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Outline

● Vertex frequency dependence (Part I)

– Definitions, 1PI and 2PI vertexes  

– Diagrammatic understanding of the vertex structures 

– Vertex decomposition (and reconstruction) 

● Towards strong coupling (Part II)

– Apllication: combining DMFT and fRG (DMF2RG) 

continued in next talk



  

1PI vertex in (fermionic) fRG

2-particle picture:
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Review: Metzner et al.,RMP '12 



  

1PI vertex in (fermionic) fRG

2-particle picture:

fRG:
Momentum
dependence→
leading instabilities;
calculation of susceptibilities  

This talk:
Systematic analysis of 
frequency dependence  

Review: Metzner et al.,RMP '12 



  

Notation conventions
“fermionic” 4-vector

“bosonic” 4-vector
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Notation conventions
“fermionic” 4-vector

“bosonic” 4-vector

Computed in fRG

Diagonal & horizontal 
frequency structure →
Large frequency behavior 

Plot a fixed transfer frequency



  

Decomposing the vertex

Parquet equation



  

Decomposing the vertex

Parquet equation

2-particle irreducible



  

Decomposing the vertex

Parquet equation

Rohringer,Valli and Toschi,PRB'12 

2-particle irreducible



  

Decomposing the vertex

Parquet equation

Rohringer,Valli and Toschi,PRB'12 

2-particle irreducible ED result 

No two-particle irreducible terms in fRG at one-loop truncation level
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Parquet equation
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fRG: integrate each channel separately   
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Decomposing the vertex

Parquet equation

2-particle reducible

Can one further understand the 
structures? 

fRG: integrate each channel separately   



  

Diagrammatic classification
Assumption: Bare interaction 
Local and frequency independent 

Lowest order: Dependence on transfer arguments only, 
often used in fRG: 

Generalization this argument for higher order diagrams?

Karrasch, et al.,JPCM 2008 (frequencies); 
Husemann and Salmhofer, PRB 2009 (momenta)
Bauer, Heyder and von Delft, PRB 2014 (inhomogeneous systems)   



  

Diagrammatic classification

Direct connection with susceptibilities 
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Diagrammatic classification

sc
an



  

Diagrammatic classification



  

Diagrammatic classification

- - =

 Subleading at weak coupling
 Full argument dependence: numerically expensive
 Possibly relevant for d-wave scattering



  

Vertex: decomposition and reconstruction

Computed in 
a finite box
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Vertex: decomposition and reconstruction
fRG: separate channel integration From the full vertex: Bethe-

Salpeter equations 

Computed in 
a finite box

Extract 

Extend  Extract 

Extract Check that it decays inside 
the box



  

Part I: conclusions

1.The interaction vertex shows a nontrivial frequency structure 

2.The vertex structure can be understood diagrammatically

3.The knowledge of the vertex asymptotic can be used to reduce 
computational effort 

Part II: DMF2RG and strong coupling

● Dynamical mean field theory in a nutshell

● Starting fRG from a correlated starting point 



  

Flowing from infinite to d-dimensions
● Goal: combine non-perturbative local physics from DMFT 

with nonlocal fluctuations from fRG 

Taranto, et al.,PRL 2014; 

● Mapping on an Anderson Impurity model embedded in a self-consistent
frequency-dependent bath  (MF in space)

Georges et al., RMP 1996

Georges and Kotliar, PRB 1992

Georges et al., RMP 1996

● In the ∞-dimensional limit local approximation for the self-energy becomes exact  

Metzner and Vollhardt, PRB 1989; 

(1)  Approximate a lattice model with an 
∞-dimensional lattice (with the same 
DOS)

(2)  Exactly solve the problem in infinite 
dimensions

(3)  Flow from the infinite dimensional 
lattice to the original one using fRG

Conceptual steps:

● The Anderson Impurity model can be exactly solved (QMC, ED, …) good starting point 
for the flow equations
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Taranto, et al.,PRL 2014; 
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Taranto, et al.,PRL 2014; 



  

Flowing from infinite to d-dimensions

Taranto, et al.,PRL 2014; 

DMFT self-consistency 
condition for the Weiss field

Georges,cond-mat/0403123 (2004)
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Flowing from infinite to d-dimensions

Taranto, et al.,PRL 2014; 

DMFT self-consistency 
condition for the Weiss field

Georges,cond-mat/0403123 (2004)

More freedom in the 
regulator 



  

Flowing from infinite to d-dimensions

Taranto, et al.,PRL 2014; 

Effect of the frequency dependence in the next talk
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