Gauge invariant flow equation

Gauge invariant effective action

 Variation yields gravitational field equations
 Generates Maxwell equations for QED (+ correction terms)

Involves only one gauge field

Gauge invariant effective action

- Projected second functional derivative is inverse propagator for physical fluctuations
 Generates correlation function for physical fluctuations
- Example : power spectrum of cosmic fluctuations

Involves only one gauge field

Background field formalism

- Background field formalism employs effective action with two gauge fields :
- expectation value of microscopic field : variation yields field equation and inverse propagator
 background field appears in gauge fixing

effective action is invariant under simultaneous gauge transformation of both gauge fields

Field identification

Identify expectation value and background field :
Effective action depends only on one gauge field
Variation does not yield field equation and inverse propagator
Second functional derivative has zero modes : gauge modes

Exact flow equation for effective average action

has been formulated in background field formalism

M.Reuter, CW

Aim : closed gauge invariant flow equation with single gauge field

problem :

- second functional derivative of gauge invariant effective action cannot generate inverse propagator
- second functional derivative is not invertible

gauge modes !

Projection on physical fluctuations

 $P = P^2$ projects on physical fluctuations

1-P projects on gauge fluctuations

$$\delta_{\xi}\bar{g} = (1-P)\delta_{\xi}\bar{g}$$

Gauge fluctuations correspond to change of gauge field g under infinitesimal gauge fluctuation

Fluctuations

$$h = g - \bar{g} = f + a$$

gauge fluctuations
$$a = (1 - P(\bar{g}))h P(\bar{g})a = 0$$

gauge transformation at fixed macroscopic gauge field

$$\hat{\delta}h = \bar{P}(\bar{g}+h)\delta_{\xi}(\bar{g}+h) = \bar{P}(\bar{g})\delta_{\xi}(\bar{g}) + \delta_hh$$

$$\bar{P} = 1 - P.$$

$$\delta_{\rm inh}a = \bar{P}(\bar{g})\delta_{\xi}\bar{g}$$

physical fluctuations

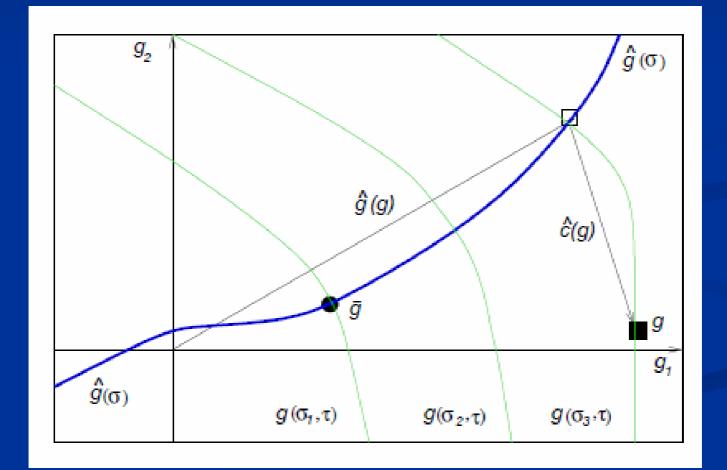
$$f = P(\bar{g})h$$

Yang – Mills theories

$$P_{\mu}{}^{\nu} = \delta^{\nu}_{\mu} - \bar{P}_{\mu}{}^{\nu}$$

$$\bar{P}_{\mu}{}^{\nu} = D_{\mu}D^{-2}D^{\nu}$$

projector depends on gauge field gravity more complicated Physical fluctuations generate gauge invariant fields no global projector



Gauge invariance of effective action

$$\frac{\partial \bar{\Gamma}}{\partial \bar{g}} = \frac{\partial \bar{\Gamma}}{\partial \bar{g}} P$$

$$\delta_{\xi}\bar{\Gamma} = \frac{\partial\bar{\Gamma}}{\partial\bar{g}}P\delta_{\xi}\bar{g} = 0 \quad \delta_{\xi}\bar{g} = (1-P)\delta_{\xi}\bar{g}$$

Gauge invariant flow equation involves projection on physical fluctuations

$$k\partial_k\bar{\Gamma}=\zeta_k=\pi_k+\delta_k-\epsilon_k$$

$$\pi_k = \frac{1}{2} Str(k\partial_k \bar{R}_P G_P)$$

 G_P : propagator for physical fluctuations

$$PG_P = G_P P^T = G_P$$

$$\delta_{\xi}\bar{g} = (1-P)\delta_{\xi}\bar{g}$$

measure contributions $\delta_k - \epsilon_k$ do not depend on effective action

Closed flow equation

projection on physical fluctuations makes second functional derivative invertible

$$\bar{\Gamma}_{P}^{(2)} = P^{T} \bar{\Gamma}^{(2)} P \qquad \bar{\Gamma}^{(2)ij} = \frac{\partial^{2} \bar{\Gamma}}{\partial \bar{g}_{i} \partial \bar{g}_{j}}$$
$$\left(\bar{\Gamma}_{P}^{(2)} + \bar{R}_{P}\right) G_{P} = P^{T}$$

Projector depends on macroscopic gauge field

Projector, gauge fixing and infrared cutoff are all formulated with \bar{g} dynamical macroscopic gauge field Macroscopic gauge field replaces fixed background field Implicit definition of functional integral and effective action

Expectation value

- Expectation value of microscopic gauge field g can be expressed in terms of macroscopic gauge field \overline{g}
- Macroscopic gauge field is not identical with expectation value of microscopic gauge field
 This is not important

Functional integral

$$Z(L,\bar{g}) = \int \mathcal{D}g' M_k(g',\bar{g}) \exp\left\{-S(g') - S_{gf}(g',\bar{g}) - \Delta S_k(g',\bar{g}) + L^T g'\right\},$$

$$M_k = M(g', \bar{g}) E_k(\bar{g}) \quad \epsilon_k(\bar{g}) = \operatorname{tr} \left\{ \ln k \partial_k E_k(\bar{g}) \right\}$$

$$\Delta S_k(g', \bar{g}) = \frac{1}{2} (g' - \bar{g})^T R_k(\bar{g}) (g' - \bar{g})$$

$$W(L,\bar{g}) = \ln Z(L,\bar{g})$$

Effective action and exact flow equation

$$\tilde{\Gamma}(g,\bar{g}) = -W(L,\bar{g}) + L^T g$$

$$g = \frac{\partial W(L, \bar{g})}{\partial L} = \langle g' \rangle$$
 $L = \frac{\partial \tilde{\Gamma}(g, \bar{g})}{\partial g}$

$$\Gamma_k(g,\bar{g}) = \tilde{\Gamma}_k(g,\bar{g}) - \frac{1}{2}h^T R_k(\bar{g})h$$

$$\partial_k \Gamma = \frac{1}{2} Str(\partial_k RG) - \epsilon_k \quad G = (\Gamma^{(2)} + R)^{-1}$$

Reuter, CW

Projection on physical fluctuations and gauge fixing

$$\Gamma(g,\bar{g}) = \hat{\Gamma}(g,\bar{g}) + \Gamma_{gf}(g,\bar{g})$$

gauge fixing term is quadratic in gauge fluctuations diverges for $\alpha \rightarrow 0$, vanishes for solution of field equations

$$\Gamma_{gf}(g,\bar{g}) = \frac{1}{2\alpha} a^T \bar{Q}(\bar{g}) a$$

on microscopic level :

$$\Gamma_{gf}(g',g) = \frac{1}{2\alpha} a'^T \bar{Q}(\bar{g}) a' \quad a' = \left(1 - P(\bar{g})\right) \left(g' - \frac{1}{2\alpha}\right) \left(g' - \frac{1}{2\alpha}\right$$

Yang - Mills theory

$$\Gamma_{gf} = \frac{1}{2\alpha} \int_{x} G^{z} G_{z}^{*} , \ G^{z} = \left(D^{\mu} (A'_{\mu} - \bar{A}_{\mu}) \right)^{z}$$

Gauge invariant effective action involving only one gauge field

$$\Gamma(g,\bar{g}) = \hat{\Gamma}(g,\bar{g}) + \Gamma_{gf}(g,\bar{g})$$

Choose \bar{g} (g) consistent with gauge transformation

$$\bar{g}(g) = g - f(\bar{g}(g))$$

$$\begin{split} \bar{\Gamma}(\bar{g}) &= \Gamma\left(g = \bar{g} + f(\bar{g}), \ \bar{g}\right) - C(\bar{g}) \\ &= \hat{\Gamma}(g = \bar{g} + f(\bar{g}), \bar{g}) - C(\bar{g}), \end{split}$$

Choice of macroscopic gauge field

Use freedom in precise definition of macroscopic gauge field in order to obtain simple expression of physical propagator in terms of gauge invariant effective action

$$\bar{\Gamma}_{P}^{(2)} = P^{T} \bar{\Gamma}^{(2)} P \qquad \bar{\Gamma}^{(2)ij} = \frac{\partial^{2} \bar{\Gamma}}{\partial \bar{g}_{i} \partial \bar{g}_{j}}$$
$$\left(\bar{\Gamma}_{P}^{(2)} + \bar{R}_{P}\right) G_{P} = P^{T}$$

Projected propagator in flow equation

$$R_{k} = \bar{R}_{k}(\bar{g}) + \frac{1}{\alpha} (1 - P^{T}(\bar{g})) R_{k,gf}(\bar{g}) (1 - P(\bar{g}))$$

$$\tilde{\Gamma}^{(2)} = \hat{\Gamma}^{(2)} + \bar{R}_k + \frac{1}{\alpha} (1 - P^T) (\bar{Q} + R_{gf}) (1 - P)$$

$$G = G_P + \alpha \Delta G$$
, $G_P = P G P^T$

$$\tilde{\Gamma}_{P}^{(2)}G_{P} = P^{T} , \ \tilde{\Gamma}_{P}^{(2)} = P^{T}(\hat{\Gamma}^{(2)} + \bar{R})P$$

For $\alpha \rightarrow 0$ flow equation decomposes into projected parts

Measure terms in flow equation

$$k\partial_k\Gamma(g,\bar{g}) = \frac{1}{2}S\mathrm{tr}(k\partial_k\bar{R}G_P) + \delta_k - \epsilon_k$$

$$\delta_k = \frac{1}{2} \operatorname{tr} \{ k \partial_k R_{gf} (1 - P) (\bar{Q} + R_{gf})^{-1} (1 - P^T) \}$$

does not involve effective action

$$\epsilon_k = 2\delta_k$$

Particular gauge fixing for quantum gravity

$$S_{gf} = \frac{1}{2\alpha} \int_x \sqrt{\bar{g}} \left(D^{\mu} h'_{\mu\nu} \right)^2 \ , \ h'_{\mu\nu} = g'_{\mu\nu} - \bar{g}_{\mu\nu}$$

Conclusion

Closed gauge invariant flow equation involving only one gauge field exists.
 Is effective action local enough to admit simple truncations ?