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Equilibrium and out-of-equilibrium
(classical) collective behavior of systems
in the presence of quenched disorder

More specifically: Focus on a class of models in
statistical physics and condensed-matter theory for which
the long-distance physics is dominated by disorder:

* Random field models
* Random anisotropy models

* Elastic manifolds (interfaces,...) in a random
environment



Dominance of quenched disorder

® Equilibrium critical behavior controlled by a zero-temperature
(T=0) fixed point:

Disorder L * Additional exponent for the temperature flow:
strength 9> 0

*For T>0: very slow “activated” dynamics, with
exponential dependence of time vs length:

TR > TNeXP(%fw)

T
Phase diagram and RG flow of

random field models

® | ow-T nontrivial physics under driving/forcing:
* pinning/depinning of interfaces
* hysteresis and out-of-equilibrium phase transitions



Why does one need a nonperturbative
functional RG (NP-FRGQG) ?

RG must be functional:

* Due to quenched disorder, presence of rare events, rare spatial regions or rare
samples: at T=0, avalanches or shocks; at T>0, low-energy excitations (droplets)

=> How to keep their signature in the RG?

* Because of quenched disorder (h), one loses translational invariance:

Wy|J] = In Zy|J] is then a random functional of the source J
=> One recovers translational invariance by considering the cumulants.

* The possible influence of avalanches and droplets can then be described only
through a singular dependence of the cumulants of the renormalized disorder

on their arguments.



Why does one need a NP-FRG ¢

RG must be nonperturbative,

because standard perturbation theory completely fails (dimensional-reduction problem),
and because for random fields (RF) and anisotropies (RA) the behavior changes at a
nontrivial critical dimension dpr(N).
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Below dpr(N): strong nonanalyticity in the renormalized cumulants, dominance of
avalanches, dimensional-reduction breakdown, and SUSY breaking.

From now on, focus on RFIM (Ising, N=1)



RFIM in and out of equilibrium
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Magnetization ® vs applied source ] at T=0

Blue: Equilibrium curves (ground state)

U, 0 i J Red: Ascending and descending branches of
the hysteresis loop for the driven RFIM
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e From numerical studies of the d=3 slowly driven RFIM at T=0:

The out-of equilibrium critical point(s) along the hysteresis curve and the

equilibrium critical point have very similar exponents and scaling functions.
|PerezReche-Vives 04, Colaiori et al 04, Liu-Dahmen 07,09]

However: Not the same value of the critical disorder, not the same symmetry...

Are the two critical phenomena controlled by the same fixed point of the RG
flow?

¢ Different effect of temperature: Equilibrium phase transition persists for T>0,
not the out-of-equilibrium one (equilibrium vs metastability).



RFIM dynamics: field-theoretical formalism
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* Sp -> standard (Z> symmetric) phi~4 action
* h(x) -> random field with ~ h(z)h(z') = Ap 6D (x — 2')
* N(xt) -> stochastic noise with < NyeNgy >= 2T 6D (x — 2")6(t — ')

® Langevin equation: 0., = — h(x) — J(t) + Net

* J(t) -> applied source:
J(t) = J (= 0 at criticality) at equilibrium for T> 0
J(t) = J +Qt for the quasi-statically driven system at T=0
(2 — 0" or 0 for ascending /descending hysteresis branch)

¢ |Introduce copies/replicas of the system coupled to distinct sources.

® Use the Janssen-deDominicis-MSR formalism (response fields ¥).



Dynamical NP-FRG formalism

® Average over the Gaussian noise and random field => dynamical action
with replica fields (a=7,...,n):

5S a .
den {900,7 Spa} Z/ Pa a:t = {SO }] TSOa,a:t]
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e Add an IR regulator through a k-dependent quadratic term ASg[{©a, Pa }]

e Exact RG equation for the effective average action I'x [{ ¢, gga}]:

Ok k[{Par Pa}] = —Tr Ry (T2 [{ba, da}] + Ric) ™



Dynamical NP-FRG formalism

e Nonperturbative truncation (cumulant expansion + space and time
derivative expansion):

R R 5
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e From the ERGE, obtain the flow equations for the static functions U, Z,
and the second cumulant of the renormalized random field Ak, as well as
for the dynamical coefficient Xi.

® By using the scaling dimensions for zero-temperature fixed points, cast the
flow equations in a dimensionless form for ur (©), zrk(), dk(Y1, P2)



Beware the cusp!

® Ford<dpr=>5.Tand atT=0, thereisan = e
avalanche-induced cusp in dx (@1, ©2): 1
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® The flow equations involve derivatives of 0 (1, o) evaluated for the
same replica => ambiguity!

® In equilibrium for T>0, the cusp is rounded in a thermal boundary layer
of width Ty ~ kT => lifts the ambiguity & leads to a zero-T fixed point
and activated dynamic slowing down.

® For hysteresis at T=0, no rounding => use an infinitesimal velocity v so
that the time dependence chooses one side of the cusp (due to causality):

.(t) = ©, + vt, with v — 07 or 0~ (ascending or descending
@ 2



Results: in and out-of equilibrium
fixed points are different for d<dpr

Dimension-dependence of the two anomalous dimensions (related by
the temperature exponent 8) for equilibrium and hysteresis critical
points: different fixed points but small differences in the exponents
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In d=3,4 for equilibrium: good agreement with simulation results (big symbols)
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Different fixed points for
equilibrium and hysteresis

Field renormalization function z(x=¢p) for the critical fixed points:
Note the absence of inversion symmetry for hysteresis below dpr
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Conclusion

® For a theoretical description of scale-free avalanches and
droplets that are important for a class of disordered systems,
one needs a functional and nonperturbative RG (NP-FRG)

® One can formulate a dynamical version of the NP-FRG (already
used by us for equilibrium problems) to describe both
equilibrium and driven dynamics.

® The equilibrium and out-of-equilibrium (hysteresis) critical
points of the RFIM are in different universality classes.

® The same dynamical NP-FRG treatment applied to an elastic
manifold in a random environment gives good results
compared to simulations/experiments and perturbative FRG



Hysteresis critical fixed point

Cusp amplitude in the second cumulant of the renormalized random field at
the hysteresis critical fixed point in d=4.85 [blue] and d=5.15 [red]




