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More specifically: Focus on a class of models in 
statistical physics and condensed-matter theory for which 
the long-distance physics is dominated by disorder:

✴ Random field models
✴ Random anisotropy models
✴ Elastic manifolds (interfaces,...) in a random 

environment

Equilibrium and out-of-equilibrium 
(classical) collective behavior of systems 

in the presence of quenched disorder



• Equilibrium critical behavior controlled by a zero-temperature 
(T=0) fixed point:

• Low-T nontrivial physics under driving/forcing:
✴ pinning/depinning of interfaces
✴ hysteresis and out-of-equilibrium phase transitions

density f can be written in the form f = Jf̃(T/J, h/J,H/J). Let us imagine to carry
out the RNG coarse–graining transformation, with length scale factor b, corresponding to a
reduction in the number of degrees of freedom by a factor bd. The transformation generates a
flow in the space of the naive scaling fields T/J, h/J , and H/J , which eventually terminates
in one of the fixed points of the system. The existence of three fixed point will be assumed
(Fig. 4), in addition to the trivial, high temperature fixed point:
(i) A totally unstable “thermal” fixed point C at T = Tc, H = h = 0 (the random field is a
relevant perturbation, see our discussion in 3.2) .
(ii) A fixed point R at T = H = 0 and h = hR which is unstable in two, but stable in one
directions and is therefore a critical point.
(iii) A totally stable fixed point F at T = h = H = 0, which corresponds to the low
temperature phase for d > dl.
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Figure 4: Schematic renormalization group flow of the random field Ising model

In general the RNG procedure generates also new terms in the Hamiltonian. We will
assume, that these terms are irrelevant in the RNG–sense and can therefore be neglected.

In order to calculate the critical behavior we have to linearize the RNG flow close to
the fixed point R. The eigenvalues and eigenvectors of the linearized RNG–transformation
deliver the critical exponents and scaling fields. Phenomenological arguments concerning
the RNG flow suggest

T

J
, τ =

1

J
(h − hR) + c

T

J
and

H

J
(23)

as the scaling fields. Close to the fixed point R J , τ and H transform under the RNG
coarse graining as

J → J ′ = J b yJ

τ → τ ′ = τ b yτ

H → H ′ = H b yH .
(24)
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Phase diagram and RG flow of 
random field models

✴ Additional exponent for the temperature flow:  
 

✴For T>0: very slow “activated” dynamics, with 
exponential dependence of time vs length:

                         -->

Dominance of quenched disorder

θ > 0

τ ∼ ξz τ ∼ exp(
c

T
ξψ)



RG must be functional:

✴ Due to quenched disorder, presence of rare events, rare spatial regions or rare 
samples: at T=0, avalanches or shocks; at T>0, low-energy excitations (droplets) 

=> How to keep their signature in the RG?

✴ Because of quenched disorder (h), one loses translational invariance:

is then a random functional of the source J 
=> One recovers translational invariance by considering the cumulants.

✴ The possible influence of avalanches and droplets can then be described only 
through a singular dependence of the cumulants of the renormalized disorder 
on their arguments.

Wh[J ] = lnZh[J ]

Why does one need a nonperturbative 
functional RG (NP-FRG) ?



Below dDR(N): strong nonanalyticity in the renormalized cumulants, dominance of 
   avalanches, dimensional-reduction breakdown, and SUSY breaking.

From now on, focus on RFIM (Ising, N=1)

Why does one need a NP-FRG ?

RG must be nonperturbative, 
because standard perturbation theory completely fails (dimensional-reduction problem), 
and because for random fields (RF) and anisotropies (RA) the behavior changes at a 
nontrivial critical dimension dDR(N).

N-d diagram for the 
equilibrium RFO(N)M

[M. Tissier, G.T.,2006,2008] No phase transition
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• From numerical studies of the d=3 slowly driven RFIM at T=0: 
The out-of equilibrium critical point(s) along the hysteresis curve and the 
equilibrium critical point have very similar exponents and scaling functions. 
[PerezReche-Vives 04, Colaiori et al 04, Liu-Dahmen 07,09]

However: Not the same value of the critical disorder, not the same symmetry... 
Are the two critical phenomena controlled by the same fixed point of the RG 
flow?

• Different effect of temperature: Equilibrium phase transition persists for T>0, 
not the out-of-equilibrium one (equilibrium vs metastability).

Magnetization Φ vs applied source J at T=0

Blue: Equilibrium curves (ground state)
Red: Ascending and descending branches of 
the hysteresis loop for the driven RFIM
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RFIM dynamics: field-theoretical formalism

• Langevin equation:                                                         

✴ SB -> standard (Z2 symmetric) phi^4 action

✴ h(x) -> random field with 

✴ η(xt) -> stochastic noise with

✴  J(t) -> applied source:                                            

                                                        at equilibrium for T ≥ 0

  for the quasi-statically driven system at T=0

• Introduce copies/replicas of the system coupled to distinct sources.

• Use the Janssen-deDominicis-MSR formalism (response fields   ).

∂tϕxt =
δSB [ϕ]

δϕxt
− h(x)− J(t) + ηxt

J(t) = J (= 0 at criticality)

J(t) = J + Ωt

< ηxtηx�t� >= 2T δ(d)(x− x�)δ(t− t�)

h(x)h(x�) = ∆B δ(d)(x− x�)

(Ω → 0+ or 0− for ascending/descending hysteresis branch)

�ϕ



Dynamical NP-FRG formalism

• Average over the Gaussian noise and random field => dynamical action 
with replica fields (a=1,...,n):

• Add an IR regulator through a k-dependent quadratic term

• Exact RG equation for the effective average action                     :

∆Sk[{ϕa, �ϕa}]

∂kΓk[{φa, �φa}] =
1

2
Tr ∂kRk (Γ

(2)
k [{φa, �φa}] +Rk)

−1

Γk[{φa, �φa}]

Sdyn[{ϕa, �ϕa}] =
�

a

�

x,t
�ϕa,xt[

δSB [{ϕa}]
δϕa,xt

− T �ϕa,xt]

− 1

2

�

ab

∆B

�

x

�

t1t2

�ϕa,xt1 �ϕa,xt2



Dynamical NP-FRG formalism

• Nonperturbative truncation (cumulant expansion + space and time 
derivative expansion): 

• From the ERGE, obtain the flow equations for the static functions U’k, Zk, 
and the second cumulant of the renormalized random field Δk, as well as  
for the dynamical coefficient Xk.

• By using the scaling dimensions for zero-temperature fixed points, cast the 
flow equations in a dimensionless form for u�

k(ϕ), zk(ϕ), δk(ϕ1,ϕ2)

Γk[{φa, �φa}] =
�

a

�

x,t

�φa,xt[U
�
k(φa,xt) +

δ

δφa,xt
[Zk(φa,xt)(∂xφa,xt)

2]

+Xk(φa,xt)(∂tφa,xt − T �φa,xt)]

− 1

2

�
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�
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�ϕa,xt1 �ϕa,xt2∆k(φa,xt1 ,φb,xt2)



• For d < dDR ≃ 5.1 and at T=0, there is an 
avalanche-induced cusp in                  : 

• The flow equations involve derivatives of                  evaluated for the 
same replica => ambiguity!

• In equilibrium for T>0, the cusp is rounded in a thermal boundary layer 
of width                    => lifts the ambiguity & leads to a zero-T fixed point 
and activated dynamic slowing down.

• For hysteresis at T=0, no rounding => use an infinitesimal velocity v so 
that the time dependence chooses one side of the cusp (due to causality): 

Equil. 
flow in 

d=4

symmetry), the flow equations must be recast in a scaled
form. The fixed point being a zero-temperature one [1,8],
the spatial decay of the correlations [see below Eq. (11)] at
criticality is now characterized by two ‘‘anomalous dimen-
sions’’ ! and !!:

P̂ðrÞ # r$ðd$2þ!Þ; ~PðrÞ # r$ðd$4þ !!Þ; (14)

with ! & !! & 2!, and one has to introduce scaling di-
mensions involving an additional critical exponent [6]. The
resulting equations are generalizations of those shown in
Ref. [6] and are not displayed here. We have solved these
coupled partial differential equations numerically, looking
for the proper (critical) fixed point as a function of dimen-
sion (more details will be given elsewhere). This procedure
is numerically very demanding and requires handling 3
coupled equations for 2 functions of 1 variable (Uk and Zk)
and 1 function of 2 variables ("k).

An important property of the present theory is that if
in the limit "2 ! "1, "kð"1;"2Þ ¼ "k0ð"Þ þ"k2ð"Þ(
ð"1 $"2Þ2 þ ) ) ) with " ¼ ð"1 þ"2Þ=2, then the flow
of "k0ð"Þ coincides with that of Zkð"Þ: This is precisely
the WT relation derived from Eq. (13), and DR exactly
follows. On the other hand, a spontaneous breaking of the
SUSY and of the associated WT identity occurs whenever
"k2ð"Þ diverges and "k has a cusplike singularity in the
form "kð"1;"2Þ ¼ "k0ð"Þ þ "kað"Þj"1 $"2jþ ) ) ) as
"2 ! "1.

We find that the solution without a cusp is stable and that
!ðdÞ ¼ !!ðdÞ ¼ !Isingðd$ 2Þ, in agreement with the DR
prediction, above a critical dimension dDR ’ 5:1. For d <
dDR, we obtain a once unstable ‘‘cuspy’’ fixed point (see
Fig. 1) and DR is broken: The exponents! and !! bifurcate,
with !ðdÞ< !!ðdÞ (see Fig. 2). In d ¼ 3, we find ! ’ 0:57,
!! ’ 1:08, and in d ¼ 4, ! ’ 0:24, !! ’ 0:40: This is in
good agreement with the existing estimates [14,15], which
gives support to the whole scenario (the results are also
1-loop exact near d ¼ 6). In addition, the continuous
variation of ! and !! with d and the existence of a critical
dimension above which !ðdÞ ¼ !!ðdÞ contradict the claim

that the two exponents are always related by a fixed ratio
!!ðdÞ ¼ 2!ðdÞ [16].
In conclusion, the present study provides key pieces for

a complete resolution of the long-standing puzzles associ-
ated with the critical behavior of the RFIM. In doing so, we
have developed tools that may prove useful in other con-
texts where the need to select a unique solution of a
stochastic field equation arises, as in ‘‘glassy’’ systems,
turbulence, or non-Abelian gauge field theories.
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FIG. 1 (color online). NP-FRG flow of the dimensionless
cumulant #kð’þ y; ’$ yÞ in d ¼ 4< dDR for ’ ¼ 0 and for
initial conditions close to the critical point. A linear cusp in jyj
appears at a finite RG ‘‘time’’ jtj ¼ logð#=kÞ.
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FIG. 2 (color online). Anomalous dimensions ! and !! versus
d. DR is observed above dDR ’ 5:1. ! and !! satisfy the required
upper ( !! & 2!) and lower bounds (red dashed lines) [1]. Crosses
correspond to simulation results [14,15]. The region just below
dDR is unfortunately numerically difficult to access.

PRL 107, 041601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JULY 2011

041601-4

Beware the cusp!
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δk(ϕ1,ϕ2)

δk(ϕ1,ϕ2)

Tk ∼ kθT

ϕa(t) = ϕa + vt, with v → 0+ or 0− (ascending or descending)

δk(ϕ1,ϕ2) = δk0(x =
ϕ1 + ϕ2

2
)+

δk,cusp(x)|ϕ1 − ϕ2|+O((ϕ1 − ϕ2)
2
)



Results: in and out-of equilibrium 
fixed points are different for d<dDR

11
In d=3,4 for equilibrium: good agreement with simulation results (big symbols)

Dimension-dependence of the two anomalous dimensions (related by 
the temperature exponent θ) for equilibrium and hysteresis critical 

points: different fixed points but small differences in the exponents
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dDR ≈ 5.1

η̄ = η + (2− θ)
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Different fixed points for 
equilibrium and hysteresis
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Field renormalization function z(x=φ) for the critical fixed points: 
Note the absence of inversion symmetry for hysteresis below dDR

hysteresis



• For a theoretical description of scale-free avalanches and 
droplets that are important for a class of disordered systems, 
one needs a functional and nonperturbative RG (NP-FRG)

• One can formulate a dynamical version of the NP-FRG (already 
used by us for equilibrium problems) to describe both 
equilibrium and driven dynamics.

• The equilibrium and out-of-equilibrium (hysteresis) critical 
points of the RFIM are in different universality classes.

• The same dynamical NP-FRG treatment applied to an elastic 
manifold in a random environment gives good results 
compared to simulations/experiments and perturbative FRG

Conclusion



Hysteresis critical fixed point
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Cusp amplitude in the second cumulant of the renormalized random field at 
the hysteresis critical fixed point in d=4.85 [blue] and d=5.15 [red]
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