �2 +
✏

12
! ⌫O =

1

2
+

✏

48
. (1.7)

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�⇠̄)i�Sk[', ⇠�⇠̄] (1.8)

Sk[', ⇠] =
1
2 ⇠ ·Rk(')·⇠ (1.9)

0 = �,i+�;jh⇠j,ii�
1
2h
⇥
(⇠�⇠̄)mRmn(⇠�⇠̄)n

⇤
,i
i = �,i+�;jh⇠j,ii�

1
2G

mn(Rnm),i�GnpRpmh⇠m,i i;n (1.10)

�[�(', ⇠)] (1.11)

�i(', ⇠) =
⇥
f�1 (f(') + U⇠)

⇤i
(1.12)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.13)

where we employ the infrared regulator Sk[', ⇠] =
1
2 ⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.14)

3

One may expect that for ⇠ 6= 0 this relation generalizes to

S
;ij

[�] = r
p

r
q

S[�]�p

;i

�q

;j

. (2.21)

This is in fact not the case, and it is important to notice that (2.21) does not necessarily

continue to hold beyond leading order. Instead, as we will now see, for flat splitting this

identity is valid at all orders in the fluctuation field, that is, at the level of the full (total)

field. In this case from the general relation (2.18) and the explicit form of flat splitting

�i(', ⇠) = (f�1)i (f(') + U⇠) (2.22)

and its first two derivatives

�p

;i

= (f�1)p
,a

(f(�))Ua

i

('), �p

;ij

= (f�1)p
,ab

(f(�))Ua

i

(')U b

j

(') (2.23)

we have

S
;ij

[�(', ⇠)] = S,
p

(f�1)p,
mn

Um

i

Un

j

+ S,
pq

(f�1)p,
m

Um

i

(f�1)q,
n

Un

j

=
⇥
S,

pq

��k

pq

S,
k

⇤
(f�1)p,

m

Um

i

(f�1)q,
n

Un

j

= r
p

r
q

S (f�1)p,
m

Um

i

(f�1)q,
n

Un

j

, (2.24)

where here the connection �k

pq

is defined in Eq. (2.10). In the above, the argument of the

derivatives of (f�1)p is f(�), and the argument of f is �. Recall that in this case a comma

denotes di↵erentiation with respect to the single argument �. We stress that �k

ij

is a flat

connection which vanishes after a change of coordinates by f : For a general transformation

Ū , a connection Ck

ij

, considered also as a matrix-valued one-form (C
i

)k
j

, transforms as

Ck

ij

! (Ū�1)a
i

Ū [C
a

+ @
a

] Ū�1. (2.25)

So a vanishing connection will be transformed to

0 ! (Ū�1)a
i

Ū [0 + @
a

] Ū�1 = (Ū�1)a
i

Ūk

b

@
a

(Ū�1)b
j

= �(Ū�1)a
i

(Ū�1)b
j

@
a

Ūk

b

(2.26)

therefore, under the coordinate transformation xi ! x0i = (f�1)i(x), we have Ū i

a

=

@x0i/@xa and the resulting connection will be

0 ! �@xa

@x0i
@xb

@x0j
@x0k

@xa@xb
⌘ �k

ij

(x). (2.27)

The factor on the r.h.s of (2.24) is canceled by the Jacobian

��i

�⇠p
= (f�1)i,

a

Ua

p

(2.28)

and therefore the one-loop e↵ective action is given by

�1�loop

f

[�] = S[�] + i

2

Tr log
h
S,

ij

��k

ij

S,
k

i
. (2.29)

Notice that for the case of an exponential expansion with a flat connection U = @f('), the

Jacobian and the extra term on the r.h.s of (2.24) does not equal identity because (f�1)i,
a
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This is in fact not the case, and it is important to notice that (2.21) does not necessarily

continue to hold beyond leading order. Instead, as we will now see, for flat splitting this
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and its first two derivatives
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;ij

= (f�1)p
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we have
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;ij
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p

(f�1)p,
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Un

j
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pq
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pq

S,
k

⇤
(f�1)p,

m

Um

i

(f�1)q,
n

Un

j

= r
p

r
q

S (f�1)p,
m

Um

i

(f�1)q,
n

Un

j

, (2.24)

where here the connection �k

pq

is defined in Eq. (2.10). In the above, the argument of the

derivatives of (f�1)p is f(�), and the argument of f is �. Recall that in this case a comma

denotes di↵erentiation with respect to the single argument �. We stress that �k

ij

is a flat

connection which vanishes after a change of coordinates by f : For a general transformation

Ū , a connection Ck

ij

, considered also as a matrix-valued one-form (C
i

)k
j

, transforms as

Ck

ij

! (Ū�1)a
i

Ū [C
a

+ @
a

] Ū�1. (2.25)

So a vanishing connection will be transformed to

0 ! (Ū�1)a
i

Ū [0 + @
a

] Ū�1 = (Ū�1)a
i

Ūk

b

@
a

(Ū�1)b
j

= �(Ū�1)a
i

(Ū�1)b
j

@
a

Ūk

b

(2.26)

therefore, under the coordinate transformation xi ! x0i = (f�1)i(x), we have Ū i

a

=

@x0i/@xa and the resulting connection will be

0 ! �@xa

@x0i
@xb

@x0j
@x0k

@xa@xb
⌘ �k

ij

(x). (2.27)

The factor on the r.h.s of (2.24) is canceled by the Jacobian

��i

�⇠p
= (f�1)i,

a

Ua

p

(2.28)

and therefore the one-loop e↵ective action is given by

�1�loop

f

[�] = S[�] + i

2

Tr log
h
S,

ij

��k

ij

S,
k

i
. (2.29)

Notice that for the case of an exponential expansion with a flat connection U = @f('), the

Jacobian and the extra term on the r.h.s of (2.24) does not equal identity because (f�1)i,
a
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One loop correction: one need the second fluctuation derivative

One may expect that for ⇠ 6= 0 this relation generalizes to

S
;ij

[�] = r
p

r
q

S[�]�p

;i

�q

;j

. (2.21)

This is in fact not the case, and it is important to notice that (2.21) does not necessarily

continue to hold beyond leading order. Instead, as we will now see, for flat splitting this

identity is valid at all orders in the fluctuation field, that is, at the level of the full (total)

field. In this case from the general relation (2.18) and the explicit form of flat splitting

�i(', ⇠) = (f�1)i (f(') + U⇠) (2.22)

and its first two derivatives

�p

;i

= (f�1)p
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(f(�))Ua

i

('), �p

;ij

= (f�1)p
,ab
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(') (2.23)

we have
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;ij
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p

(f�1)p,
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Um
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Un

j

+ S,
pq

(f�1)p,
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Um

i

(f�1)q,
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Un

j

=
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S,

pq

��k

pq

S,
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(f�1)p,
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Um
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(f�1)q,
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Un

j
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p

r
q

S (f�1)p,
m

Um
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(f�1)q,
n

Un

j

, (2.24)

where here the connection �k

pq

is defined in Eq. (2.10). In the above, the argument of the

derivatives of (f�1)p is f(�), and the argument of f is �. Recall that in this case a comma

denotes di↵erentiation with respect to the single argument �. We stress that �k

ij

is a flat

connection which vanishes after a change of coordinates by f : For a general transformation

Ū , a connection Ck

ij

, considered also as a matrix-valued one-form (C
i

)k
j

, transforms as

Ck

ij

! (Ū�1)a
i

Ū [C
a

+ @
a

] Ū�1. (2.25)

So a vanishing connection will be transformed to

0 ! (Ū�1)a
i

Ū [0 + @
a

] Ū�1 = (Ū�1)a
i

Ūk

b

@
a

(Ū�1)b
j

= �(Ū�1)a
i

(Ū�1)b
j

@
a

Ūk

b

(2.26)

therefore, under the coordinate transformation xi ! x0i = (f�1)i(x), we have Ū i

a

=

@x0i/@xa and the resulting connection will be

0 ! �@xa

@x0i
@xb

@x0j
@x0k

@xa@xb
⌘ �k

ij

(x). (2.27)

The factor on the r.h.s of (2.24) is canceled by the Jacobian

��i

�⇠p
= (f�1)i,

a

Ua

p

(2.28)

and therefore the one-loop e↵ective action is given by

�1�loop

f

[�] = S[�] + i

2

Tr log
h
S,

ij

��k

ij

S,
k

i
. (2.29)

Notice that for the case of an exponential expansion with a flat connection U = @f('), the

Jacobian and the extra term on the r.h.s of (2.24) does not equal identity because (f�1)i,
a
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p
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p
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(
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Moreover the spectral analysis of the stability matrix is able to show the other universal quan-

tities of the system, apart from the anomalous dimensions. In particular we find two negative

eigenvalues, associated to two relevant directions, and the corresponding critical exponents:

↵
1

= �2 +
✏

4
! ⌫P =

1

2
+

✏

16

↵
2

= �2 +
✏

12
! ⌫O =

1

2
+

✏

48
. (1.7)

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠] (1.8)

Sk[', ⇠] =
1

2

⇠ ·Rk(')·⇠ (1.9)

0 = �,i+�
;jh⇠j,ii�

1

2

h
⇥
(⇠�⇠̄)mRmn(⇠�⇠̄)n

⇤
,i
i = �,i+�

;jh⇠j,ii�
1

2

Gmn(Rnm),i�GnpRpmh⇠m,i i;n (1.10)

�[�(', ⇠)] (1.11)

�i(', ⇠) =
⇥
f�1 (f(') + U⇠)

⇤i
(1.12)

�k
ij = �k

ij = (f�1)k,b f
b,ij = �(f�1),kab f

a,i f
b,j (1.13)

�[�̄] (1.14)

�1�loop

f [�] = S[�] + ~
2

Tr log
h
S,ij ��k

ijS,k

i
. (1.15)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

3

Even doing a computation at background level one can reconstruct 
the full field dependence (and the dependence at all order in the fluctuations)
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Denote with     all the tensors characterizing the effective action. 
Consider a transformation

Therefore in this covariant background independent construction we can state

A symmetry is preserved by quantization in the effective action iff it is linearizable

The covariance and single-field properties of the e↵ective action are therefore summarized

in the following equation

�
G

0
,f

0 [�0] = �
G,f

[�], (or �0[�0] = �[�], �0 ⌘ �
G

0
,f

0 , � ⌘ �
G,f

) (2.14)

where we have made explicit the dependence of the e↵ective action on G which represents

not only the metric but all the field-space tensors present in the ultraviolet action S
G

[�],

and also the dependence on the flat connection through the function f .

Let us stress here that in such a case the vector ⇠, which satisfies also Eq. (A.13), is

generically written as

⇠k(',�) =
⇥
(@f('))�1

⇤
k

a

[fa(�)� fa(')] (2.15)

and transforms covariantly. In particular it can be seen originating from a standard linear

splitting (corresponding to the case f = id) followed by a reparameterization of the fields.

The covariant dependence on f , as well as the dependence in the total field only, can also

be seen explicitely by rewriting Eq. (2.3) as

e��[

¯

�] =

Z
D� µ(�) e

�S[�]+

��
��̄i

[(@f)�1
(f(

¯

�))]i
a
[f(�)�f(

¯

�)]a
, (2.16)

from which one can directly see that this expression can be obtained also performing

a change of variable on the case of the standard linear splitting (f = id) according to

Eq. (2.12). As we will show in the next Sections we shall be able to give a prescription for

the choice of the function f which allows for the UV symmetries to be preserved, making

the dependence of the e↵ective action � on f not an issue.

2.4 One-loop e↵ective action

We will demonstrate the rather abstract ideas of the previous sections through the explicit

computation of the e↵ective action at one-loop. The general expression for the one-loop

e↵ective action in the background-field formalism is

�1�loop = S[�] + i

2

Tr logS(2)[�] (2.17)

where S(2) is the second fluctuation derivative of the ultraviolet action. Before entering

into the explicit computation of S(2) for flat splitting, let us consider a general split �(', ⇠).

In this case the quantity S(2) can be written as

S
;ij

[�(', ⇠)] = S,
pq

�p

;i

�q

;j

+ S,
p

�p

;ij

. (2.18)

Now let us consider an exponential splitting with an arbitrary connection whose first few

terms in an expansion in ⇠ are

�i = 'i + ⇠i � 1

2

�i

pq

(') ⇠p⇠q + · · · (2.19)

Using this expansion in (2.18) one can see the well known fact that at leading order, setting

⇠ = 0 in a ⇠ expansion, the second fluctuation derivative of the action is nothing but its

second covariant derivative at the background

S
;ij

['] = r
i

r
j

S[']. (2.20)
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G

Because of covariance:

It is a symmetry if: G0 = G

Eqs. (2.32) and (2.34) match. This is clearly seen to be true if the connection is flat, so

that the covariant derivatives commute.

The aim of the above discussion was to see explicitly the source of violation of single-

field dependence due to an exponential splitting based on a non-flat connection. Of course,

taking advantage of the covariance of the e↵ective action, there is a more general and even

easier way to see its single-field dependence. In fact one can move to a coordinate system

where the flat connection vanishes. This leads to the linear splitting which gives rise to a

single-field e↵ective action. Then, moving back to the original coordinates just changes the

quantum-background dependence of the single total field and generates flat connections,

i.e. changes ordinary derivatives to covariant derivatives.

2.6 Symmetries of the e↵ective action

The argument so far describes a quantization procedure which leads to a covariant and

manifestly background-independent e↵ective action. It is now natural to ask whether a

symmetry of the ultraviolet action is also preserved in the e↵ective action. To address

this question let us take a look at the covariance relation (2.14), which tells us how the

e↵ective action changes under a general field transformation. If we further assume that the

transformation denoted by a prime is a symmetry of the ultraviolet action, i.e. S
G

[�0] =

S
G

[�] or equivalently G0 = G, then the covariance relation (2.14) reduces to

�
G,f

0 [�0] = �
G,f

[�]. (2.35)

This is not exactly the symmetry property of the ultraviolet action because the flat con-

nection present as an extra object in the e↵ective action, has to be transformed as well.

The symmetry (2.35) present in the infrared takes the same form as that in the ultraviolet

action if and only if the connection coe�cients are also invariant, i.e. �0k
ij

= �k

ij

, or more

explicitly

�k

ij

(�0) = �0k
ij

(�0), �k

ij

(�0) = (Ū�1)l
i

Ū [�
l

(�) + @
l

] Ū�1, Ū i

j

=
@�0i

@�j

. (2.36)

Given a connection, the solution to this equation gives the set of transformations that, if

present as symmetries in the ultraviolet, will also leave the e↵ective action invariant. It

is easy to solve this equation for a flat connection. In such a case one can simply move

to a coordinate system where the connection coe�cients vanish �k

ij

= 0, in which case the

symmetry identity for the Christo↵el symbols reduces to

(Ū�1)a
i

Ū@
a

Ū�1 = 0 or @
a

Ū�1 = 0 or
@2�i

@�0a@�0b = 0. (2.37)

This is simply saying that the symmetry transformations in the coordinates where the

connection coe�cients vanish must be linear. This gives us a criterion for the preservation of

the symmetries in the e↵ective action: a symmetry is preserved in the e↵ective action if and

only if it is linearizable, i.e. if there exists a choice of coordinates which transforms linearly

under the symmetry, and if we choose our flat connection to vanish in this coordinate
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� ! �0
There is an extra dependence in f 
because of the flat connection
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Given a connection, the solution to this equation gives the set of transformations that, if

present as symmetries in the ultraviolet, will also leave the e↵ective action invariant. It

is easy to solve this equation for a flat connection. In such a case one can simply move

to a coordinate system where the connection coe�cients vanish �k
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= 0, in which case the

symmetry identity for the Christo↵el symbols reduces to
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a
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This is simply saying that the symmetry transformations in the coordinates where the

connection coe�cients vanish must be linear. This gives us a criterion for the preservation of

the symmetries in the e↵ective action: a symmetry is preserved in the e↵ective action if and

only if it is linearizable, i.e. if there exists a choice of coordinates which transforms linearly

under the symmetry, and if we choose our flat connection to vanish in this coordinate
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In the reference frame of zero connection the 
transformation must be of first order in the fields

µP =
✏

12
, �2 =

8⇡2

3
✏, ⌘P = � ✏

6
, ⇣P = ⇣O =

✏

12
, (1.6)

µO =
95+17

p
33

2304
✏, �2

2

=
23
p
6+11

p
22

48
✏, �

3

= 0, ⌘O = �7+
p
33

72
✏, r =

3

16
(
p
33�1).

Moreover the spectral analysis of the stability matrix is able to show the other universal quan-

tities of the system, apart from the anomalous dimensions. In particular we find two negative

eigenvalues, associated to two relevant directions, and the corresponding critical exponents:

↵
1

= �2 +
✏

4
! ⌫P =

1

2
+

✏

16

↵
2

= �2 +
✏

12
! ⌫O =

1

2
+

✏

48
. (1.7)

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠] (1.8)

Sk[', ⇠] =
1

2

⇠ ·Rk(')·⇠ (1.9)

0 = �,i+�
;jh⇠j,ii�

1

2

h
⇥
(⇠�⇠̄)mRmn(⇠�⇠̄)n

⇤
,i
i = �,i+�

;jh⇠j,ii�
1

2

Gmn(Rnm),i�GnpRpmh⇠m,i i;n (1.10)

�[�(', ⇠)] (1.11)

�i(', ⇠) =
⇥
f�1 (f(') + U⇠)

⇤i
(1.12)

�k
ij = �k

ij = (f�1)k,b f
b,ij = �(f�1),kab f

a,i f
b,j (1.13)

�[�̄] (1.14)

�1�loop

f [�] = S[�] + ~
2

Tr log
h
S,ij ��k

ijS,k

i
. (1.15)

0 = ��k
ij(�

0) =
@�0a

@�i

@�0b

@�j

@�k

@�0a@�0b . (1.16)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

3

but also:

But when a symmetry is linearizable?

A symmetry group     acting on a field manifold    

When are preserved?
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if the group H has a fixed point in M, then at least in a neighbourhood of this point 
there is a choice of coordinates on which the group H acts linearly 

In any case the action of the symmetry group is linearizable!

Consider a field manifold M and a symmetry group H acting on M

The CWZ lemma states: Coleman,Wess, Zumino

In this frame the fixed point has zero field coordinates

Are there interesting non trivial cases?

The fixed point may lie in the natural frame of interest outside the manifold! 
For example at infinity. So we consider

- the possibility to extend the manifold M in order to have a fixed point of H
- the possibility to remove from the manifold M the fixed point under the action of H

A QFT is instead linearizable requiring more! 
The action must be well defined in the linear coordinate system.

Example:  
O(N) non linear sigma model has a target manifold          and a non linearizable symmetry.  
Adding an extra field to have a cylindrical target manifold                  the manifold can be 
extendend to have the fixed point.

field spaces with the topology of a cylinder R⇥ SN�1.

An O(N) invariant theory of N scalars defined on a space with cylindrical topology

provides an example of a nonlinearizable symmetry that is preserved in the e↵ective action.

There are also examples of nonlinearizable symmetries such as an O(N) invariant theory

defined on the (N � 1)–sphere, for which the symmetry is not preserved in the e↵ective

action. However, generally, theories of the second type can be turned into the first type

by adding extra (neutral) degrees of freedom, i.e. embedding them in higher dimensional

spaces. Choosing the extra degrees of freedom to be decoupled from the original ones, the

physical content and universal critical properties of the original lower dimensional (target

space) theory can be extracted from the higher dimensional theory whose symmetry is

preserved in the e↵ective action.

Finally we find it instructive to work out the infinitesimal form of the identity (2.35).

This consists of two pieces, one is the variation of the e↵ective action �
�

� under an in-

finitesimal change �̄ ! �̄ + ��̄ in the field, and the other is �
f

� which is the result of the

infinitesimal variation f ! f � ��̄ @f induced by the corresponding change in the field.

The latter can be easily computed from the identity (2.16). The infinitesimal version of

(2.35) then takes the form

��

��̄
(@f)�1(f(�̄)) h(@f)(�) ��i = 0. (2.38)

For the special case where f is the identity function, that is where the splitting reduces to

the standard linear one, the identity above takes the familiar form

��

��̄
h��i = 0, (2.39)

which is nothing but the usual Ward identity corresponding to the symmetry � ! �+ ��.

3 A couple of explicit examples

We shall discuss here two simple examples. The first is the case of a single scalar field theory

for which a kinetic term can always be put in a canonical form by a suitable redefinition of

the fields. Then we briefly discuss some aspects of the linear O(2) model with a flat target

space wherein some extra features of the background-fluctuation splitting can be shown in

this covariant formalism.

3.1 The case of one field

In order to illustrate the approach in the simplest terms let us take as an example the

following sigma model with a single scalar field

S[�] =

Z

x

⇥
1

2

J(�) @
µ

�@µ�� V (�)
⇤
. (3.1)

where we consider here, as well as in what follows, a space-time with a Lorentzian (mostly

minus) signature. The action (3.1) is the most general scalar theory with at most two

derivatives.
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derivatives.

– 12 –



Possible applications

15

Setting           to be constant (cylynder topology                  )  
one has a model which has the same universality class as the non linear model 
and the action of the symmetry group is linearizable.

Note also that one can consider a theory with a non flat target space and use a flat 
connection for the splitting. In such a case while the covariance and single field 
dependence are maintained, the non linear symmetry is broken.

Example:  
O(N) non linear sigma model has a target manifold          and a non linearizable symmetry.  
Adding an extra field to have a cylindrical target manifold                  the manifold can be 
extendend to have the fixed point.
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derivatives.
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5 O(N) E↵ective Field Theory

In this section we apply the ideas developed in previous sections to an e↵ective field theory

of N scalars, with O(N) symmetry. Instead of working in a completely general coordinate

system ,we choose to do the analysis in the “polar” coordinates, which makes the O(N)

symmetry manifest. In the polar coordinate system, N � 1 fields �↵, interpreted as “an-

gular” fields, are used to parametrize the orbits of O(N), and the extra “radial” field h,

which is invariant under O(N), parametrizes di↵erent orbits. The angular fields transform

nonlinearly under O(N), and are left unspecified throughout the section.

We emphasise that the topology of field space is also left arbitrary. The particular

case of N = 4 leads to an e↵ective field theory of the Higgs scalar with custodial symmetry

called Higgs e↵ective field theory (HEFT) in [20].

Our goal will be to compute the one loop divergences of the e↵ective action in dimen-

sional regularization and discuss its di↵erent properties including covariance, single-field

dependence, and symmetry properties, expected from the discussions in Section 2.

To be specific, let us consider the model defined by the following action which contains

derivatives up to second order

L =
1

2
@
µ

h@µh+
1

2
F 2(h) g

↵�

(�)@
µ

�↵@µ�� � V (h), (5.1)

where g
↵�

is the O(N) invariant metric on the unit (N � 1)–sphere. It is convenient to

introduce in the (h,�↵) space, the O(N) invariant metric

G
ij

=

 
1 0

0 F 2(h)g
↵�

(�)

!
, (5.2)

which characterizes the kinetic term in (5.1). Clearly the special choice F (h) = h leads

to a flat metric which is simply a polar reparametrization of the identity metric in the

linearly transforming coordinate system. According to our prescription, in order to have

a covariant single-field e↵ective action which inherits the O(N) symmetry of (5.1), this

is the flat metric that has to be used to construct the geodesics defining the exponential

splitting.

The nonzero components of the connection �̃k

ij

compatible with (5.2) are given by

�̃0

↵�

= �FF 0g
↵�

, �̃↵

0�

= (F 0/F ) �↵
�

, �̃�

↵�

= (�
g

)�
↵�

(5.3)

where (�
g

)�
↵�

is the connection compatible with the metric g
↵�

. The di↵erence between

this connection and the flat one �k

ij

given by F (h) = h appears in the expression (4.6) for

the second derivative of the action. The nonzero components of ��̃k

ij

= �̃k

ij

� �k

ij

are given

by

��̃0

↵�

= �(FF 0 � h)g
↵�

, ��̃↵

0�

= (F 0/F � 1/h) �↵
�

= ((F 0h� F )/Fh) �↵
�

. (5.4)

Also, the Riemann and Ricci tensors associated with (5.2) appear in the expression for the

one-loop divergences of the e↵ective action in two and four dimensions. For later use, we
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F (h)

field spaces with the topology of a cylinder R⇥ SN�1.

An O(N) invariant theory of N scalars defined on a space with cylindrical topology

provides an example of a nonlinearizable symmetry that is preserved in the e↵ective action.

There are also examples of nonlinearizable symmetries such as an O(N) invariant theory

defined on the (N � 1)–sphere, for which the symmetry is not preserved in the e↵ective

action. However, generally, theories of the second type can be turned into the first type

by adding extra (neutral) degrees of freedom, i.e. embedding them in higher dimensional

spaces. Choosing the extra degrees of freedom to be decoupled from the original ones, the

physical content and universal critical properties of the original lower dimensional (target

space) theory can be extracted from the higher dimensional theory whose symmetry is

preserved in the e↵ective action.

Finally we find it instructive to work out the infinitesimal form of the identity (2.35).

This consists of two pieces, one is the variation of the e↵ective action �
�

� under an in-

finitesimal change �̄ ! �̄ + ��̄ in the field, and the other is �
f

� which is the result of the

infinitesimal variation f ! f � ��̄ @f induced by the corresponding change in the field.

The latter can be easily computed from the identity (2.16). The infinitesimal version of

(2.35) then takes the form

��

��̄
(@f)�1(f(�̄)) h(@f)(�) ��i = 0. (2.38)

For the special case where f is the identity function, that is where the splitting reduces to

the standard linear one, the identity above takes the familiar form

��

��̄
h��i = 0, (2.39)

which is nothing but the usual Ward identity corresponding to the symmetry � ! �+ ��.

3 A couple of explicit examples

We shall discuss here two simple examples. The first is the case of a single scalar field theory

for which a kinetic term can always be put in a canonical form by a suitable redefinition of

the fields. Then we briefly discuss some aspects of the linear O(2) model with a flat target

space wherein some extra features of the background-fluctuation splitting can be shown in

this covariant formalism.

3.1 The case of one field

In order to illustrate the approach in the simplest terms let us take as an example the

following sigma model with a single scalar field

S[�] =

Z

x

⇥
1

2

J(�) @
µ

�@µ�� V (�)
⇤
. (3.1)

where we consider here, as well as in what follows, a space-time with a Lorentzian (mostly

minus) signature. The action (3.1) is the most general scalar theory with at most two
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2 Covariant and single-field e↵ective action

In this section we shall consider a bosonic (non-gauge) quantum field theory and search

for possibly non linear splittings of the quantum field into a background and a quantum

fluctuation which, by means of a usual path integral quantization method, leads to a

quantum e↵ective action which is manifestly background independent, i.e. can be written

as a functional of a single total field. Our goal is to obtain a description which is also

covariant, that is to find an o↵-shell e↵ective action which transforms as a scalar under

field reparameterizations. Before getting into the main discussion let us review briefly the

notion of spWI.

2.1 Splitting Ward identities

Let us consider the quantization of a bosonic theory with bare action S[�], when the field

(multiplet) �i = �i(', ⇠) is split into a background field 'i and a quantum field ⇠i. The

generator of connected n-point functions W [', J ] is a functional of the background and a

source field J
i

coupled to the quantum field ⇠i, and is given in Euclidean space by the path

integral

e�W [',J ] =

Z
D� µ(�) e�S[�]�J ·⇠. (2.1)

We have allowed for a path integral measure that depends only on the field �i and not sep-

arately on the quantum field ⇠i. Deviations from total field dependence in the measure will

be irrelevant for example when using dimensional regularization. As usual, on performing

a Legendre transform, one defines the generator of the 1PI vertices, the e↵ective action:

�[', ⇠̄] = W [', J ]� J ·⇠̄, (2.2)

with ⇠̄ = h⇠i, which in general has a dependence on both the background and the fluctuation

field. The e↵ective action satisfies the following functional integro-di↵erential equation:

e��[',

¯

⇠] =

Z
D� µ(�) e�S[�]+�;i(⇠�¯

⇠)

i
. (2.3)

Here a semicolon “;” denotes a derivative with respect to the quantum field ⇠ while a

comma will be used for the derivative with respect to the background field ' and in general

whenever convenient we shall use the DeWitt condensed notation.

Taking a functional derivative of this equation with respect to the background field 'i

one obtains the splitting Ward identity [13–18]:

�
,i

+ �
;j

h⇠j
,i

i = 0. (2.4)

In the next subsection we will discuss some possible quantum-background splittings

for which the above equation can be easily solved. In such cases where the Ward identity

is solved the e↵ective action can be explicitly written in terms of a total field �̄(', ⇠̄), with

no extra background dependence.
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Is it possible to keep the properties of the previous solution in the case 
of the IR regulated object? 

µP =
✏

12
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8⇡2

3
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6
, ⇣P = ⇣O =
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12
, (1.6)

µO =
95+17

p
33

2304
✏, �2

2

=
23

p
6+11

p
22

48
✏, �

3

= 0, ⌘O = �7+
p
33

72
✏, r =

3

16
(
p
33�1).

Moreover the spectral analysis of the stability matrix is able to show the other universal quan-

tities of the system, apart from the anomalous dimensions. In particular we find two negative

eigenvalues, associated to two relevant directions, and the corresponding critical exponents:

↵
1

= �2 +
✏

4
! ⌫P =

1

2
+

✏

16

↵
2

= �2 +
✏

12
! ⌫O =

1

2
+

✏

48
. (1.7)

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠] (1.8)

Sk[', ⇠] =
1

2

⇠ ·Rk(')·⇠ (1.9)

0 = �,i+�
;jh⇠j,ii�

1

2

h
⇥
(⇠�⇠̄)mRmn(⇠�⇠̄)n

⇤
,i
i = �,i+�

;jh⇠j,ii�
1

2

Gmn(Rnm),i�GnpRpmh⇠m,i i;n (1.10)

�[�(', ⇠)] (1.11)

�i(', ⇠) =
⇥
f�1 (f(') + U⇠)

⇤i
(1.12)

�k
ij = �k

ij = (f�1)k,b f
b,ij = �(f�1),kab f

a,i f
b,j (1.13)

�[�̄] (1.14)

�1�loop

f [�] = S[�] + ~
2

Tr log
h
S,ij ��k

ijS,k

i
. (1.15)

0 = ��k
ij(�

0) =
@�0a

@�i

@�0b

@�j

@�k

@�0a@�0b . (1.16)

0 =
1

2
Gmn(Rnm),i�GnpRpmh⇠m,i i;n (1.17)

3

• Consider a k independent splitting

�k[�] (1.18)

�0
k[�

0] (1.19)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.20)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.21)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠]. (1.22)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [16–18]:
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where GmnGnl = �ml with Gmn = �(2)

;mn + Rmn and we have left implicit in the regulator Rk the

dependence on the IR scale k. The flow with respect to the RG time t = log k
k0

of the e↵ective

average action �k is described by the equation

�̇k = 1

2

GmnṘmn , (1.24)

obtained by taking a derivative with respect to t (denoted with a ”dot”) of Eq. (1.20) and using the

property that h(⇠�⇠̄)m(⇠�⇠̄)ni = Gmn. For the case of the e↵ective average action it is important
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functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the
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Z
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where we employ the infrared regulator Sk[', ⇠] =
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⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.21)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:
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Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain
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where GmnGnl = �ml with Gmn = �(2)

;mn + Rmn and we have left implicit in the regulator Rk the

dependence on the IR scale k. The flow with respect to the RG time t = log k
k0

of the e↵ective

average action �k is described by the equation

�̇k = 1
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GmnṘmn , (1.24)

obtained by taking a derivative with respect to t (denoted with a ”dot”) of Eq. (1.20) and using the

property that h(⇠�⇠̄)m(⇠�⇠̄)ni = Gmn. For the case of the e↵ective average action it is important
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.22)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [?,?], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.23)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:
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D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠]. (1.24)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [?,?,?]:
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where GmnGnl = �ml with Gmn = �(2)

;mn + Rmn and we have left implicit in the regulator Rk the

dependence on the IR scale k. The flow with respect to the RG time t = log k
k0

of the e↵ective

average action �k is described by the equation

�̇k = 1

2

GmnṘmn , (1.26)
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.22)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [?,?], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.23)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠]. (1.24)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [?,?,?]:
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where GmnGnl = �ml with Gmn = �(2)

;mn + Rmn and we have left implicit in the regulator Rk the

dependence on the IR scale k. The flow with respect to the RG time t = log k
k0

of the e↵ective

average action �k is described by the equation

�̇k = 1

2

GmnṘmn , (1.26)
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• Consider an IR regulator compatible

reparam.

flow

We consider the case where flow and reparametrization do commute



IR regulator
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µP =
✏
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, �2 =

8⇡2

3
✏, ⌘P = � ✏

6
, ⇣P = ⇣O =

✏

12
, (1.6)

µO =
95+17

p
33

2304
✏, �2

2

=
23
p
6+11

p
22

48
✏, �

3

= 0, ⌘O = �7+
p
33

72
✏, r =

3

16
(
p
33�1).

Moreover the spectral analysis of the stability matrix is able to show the other universal quan-

tities of the system, apart from the anomalous dimensions. In particular we find two negative

eigenvalues, associated to two relevant directions, and the corresponding critical exponents:

↵
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✏

4
! ⌫P =
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2
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✏
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↵
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✏
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2
+

✏

48
. (1.7)
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�[�(', ⇠)] (1.11)

�i(', ⇠) =
⇥
f�1 (f(') + U⇠)

⇤i
(1.12)

�k
ij = �k

ij = (f�1)k,b f
b,ij = �(f�1),kab f

a,i f
b,j (1.13)

�[�̄] (1.14)

�1�loop

f [�] = S[�] + ~
2

Tr log
h
S,ij ��k

ijS,k

i
. (1.15)
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ij(�
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@�i

@�0b

@�j

@�k

@�0a@�0b . (1.16)

0 =
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Gmn(Rnm),i�GnpRpmh⇠m,i i;n (1.17)
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• From the already chosen form

• Define the background dependent IR regulator as

2.2 Flat quantum-background split

The solution to the splitting Ward identity for the e↵ective action � given in Eq. (2.4) can

be in general extremely involved with a non trivial dependence on the particular dynamics

of the model considered. The source of complication is the average quantity h⇠j
,i

i appearing
in the equation. In general this term is a highly nonlocal function of the quantum and

background fields, with an implicit dependence on the e↵ective action itself. This makes

solving the equation very di�cult if not impossible. In order to avoid this complicated

dependence of h⇠j
,i

i on the fields and the e↵ective action, it is su�cient to require ⇠j
,i

to

depend at most linearly on the fluctuation fields. This way we avoid two-point and higher

correlation functions to appear in the expression for h⇠j
,i

i. With this requirement the most

general form ⇠j
,i

can take is

⇠k,
i

= ↵k

i

(')� �k

ij

(') ⇠j . (2.5)

In this case the average quantity simplifies h⇠k,
i

i = ⇠̄k,
i

, and the splitting Ward identity

reduces to

�,
i

+�
;k

⇠̄k,
i

= 0 (2.6)

which admits the general solution �[�(', ⇠̄)], where ⇠(',�) is a solution to (2.5). This

is because the first order di↵erential operator acting on � in (2.6) is simply the partial

background derivative keeping the total field fixed, and therefore the solutions to this

equation consist of functionals of the total field �̄ = �(', ⇠̄). Equation (2.5) is solvable if

and only if, ↵k

i

and �k

ij

, regarded as tensor valued one-forms, satisfy

d↵k + �k

j

^ ↵j = 0, d�k

j

+ �k

l

^ �l

j

= 0. (2.7)

These are simply the Frobenius conditions for Eq. (2.5) ⇠k,
[ij]

= 0, where as in the equation

itself, the derivatives are taken keeping the total field fixed. Of course, one would obtain

the same conditions (2.7) by plugging the right hand side of (2.5) in (2.6) and imposing the

condition that the commutator of the di↵erential operator in (2.6) vanish. The solution to

the equations (2.7), which are the same as the zero torsion and curvature Cartan structure

equations, is

�k

ij

= (U�1)k
a

@
i

Ua

j

, ↵k

i

= �(U�1)k
a

@
i

fa, (2.8)

where f is a vector-valued function and U is a matrix-valued function of the background

field. The minus sign in the solution for ↵ is there for convenience. With the integrability

conditions (2.7), Eq. (2.5) can be solved to give

⇠k(',�) = �(U�1('))k
a

�
fa(')� (g�1)a(�)

�
, or �k(', ⇠) = gk [f(') + U(')⇠]

(2.9)

where g is an arbitrary function. We have therefore shown that the e↵ective action �

solution of Eq. (2.6) can be considered as a function of the single field �̄k(', ⇠̄), which is

a function of the background and quantum fields in the special form given above. This

functional dependence of �̄k on 'i, ⇠̄i is the same as that in the ultraviolet theory and is

unaltered through the functional quantization procedure. From the above relations, it is

also clear that the choice g = f�1 corresponds to the boundary condition ⇠k(',') = 0

– 5 –
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�0
¯k[�

0] (1.21)
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.23)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.24)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠]. (1.25)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [16–18]:
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4

2.3 The choice of an infrared regulator

We will generalize in this section the ideas described above to the case of a scale dependent e↵ective

action defined in (2.3). The presence of the infrared regulator does not a↵ect the covariance of the

e↵ective action but modifies the Ward identity (2.7) to (2.4). The simple dependence of the e↵ective

action on a single field is violated by the cuto↵ unless the last two terms of Eq. (2.4) vanish. In

the following we introduce a cuto↵ kernel which fulfills this requirement. Let us therefore focus

on the di↵erence among the two identities (2.7) and (2.4), namely the two cuto↵ dependent terms

in (2.4). The ordinary derivatives in these terms can be replaced with any covariant derivative

without a↵ecting the sum [18]. The di↵erence between the two equations is therefore given by

1
2G

mnr
i

R
nm

+GmpR
pn

hr
i

⇠ni;m. (2.16)

An important point here is that this connection does not have to be torsion free. In fact, if we

choose the covariant derivative r
i

= @
i

+ �
i

to be associated to the flat connection �k

ij

, which can

in general possess torsion, for flat splitting Eq. (2.16) shows that the second term vanishes by the

fact that r
i

⇠n = ↵n

i

is independent of the fluctuation field. Still the first term does not generally

vanish, unless the covariant derivative

r
i

R
mn

= (R
mn

),
i

��k

im

R
kn

�R
mk

�k

in

(2.17)

is zero. It is then not di�cult to guess the form of the cuto↵ kernel whose covariant derivative

vanishes. This is

R
mn

= Ua

m

R̃(�⇤)Ua

n

, (2.18)

where R̃ is a scalar function of the box ⇤ = @
µ

@µ, and Ua

n

is the matrix appearing in the solution

(2.12). We have been careful about the order of the factors, which is required by the fact that R̃

is a di↵erential operator. It is easy to verify
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mn
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m
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which is nothing but r
i

R
mn

= 0. On the other hand
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So formally
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. (2.21)
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vanishes. This is
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is the matrix appearing in the solution

(2.12). We have been careful about the order of the factors, which is required by the fact that R̃

is a di↵erential operator. It is easy to verify
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Using this, one can rewrite the cuto↵ kernel as

R
mn

= Ua

m

R̃(�⇤)Ua

n

= Ua

m

Ua

n

R̃(�r2) = ḡ
mn

R̃(�r2), ḡ
mn

⌘ Ua

m

Ua

n

, r
k

ḡ
mn

= 0. (2.22)

With such a choice for the cuto↵ kernel the splitting Ward identity is not modified and the single-

field dependence of the e↵ective action will continue to hold in the presence of the regulator. Notice

that this choice for the cuto↵ is only dictated by the adopted spitting (2.14) through the Un

i

matrix

and has nothing to do with the theory under consideration. We will show in the next section that

Un

i

will finally drop out of the flow equation and the results will be as if we had chosen Un

i

= @
i

fn.

2.4 RG flow equation

Having discussed the covariance and single-field dependence of the scale-dependent e↵ective action,

we will now move on to the discussion of its flow equation. In an expanded form the general formula

for the renormalization group flow of the scale-dependent e↵ective action which has been given in

Eq. (2.5) reads

�̇
G,f

[�̄] =
1

2
Tr

⇣
�(2)

G,f

[�̄] +R(')
⌘�1

Ṙ(')

�
, (2.23)

where �(2)
G,f

is the second fluctuation derivative of the e↵ective average action, and the scale depen-

dencies are suppressed for simplicity of notation. Similarly to the discussion in [24] for the one-loop

e↵ective action, one can write

(�
G,f

);ij [�̄] = (�
G,f

),
p

(f�1)p,
mn

Um

i

Un

j

+ Um

i

(f�1)p,
m

(�
G,f

),
pq

(f�1)q,
n

Un

j

= Um

i

(f�1)p,
m

h
(�

G,f

),
pq

��k

pq

(�
G,f

),
k

i
(f�1)q,

n

Un

j

= Um

i

(f�1)p,
m

r
p

r
q

�
G,f

[�̄] (f�1)q,
n

Un

j

, (2.24)

where the derivatives (f�1)q,
n

are evaluated at the point f(�̄) and the connection is a function of

�̄, while the matrix U depends on the background field. Using this expression and the cuto↵ (2.22)

that we introduced earlier it is clear that the matrices Ua

i

will cancel out in the flow equation (2.23).

One can also move the two factors (f�1)q,
n

in (2.24) to the cuto↵ term so that the flow equation

will read

�̇
G,f

[�̄] =
1

2
Tr

⇣
rr�

G,f

[�̄] + R̂(�̄)
⌘�1˙̂

R(�̄)

�
, (2.25)

with the cuto↵ defined as

(R̂)
ij

(�̄) = fa,
i

(�̄) R̃(�⇤) fa,
j

(�̄) (= fa,
i

(�̄)fa,
j

(�̄) R̃(�r2), r
µ

⌘ @
µ

+ �
µ

). (2.26)

Notice that the term behind R̃ in the parenthesis above is nothing but the transformation of the

metric �
ij

under the change of coordinates �̄ ! f(�̄). Covariance and single-field dependence are

manifest in the flow equation (2.25).
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�k[�] (1.18)

�0
k[�

0] (1.19)

�
¯k[�] (1.20)

�0
¯k[�

0] (1.21)

0 =
1

2
GmnriRnm +GmpRpnhri⇠

ni
;m (1.22)

riRmn = (Rmn),i��k
imRkn �Rmk �

k
in = 0 (1.23)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.24)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.25)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠]. (1.26)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

4

Then we get

�k[�] (1.18)

�0
k[�

0] (1.19)

�
¯k[�] (1.20)

�0
¯k[�

0] (1.21)

0 =
1

2
GmnriRnm +GmpRpnhri⇠

ni
;m (1.22)

riRmn = (Rmn),i��k
imRkn �Rmk �

k
in = 0 (1.23)

�k
im = (U�1)kb (U

b
m),i (1.24)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.25)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.26)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠]. (1.27)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

4

Therefore the mspWI are satisfied along the flow.
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Redistributing the factors one can write a manifest covariant single field eq.

The one can define the flow for a covariant and single field dependent 
Effective Average Action

�k[�] (1.18)

�0
k[�

0] (1.19)

�
¯k[�] (1.20)

�0
¯k[�

0] (1.21)

0 =
1

2
GmnriRnm +GmpRpnhri⇠

ni
;m (1.22)

riRmn = (Rmn),i��k
imRkn �Rmk �

k
in = 0 (1.23)

�k
im = (U�1)kb (U

b
m),i (1.24)

�̇G,f [�̄] =
1

2
Tr

"✓
�2�G,f

�⇠̄�⇠̄
[�̄] +R(')

◆�1

Ṙ(')

#
, (1.25)

�G,f );ij [�̄] = Um
i (f�1)p,mrprq�G,f [�̄] (f

�1)q,n U
n
j , (1.26)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.27)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.28)

4

�k[�] (1.18)

�0
k[�

0] (1.19)

�
¯k[�] (1.20)

�0
¯k[�

0] (1.21)

0 =
1

2
GmnriRnm +GmpRpnhri⇠

ni
;m (1.22)

riRmn = (Rmn),i��k
imRkn �Rmk �

k
in = 0 (1.23)

�k
im = (U�1)kb (U

b
m),i (1.24)

�̇G,f [�̄] =
1

2
Tr

"✓
�2�G,f

�⇠̄�⇠̄
[�̄] +R(')

◆�1

Ṙ(')

#
, (1.25)

�2�G,f

�⇠̄i�⇠̄j
[�̄] = Um

i (f�1)p,mrprq�G,f [�̄] (f
�1)q,n U

n
j , (1.26)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.27)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.28)

4

Using this, one can rewrite the cuto↵ kernel as

R
mn

= Ua

m

R̃(�⇤)Ua

n

= Ua

m

Ua

n

R̃(�r2) = ḡ
mn

R̃(�r2), ḡ
mn

⌘ Ua

m

Ua

n

, r
k

ḡ
mn

= 0. (2.22)

With such a choice for the cuto↵ kernel the splitting Ward identity is not modified and the single-

field dependence of the e↵ective action will continue to hold in the presence of the regulator. Notice

that this choice for the cuto↵ is only dictated by the adopted spitting (2.14) through the Un

i

matrix

and has nothing to do with the theory under consideration. We will show in the next section that

Un

i

will finally drop out of the flow equation and the results will be as if we had chosen Un

i

= @
i

fn.

2.4 RG flow equation

Having discussed the covariance and single-field dependence of the scale-dependent e↵ective action,

we will now move on to the discussion of its flow equation. In an expanded form the general formula

for the renormalization group flow of the scale-dependent e↵ective action which has been given in

Eq. (2.5) reads

�̇
G,f

[�̄] =
1

2
Tr

⇣
�(2)

G,f

[�̄] +R(')
⌘�1

Ṙ(')

�
, (2.23)

where �(2)
G,f

is the second fluctuation derivative of the e↵ective average action, and the scale depen-

dencies are suppressed for simplicity of notation. Similarly to the discussion in [24] for the one-loop

e↵ective action, one can write

(�
G,f

);ij [�̄] = (�
G,f

),
p

(f�1)p,
mn

Um

i

Un

j

+ Um

i

(f�1)p,
m

(�
G,f

),
pq

(f�1)q,
n

Un

j

= Um

i

(f�1)p,
m

h
(�

G,f

),
pq

��k

pq

(�
G,f

),
k

i
(f�1)q,

n

Un

j

= Um

i

(f�1)p,
m

r
p

r
q

�
G,f

[�̄] (f�1)q,
n

Un

j

, (2.24)

where the derivatives (f�1)q,
n

are evaluated at the point f(�̄) and the connection is a function of

�̄, while the matrix U depends on the background field. Using this expression and the cuto↵ (2.22)

that we introduced earlier it is clear that the matrices Ua

i

will cancel out in the flow equation (2.23).

One can also move the two factors (f�1)q,
n

in (2.24) to the cuto↵ term so that the flow equation

will read

�̇
G,f

[�̄] =
1

2
Tr

⇣
rr�

G,f

[�̄] + R̂(�̄)
⌘�1˙̂

R(�̄)

�
, (2.25)

with the cuto↵ defined as

(R̂)
ij

(�̄) = fa,
i

(�̄) R̃(�⇤) fa,
j

(�̄) (= fa,
i

(�̄)fa,
j

(�̄) R̃(�r2), r
µ

⌘ @
µ

+ �
µ

). (2.26)

Notice that the term behind R̃ in the parenthesis above is nothing but the transformation of the

metric �
ij

under the change of coordinates �̄ ! f(�̄). Covariance and single-field dependence are

manifest in the flow equation (2.25).
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Using this, one can rewrite the cuto↵ kernel as

R
mn

= Ua

m

R̃(�⇤)Ua

n

= Ua

m

Ua

n

R̃(�r2) = ḡ
mn

R̃(�r2), ḡ
mn

⌘ Ua

m

Ua

n

, r
k

ḡ
mn

= 0. (2.22)

With such a choice for the cuto↵ kernel the splitting Ward identity is not modified and the single-

field dependence of the e↵ective action will continue to hold in the presence of the regulator. Notice

that this choice for the cuto↵ is only dictated by the adopted spitting (2.14) through the Un

i

matrix

and has nothing to do with the theory under consideration. We will show in the next section that

Un

i

will finally drop out of the flow equation and the results will be as if we had chosen Un

i

= @
i

fn.

2.4 RG flow equation

Having discussed the covariance and single-field dependence of the scale-dependent e↵ective action,

we will now move on to the discussion of its flow equation. In an expanded form the general formula

for the renormalization group flow of the scale-dependent e↵ective action which has been given in

Eq. (2.5) reads

�̇
G,f

[�̄] =
1

2
Tr

⇣
�(2)

G,f

[�̄] +R(')
⌘�1

Ṙ(')

�
, (2.23)

where �(2)
G,f

is the second fluctuation derivative of the e↵ective average action, and the scale depen-

dencies are suppressed for simplicity of notation. Similarly to the discussion in [24] for the one-loop

e↵ective action, one can write

(�
G,f

);ij [�̄] = (�
G,f

),
p

(f�1)p,
mn

Um

i

Un

j

+ Um

i

(f�1)p,
m

(�
G,f

),
pq

(f�1)q,
n

Un

j

= Um

i

(f�1)p,
m

h
(�

G,f

),
pq

��k

pq

(�
G,f

),
k

i
(f�1)q,

n

Un

j

= Um

i

(f�1)p,
m

r
p

r
q

�
G,f

[�̄] (f�1)q,
n

Un

j

, (2.24)

where the derivatives (f�1)q,
n

are evaluated at the point f(�̄) and the connection is a function of

�̄, while the matrix U depends on the background field. Using this expression and the cuto↵ (2.22)

that we introduced earlier it is clear that the matrices Ua

i

will cancel out in the flow equation (2.23).

One can also move the two factors (f�1)q,
n

in (2.24) to the cuto↵ term so that the flow equation

will read

�̇
G,f

[�̄] =
1

2
Tr

⇣
rr�

G,f

[�̄] + R̂(�̄)
⌘�1˙̂

R(�̄)

�
, (2.25)

with the cuto↵ defined as

(R̂)
ij

(�̄) = fa,
i

(�̄) R̃(�⇤) fa,
j

(�̄) (= fa,
i

(�̄)fa,
j

(�̄) R̃(�r2), r
µ

⌘ @
µ

+ �
µ

). (2.26)

Notice that the term behind R̃ in the parenthesis above is nothing but the transformation of the

metric �
ij

under the change of coordinates �̄ ! f(�̄). Covariance and single-field dependence are

manifest in the flow equation (2.25).
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having defined

Regarding the symmetries the same said for           can be said for

�k[�] (1.18)

�0
k[�

0] (1.19)

�
¯k[�] (1.20)

�0
¯k[�

0] (1.21)

0 =
1

2
GmnriRnm +GmpRpnhri⇠
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;m (1.22)

riRmn = (Rmn),i��k
imRkn �Rmk �

k
in = 0 (1.23)

�k
im = (U�1)kb (U

b
m),i (1.24)

�̇G,f [�̄] =
1

2
Tr

"✓
�2�G,f

�⇠̄�⇠̄
[�̄] +R(')

◆�1

Ṙ(')

#
, (1.25)

�2�G,f

�⇠̄i�⇠̄j
[�̄] = Um

i (f�1)p,mrprq�G,f [�̄] (f
�1)q,n U

n
j , (1.26)

�k[�̄] (1.27)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.28)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.29)
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imRkn �Rmk �

k
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im = (U�1)kb (U

b
m),i (1.24)

�̇G,f [�̄] =
1

2
Tr

"✓
�2�G,f

�⇠̄�⇠̄
[�̄] +R(')

◆�1

Ṙ(')

#
, (1.25)

�2�G,f

�⇠̄i�⇠̄j
[�̄] = Um

i (f�1)p,mrprq�G,f [�̄] (f
�1)q,n U

n
j , (1.26)

�k[�̄] (1.27)

�[�̄] (1.28)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.29)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

4

requirig invariance for the  connection

The scale dependent e↵ective action di↵ers from the standard e↵ective action by the presence of

the cuto↵, which also appears explicitly in the flow equation (2.25). The explicit form of the cuto↵

(2.26) implies that, similarly to the case of the scale-independent e↵ective action discussed in [24],

the preservation of the ultraviolet symmetries is subject to the invariance of the connection �k

pq

.

More generally, in the renormalization group context discussed here, one can see that if a symmetry

is present in the e↵ective action at some scale, it will be preserved at any other scale, if and only

if the flat connection �k

pq

, used to define the splitting, is invariant under the symmetry. This can

be verified explicitly by checking the invariance of the right hand side of the flow equation (2.25):

suppressing the indices on the e↵ective action � and taking the transformation �̄i ! �̄0i to be a

symmetry �0[�̄0] = �[�̄] we have

�,
ij

[�̄]� �k

ij

(�̄)�,
k

[�̄] = �0m,
i

h
�0,

mn

[�̄0]� �p,
m

0 �q,
n

0 (�l

pq

(�̄)� �0r,
pq

�l,
r

0 )�0k,
l

�0,
k

[�̄0]
i
�0n,

j

, (2.27)

and also

fa,
i

(�̄) R̃(�⇤) fa,
j

(�̄) = �0m,
i

[fa,
i

(�̄0) R̃(�⇤) fa,
j

(�̄0)]�0n,
j

. (2.28)

It is clear that the factors �0m,
i

and �0n,
j

in the two equations above will cancel out in the flow

equation (2.25). Therefore the invariance is subject to the condition

�p,
m

0 �q,
n

0 (�l

pq

(�̄)� �0r,
pq

�l,
r

0 )�0k,
l

= �k

mn

(�̄0), (2.29)

which is nothing but the invariance of the connection under the aforementioned symmetry. This

equation takes its simplest form in the coordinate system where the components of the flat connec-

tion vanish. In this case it reduces to �0r,
pq

= 0, which means that in the coordinate system where

the connection vanishes the symmetry transformation must be at most first order in the fields.

In other words, linearizable symmetries, i.e. symmetries that become linear (or more precisely

first order in the fields) in some coordinate system 2, can be preserved if one chooses the flat

connection to be the one that vanishes in such coordinate system. It is important to notice that

linearizability is a statement about the symmetry transformation and moreover theories possessing

linearizable symmetries may or may not have a flat field space.

Summarizing, we have discussed here how to extend the exact RG flow for the e↵ective average

action in order to make it covariant under field reparameterization and single-field dependent.

Computing the flow equations, depending on the truncation, can be pretty involved. There are

also other functional RG flow equations, not exact, which nevertheless have beed used giving good

results sometimes with less computational e↵orts. One of them is the Schwinger proper time RG

flow. This can be easily converted in a covariant single-field flow, using the solution of the spWI

already given in [24]. We shall briefly discuss this in Appendix A.

2
As happens for instance when the symmetry group has a fixed point, according to the CWZ lemma [25].
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⇤
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.30)

4

• Single scalar field

�k[�] (1.18)

�0
k[�

0] (1.19)

�
¯k[�] (1.20)

�0
¯k[�

0] (1.21)

0 =
1

2
GmnriRnm +GmpRpnhri⇠

ni
;m (1.22)

riRmn = (Rmn),i��k
imRkn �Rmk �

k
in = 0 (1.23)

�k
im = (U�1)kb (U

b
m),i (1.24)

�̇G,f [�̄] =
1

2
Tr

"✓
�2�G,f

�⇠̄�⇠̄
[�̄] +R(')

◆�1
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description which would be extremely useful to define a truncation.

In this Section we shall start from a solution we have found [24] for the splitting Ward identity in

the absence of an IR regulator for the standard e↵ective action and give a prescription to construct

a Wilsonian flow which continues to preserve the (unmodified) splitting Ward identities. The

functional RG flow we find is covariant, that is invariant under field reparameterization, so that

the e↵ective average action transforms as a scalar.

2.1 Modified splitting Ward identities

In a background field framework for scalar theories, where the field �(', ⇠) is split into a background

' and a quantum field ⇠, and in the presence of an infrared regulator which controls the contribution

of the fluctuation modes in the path integral, the generator of the connected n-point functions

W
k

[', J ] is a functional of the background field and a source field J
i

coupled to the quantum field

⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (2.1)

where we employ the infrared regulator S
k

[', ⇠] = 1
2 ⇠ ·Rk

(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�
k

[', ⇠̄] = W
k

[', J ]� J ·⇠̄ � S
k

[', ⇠̄], (2.2)

with ⇠̄ = h⇠i, which satisfies the following functional integro-di↵erential equation:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�⇠̄)i�Sk[', ⇠�⇠̄]. (2.3)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [16–18]:

0 = �
,i

+�;jh⇠j
,i

i� 1
2h
⇥
(⇠�⇠̄)mR

mn

(⇠�⇠̄)n
⇤
,i

i = �
,i

+�;jh⇠j
,i

i� 1
2G

mn(R
nm

),
i

�GnpR
pm

h⇠m,
i

i;n (2.4)

where GmnG
nl

= �m
l

with G
mn

= �;mn

+ R
mn

and we have left implicit in the regulator R
k

the

dependence on the IR scale k. The flow with respect to the RG time t = log k

k0
of the e↵ective

average action �
k

is described by the equation

�̇
k

= 1
2 G

mnṘ
mn

, (2.5)

4

�0 = h(�) (1.30)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.31)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.32)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�¯⇠)i�Sk[', ⇠�¯⇠]. (1.33)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [16–18]:

0 = �,i+�
;jh⇠j,ii�

1

2

h
⇥
(⇠�⇠̄)mRmn(⇠�⇠̄)n

⇤
,i
i = �,i+�

;jh⇠j,ii�
1

2

Gmn(Rnm),i�GnpRpmh⇠m,i i;n (1.34)

where GmnGnl = �ml with Gmn = �(2)

;mn + Rmn and we have left implicit in the regulator Rk the

dependence on the IR scale k. The flow with respect to the RG time t = log k
k0

of the e↵ective

average action �k is described by the equation

�̇k = 1

2

GmnṘmn , (1.35)

obtained by taking a derivative with respect to t (denoted with a ”dot”) of Eq. (1.33) and using the

property that h(⇠�⇠̄)m(⇠�⇠̄)ni = Gmn. For the case of the e↵ective average action it is important

to stress that the mspWI N = 0 given in Eq. (1.34) in its most general form are consistent with

the flow, since one finds

Ṅi = �1

2

(GṘG)qp(Ni);pq. (1.36)

5

any splitting

We stress that the dependence in the background and fluctuating fields ' and ⇠ appears only

through the total field �. If we had started with a truncation with a non runnning

J(�) = (f 0(�))2 (3.15)

one would have got a covariantly transformed flow of the LPA truncation of a theory with a trivial

kinetic term. Indeed from the l.h.s equation in (3.11) we would have J̃(f(�)) = 1, and the flow

equation would therefore be

˙̃V (f(�)) =
1

2Vol
Tr

"
˙̃R
k

�@2 + R̃
k

+ Ṽ 00(f(�))

#
. (3.16)

Let us make an important remark here regarding Wilsonian flows. We have given a background-

field method prescription based on a flat connection whose choice is guided by the requirement of

maintaining the symmetries in the flow of the e↵ective action (possibly related to some UV theory).

The approach enjoys covariance and background independence. The function f specifying the

splitting is always defined in the ultraviolet and never depends on the scale k. A scale dependent

f would also make the UV action scale dependent through the splitting. On the other hand,

in a Wilsonian flow the e↵ective action is scale dependent and in the simple example considered

here this means that J(�) = J
k

(�). So the field redefinition that eliminates the J
k

(�) function

would be scale dependent, satisfying J
k

(�) = [f 0
k

(�)]2. Therefore, beyond the above mentioned

approximation, J
k

(�) cannot be eliminated along the flow. This is also showing how for example

the LPA truncation is di↵erent from an O(@2) truncation.

A comment is in order here. As Eq. (2.25) suggests, the flow equation for general J(�) and

V (�) is related to the standard flow with linear splitting, by a field redefinition �̃ = f(�). The

approach, however, gives a prescription to construct the flow in any coordinate system. As a

consequence, if the standard flow admits a scaling solution J̃⇤(�̃) and Ṽ ⇤(�̃), this will translate to

a scaling solution of the original flow equation given by J⇤(�) = (@f)�2J̃⇤(�̃) and V ⇤(�) = Ṽ ⇤(�̃).

The scaling solutions are therefore in one to one correspondence. Of course within approximations

the two scaling solutions correspond to di↵erent truncations related by the above mentioned field

redefinition. For instance, in three space-time dimensions and at order O(@2) in a derivative

expansion one expects to find both the Gaussian fixed point, which may in general correspond to

J⇤(�) 6= 1, as well as the Wilson-Fisher fixed point.

It may be instructive to consider a more specific example. Let us set J = 1 in Eq. (3.1) and make

an exponential reparameterization. The linear splitting is then transformed into an exponential one

� = ' exp(⇠/'), which follows from the choice f(x) = M log(x/M), for some M . An expansion in

powers of the quantum field gives

� = [Exp
'

⇠]
C

= '+ ⇠ +
1

2'
⇠2 + · · · , (3.17)
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A background computation gives the full dependence and a covariant result

• O(2) model in polar coordinates:

Gaussian and non tirivial fixed point in LPA in the linear parameterization 
are related to a more complicated truncation in another parameterization. 
Computation in any frame. Clearly the critical exponents are the same.

We now repeat the computation in polar coordinates. Let us first define the mapping among the

two charts of the target manifold:

�1 = ⇢ sin ✓ = f1(⇢, ✓), �2 = ⇢ cos ✓ = f2(⇢, ✓) , @f =

 
sin ✓ ⇢ cos ✓

cos ✓ �⇢ sin ✓

!
, (3.25)

with [@f ]
ij

= @
j

f i, in terms of which (3.21) takes the form

L = 1
2 @µ⇢@

µ⇢+ 1
2⇢

2 @
µ

✓@µ✓ + V (⇢). (3.26)

To find the flow of the e↵ective average potential, according to the general formula, we need to

know the connection, which we extract here in an indirect way. The non-linear split is constructed

according to �i(', ⇠) = [f�1 (f(') + @f ⇠)]i, with the function f i defined in (3.25) and is also given

by an exponential map. Denoting with ⇢0 and ✓0 the background fields and with ⇠
⇢

and ⇠
✓

the

fluctuations, the explicit form of the split becomes

⇢ =
q
(⇢0 + ⇠

⇢

)2 + ⇢20 ⇠
2
✓

, ✓ = arctan
sin ✓0 (⇢0 + ⇠

⇢

) + ⇢0 cos ✓0 ⇠
✓

cos ✓0 (⇢0 + ⇠
⇢

)� ⇢0 sin ✓0 ⇠
✓

. (3.27)

On expanding these expressions in powers of the fluctuations, the coe�cients of the quadratic terms

are �1/2 the connection coe�cients:

⇢ = ⇢0 + ⇠
⇢

+
1

2
⇢0 ⇠

2
✓

� 1

2
⇠
⇢

⇠2
✓

+ · · · , ✓ = ✓0 + ⇠
✓

� 1

⇢0
⇠
⇢

⇠
✓

+
1

⇢20
⇠2
⇢

⇠
✓

� 1

3
⇠3
✓

+ · · · , (3.28)

so that the only non zero components of the Christo↵el symbols are �⇢

✓✓

= �⇢ and �✓

⇢✓

= 1/⇢.

We can now compute the second variation of the action in polar coordinates which, at the

background level, reads

r2� =

 
1 0

0 ⇢2

!"
�⇤+

 
V 00(⇢) 0

0 V 0(⇢)/⇢

!#
. (3.29)

The flow of the e↵ective potential is found by computing the following trace, which is given in the

same form of Eq. (2.25)

1
2Tr

⇣
r2�+(@f)T R̃

k

(�⇤)@f
⌘�1

(@f)T ˙̃R
k

(�⇤)@f

�
. (3.30)

Notice that in the above expression everything is a function of the total fields, the argument of @f

is (⇢, ✓), that is the total fields, and

(@f)T ˙̃R
k

(�⇤)@f = (@f)T@f R̃
k

(�⇤) =

 
1 0

0 ⇢2

!
R̃

k

(�⇤), (3.31)
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We now repeat the computation in polar coordinates. Let us first define the mapping among the

two charts of the target manifold:
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f i, in terms of which (3.21) takes the form
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To find the flow of the e↵ective average potential, according to the general formula, we need to

know the connection, which we extract here in an indirect way. The non-linear split is constructed

according to �i(', ⇠) = [f�1 (f(') + @f ⇠)]i, with the function f i defined in (3.25) and is also given

by an exponential map. Denoting with ⇢0 and ✓0 the background fields and with ⇠
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and ⇠
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On expanding these expressions in powers of the fluctuations, the coe�cients of the quadratic terms

are �1/2 the connection coe�cients:

⇢ = ⇢0 + ⇠
⇢

+
1

2
⇢0 ⇠

2
✓

� 1

2
⇠
⇢

⇠2
✓

+ · · · , ✓ = ✓0 + ⇠
✓

� 1

⇢0
⇠
⇢

⇠
✓

+
1

⇢20
⇠2
⇢

⇠
✓

� 1

3
⇠3
✓

+ · · · , (3.28)

so that the only non zero components of the Christo↵el symbols are �⇢

✓✓

= �⇢ and �✓

⇢✓

= 1/⇢.
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The flow of the e↵ective potential is found by computing the following trace, which is given in the

same form of Eq. (2.25)
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Notice that in the above expression everything is a function of the total fields, the argument of @f

is (⇢, ✓), that is the total fields, and
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(�⇤)@f = (@f)T@f R̃
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Natural split:

We now repeat the computation in polar coordinates. Let us first define the mapping among the

two charts of the target manifold:
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To find the flow of the e↵ective average potential, according to the general formula, we need to

know the connection, which we extract here in an indirect way. The non-linear split is constructed

according to �i(', ⇠) = [f�1 (f(') + @f ⇠)]i, with the function f i defined in (3.25) and is also given
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On expanding these expressions in powers of the fluctuations, the coe�cients of the quadratic terms

are �1/2 the connection coe�cients:
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so that the only non zero components of the Christo↵el symbols are �⇢
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We can now compute the second variation of the action in polar coordinates which, at the
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r2� =

 
1 0

0 ⇢2

!"
�⇤+

 
V 00(⇢) 0

0 V 0(⇢)/⇢

!#
. (3.29)

The flow of the e↵ective potential is found by computing the following trace, which is given in the

same form of Eq. (2.25)
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Notice that in the above expression everything is a function of the total fields, the argument of @f

is (⇢, ✓), that is the total fields, and
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The flow is covariantly transformed:

�0 = h(�) (1.30)

� = 'e⇠/' (1.31)

J 0(h(�)) = [(h�1)0(h(�))]2J(�), V 0(h(�)) = V (�) (1.32)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.33)

where we employ the infrared regulator Sk[', ⇠] =
1

2

⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:
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5

A background computation gives the full dependence and a covariant result



Conclusions: not yet….
• In a restricted context: one can construct a covariant and 
     background independent off-shell effective action 
     and functional RG flow for the effective average action

• It can be useful for non gauge theories, like non linear sigma models. 

• In more general terms the problem looks very hard

• On going work also with alternative proposals
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• gauge theories  
• and in particular for the Asymptotic Safety program for gravity

Thank you!


