the DNA of asymptotic safety

Daniel F Litim University of Sussex

based on work with Andrew Bond and Tugba Buyukbese

ICTP 22 Sep 2016

8th INTERNATIONAL CONFERENCE on the EXACT RENORMALIZATION GROUP ERG2016

19 - 23 September 2016 Miramare - Trieste, Italy

standard model

local QFT for fundamental interactions

strong nuclear force weak force electromagnetic force

degrees of freedom

spin 0 (the Higgs has finally arrived) spin 1/2 (quite a few) spin 1

perturbatively renormalisable & predictive

standard model

local QFT for fundamental interactions strong nuclear force weak force

electromagnetic force

open challenges

many...

what comes beyond the SM? how does gravity fit in?

asymptotic freedom

asymptotic freedom

complete asymptotic freedom in 4D all couplings achieve non-interacting UV fixed point

fields	cAF
scalars	no
scalars with fermions	no
non-Abelian gauge fields	yes
non-Abelian fields with fermions	yes*
non-Abelian fields, fermions, scalars	yes*

*) provided certain conditions hold true

idea:

some or all couplings achieve interacting UV fixed point Wilson '71 Weinberg '79

if so, new opportunities for BSM physics & quantum gravity

proof of existence:

4D gauge-Yukawa theory with exact asymptotic safety Litim, San

Litim, Sannino, 1406.2337 (see talk by F Sannino)

today:

weakly interacting fixed points of general 4d gauge theories

conditions for asymptotic safety

Bond, Litim 1608.00519

results

case	gauge group	matter	Yukawa	asymptotic safety
a)	simple	fermions in irreps No		No
b)	simple or abelian	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
c)	semi-simple, with or without abelian factors	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
d)	simple or abelian	fermions and scalars, any rep	Yes	Yes *)
e)	semi-simple, with or without abelian factors	fermions and scalars, any rep	Yes	Yes *)

*) provided certain auxiliary conditions hold true

gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2} \qquad \qquad \beta = -B\,\alpha^2 + C\,\alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point $0 < \alpha^* = B/C \ll 1$

competition between matter and gauge fields

$$B = \frac{2}{3} \left(11C_2^G - 2S_2^F - \frac{1}{2}S_2^S \right)$$
$$C = 2 \left[\left(\frac{10}{3}C_2^G + 2C_2^F \right) S_2^F + \left(\frac{1}{3}C_2^G + 2C_2^S \right) S_2^S - \frac{34}{3}(C_2^G)^2 \right]$$

gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2} \qquad \qquad \beta = -B\,\alpha^2 + C\,\alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point $0 < \alpha^* = B/C \ll 1$

competition between matter and gauge fieldsB, C > 0:asymptotic freedom
Caswell-Banks-ZaksIR FPB, C < 0:asymptotic safety
no examplesUV FP

gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B\,\alpha^2 + C\,\alpha^3 + \mathcal{O}(\alpha^4)$$

UV fixed point

gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B\,\alpha^2 + C\,\alpha^3 + \mathcal{O}(\alpha^4)$$

UV fixed point

quadratic Casimirs

highest weights, Racah formula

$$C_2(\Lambda) = \frac{1}{2}(\Lambda, \Lambda + 2\delta)$$

 $\delta = (1, 1, \dots, 1)$

weight metrics G

$$(u,v) \equiv \sum_{ij} G_{ij} \, u^i \, v^j$$

fundamental weights $(\Lambda_k)^i = \delta_k^i$

quadratic Casimirs

result

University of Sussex

115

symmetry	range	$\min C_2$	$C_2(\mathrm{adj})$	x	irrep with smallest C_2
SU(N)	$N \ge 2$	$rac{N^2-1}{2N}$	N	$rac{1}{2}\left(1-rac{1}{N^2} ight)$	fundamental \boldsymbol{N} and $\overline{\boldsymbol{N}}$
	$3 \le N \le 7$	$\frac{1}{16}N(N-1)$	N-2	$rac{N}{16}rac{N-1}{N-2}$	fundamental spinors $2^{\lceil N/2 \rceil - 1}$
SO(N)	N = 8	$\frac{7}{2}$	6	$\frac{7}{12}$	fundamental vector $8_{\mathbf{v}}$ and fundamental spinors $8_{\mathbf{s}}, 8_{\mathbf{c}}$
	$N \ge 9$	$rac{1}{2}(N-1)$	N-2	$rac{N-1}{2(N-2)}$	fundamental \boldsymbol{N}
Sp(N)	$N \ge 1$	$\frac{1}{4}(2N+1)$	N+1	$rac{2N+1}{4(N+1)}$	fundamental $\mathbf{2N}$
E_8		30	30	1	adjoint 248
E_7		$\frac{57}{4}$	18	$\frac{19}{24}$	fundamental 56
E_6		$\frac{26}{3}$	12	$\frac{13}{18}$	fundamental 27 and $\overline{27}$
F_4		6	9	$\frac{2}{3}$	fundamental 26
G_2		2	4	$\frac{1}{2}$	fundamental 7

quadratic Casimirs

University of Sussex

no go theorems I

must have

 $C_2^S < \frac{1}{11}C_2^G$

instead, we find

$$C_2^S \ge \frac{3}{8}C_2^G$$

implication:

no go theorems II

more gauge factors $\beta_a = \alpha_a^2 \left(-B_a + C_{ab} \alpha_b \right) + \mathcal{O}(\alpha^4)$

interacting fixed points $B_a = C_{ab} \alpha_b^*$

non-trivial mixing positive definite

$$C_{ab} = 4 \left(C_2^{F_b} S_2^{F_a} + C_2^{S_b} S_2^{S_a} \right) \quad (a \neq b)$$

$$C_{ab} \ge 0$$

implication:

$$B_a \le 0 \implies C_{ab} \ge 0$$
 for all b
no go theorem, case c)

result

case	gauge group	matter	Yukawa	asymptotic safety
a)	simple	fermions in irreps	No	No
b)	simple or abelian	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
c)	semi-simple, with or without abelian factors	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
d)	simple or abelian	fermions and scalars, any rep	Yes	Yes *)
e)	semi-simple, with or without abelian factors	fermions and scalars, any rep	Yes	Yes *)

*) provided certain auxiliary conditions hold true

matter couplings

scalar self-couplings

No (start at 3- or 4-loop)

scalar self-couplings Yukawa couplings

No (start at 3- or 4-loop) Yes (start at 2-loop)

scalar self-couplings Yukawa couplings No (start at 3- or 4-loop)

Yes (start at 2-loop)

$$\sim \frac{1}{2} (\mathbf{Y}^A)_{JL} \phi^A \psi_J \zeta \psi_L \qquad \beta = \alpha^2 \left(-B + C \alpha - 2 Y_4 \right)$$

 $Y_4 = \operatorname{Tr}[\mathbf{C}_2^F \mathbf{Y}^A (\mathbf{Y}^A)^{\dagger}] / d(G) \ge 0$

Yukawa's slow down the running of the gauge

induced shift $B \to B' = B + 2Y_4^* > B$

fixed point

$$D \rightarrow D = D + 2I_4$$

$$\alpha^* = \frac{B'}{C}$$

Yukawa couplings $\beta^{A} = \mathbf{E}^{A}(Y) - \alpha \mathbf{F}^{A}(Y)$

Yukawa nullclines
$$\beta^A = 0$$

Yukawa couplings

$$\mathbf{Y}_*^A = 0$$
$$\mathbf{Y}_*^A = \frac{g}{4\pi} \, \mathbf{C}^A$$

Yukawa couplings
$$\beta^A = \mathbf{E}^A(Y) - \alpha \, \mathbf{F}^A(Y)$$

Yukawa nullclines $\beta^A = 0$

 $\mathbf{Y}_*^A = 0$ $\mathbf{Y}_*^A = \frac{g}{4\pi} \mathbf{C}^A$

Gauss int. FP

$$\Rightarrow Y_4^* = D \cdot \alpha$$

$$D = \operatorname{Tr}[\mathbf{C}_2^F \mathbf{C}^A (\mathbf{C}^A)^{\dagger}] / d(G) \ge 0$$

Yukawa contributions modify two-loop gauge term

Yukawa couplings $\beta^{A} = \mathbf{E}^{A}(Y) - \alpha \, \mathbf{F}^{A}(Y)$

$$\beta = \alpha^2 \left(-B + C \alpha - 2 Y_4 \right)$$
$$Y_4^* = D \cdot \alpha$$
$$\stackrel{!}{=} \alpha^2 \left(-B + C' \alpha \right)$$

induced shift $C \to C' = C - 2D < C$

Yukawa couplings $\beta^{A} = \mathbf{E}^{A}(Y) - \alpha \, \mathbf{F}^{A}(Y)$

$$\beta = \alpha^2 \left(-B + C \alpha - 2 Y_4 \right)$$
$$Y_4^* = D \cdot \alpha$$
$$\stackrel{!}{=} \alpha^2 \left(-B + C' \alpha \right)$$

induced shift $C \to C' = C - 2D < C$

reliable fixed point $\alpha_* = B/C'$ even if B<0 and C>0 impossible without Yukawa's

necessary condition for asymptotic safety

C' < 0

case d)

more gauge couplings

$$\beta_a = \alpha_a^2 \left(-B_a + C_{ab} \,\alpha_b - 2 \, Y_{4,a} \right)$$

Yukawa-induced shift $B_a \rightarrow B'_a = B_a + 2Y^*_{4,a}$

fixed points
$$B'_a = C_{ab} \alpha_b^*$$

novel solutions including UV FPs if B<0 and B'>0

Yukawas may compensate gauge contributions necessary condition for asymptotic safety $B_a^\prime > 0$

case e)

result

case	gauge group	matter	Yukawa	asymptotic safety
a)	\mathbf{simple}	fermions in irreps	No	No
b)	simple or abelian	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
c)	semi-simple, with or without abelian factors	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
d)	simple or abelian	fermions and scalars, any rep	Yes	Yes *)
e)	semi-simple, with or without abelian factors	fermions and scalars, any rep	Yes	Yes*)

*) provided certain auxiliary conditions hold true

University of Sussex

interacting FPs

case	gauge group	Yukawa	parameter	interacting FPs	type
a)	simple	No	B > 0 and $C > 0$	Banks-Zaks	IR
b)	semi-simple, no $U(1)$ factors	No	all $B_a > 0$	Banks-Zaks and products thereof	\mathbf{IR}
	simple	Yes	B > 0 and $C > 0 > C'$	Banks-Zaks	\mathbf{IR}
c)	simple	Yes	B > 0 and $C > C' > 0$	BZ and GYs	\mathbf{IR}
	simple or abelian	Yes	B < 0 and $C' < 0$	gauge-Yukawas	UV/IR
d)	semi-simple, with or without $U(1)$ factors	Yes	all $B'_a > 0$	BZs and GYs and products thereof	\mathbf{UV}/\mathbf{IR}

phase diagrams of simple gauge theories

parameters

B, *C* matter content*C'* Yukawa structure

(B > 0)

(B, C > 0)

 ${\cal X}$

115 University of Sussex

phase diagrams

extensions I

interacting UV FPs with exact asymptotic safety exist for simple gauge theories Litim, Sannino, 1406.2337

but: do interacting UV FPs with exact asymptotic safety exist for semi-simple gauge theories?

Yes! (talk by Andrew Bond)

space of UV FP solutions is non-empty

extensions II

what is the impact of higher-dimensional invariants?

tool: functional RG

(see poster by Tugba Buyukbese)

results:

fixed point persists effective potential remains stable **U**niversity of Sussex

extensions II

Lagrangean

$$L_{YM} = -\frac{1}{2} \operatorname{Tr} F^{\mu\nu} F_{\mu\nu}$$

$$L_F = \operatorname{Tr} \left(\overline{Q} \, i \not D \, Q \right)$$

$$L_Y = y \operatorname{Tr} \left(\overline{Q} \, H \, Q \right)$$

$$L_H = \operatorname{Tr} \left(\partial_{\mu} H^{\dagger} \, \partial^{\mu} H \right)$$

$$L_U = -u \operatorname{Tr} \left(H^{\dagger} H \right)^2$$

$$L_V = -v \left(\operatorname{Tr} H^{\dagger} H \right)^2.$$

Litim, Sannino, 1406.2337

further scalar invariants

$$v_{k}(i_{1}, i_{2}) = u_{k}(i_{1}) + i_{2}c_{k}(i_{1})$$

$$u_{k}(i_{1}) = \sum_{j=2}^{N_{i}} \frac{(4\pi)^{2j-2}i_{1}^{j}\lambda_{2j-2}}{N_{f}^{2j-2}}$$

$$c_{k}(i_{1}) = \sum_{i=0}^{N_{i}} \frac{(4\pi)^{2j+2}i_{1}^{j}\lambda_{2j+1}}{N_{f}^{2j+1}}$$

$$i_{1} = \operatorname{Tr}(h^{\dagger}h)$$

$$i_{2} = \operatorname{Tr}\left((h^{\dagger}h)^{2} - \frac{1}{N_{f}}(\operatorname{Tr}h^{\dagger}h)^{2}\right)$$

Buyukbese, Litim (in prep.)

University of Sussex

extensions II

results: exact eigenvalue spectrum

conclusions

identified all weakly interacting fixed points of general 4D gauge theories - rich spectrum

strict no go theorems together with necessary and sufficient conditions for asymptotic safety for general 4D gauge theories

Yukawa interactions pivotal for asymptotic safety

asymptotic safety persist beyond canonically marginal invariants

window of opportunities for BSM