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Motivation

• understand properties 
of strongly interacting 
Fermi gas

• thermodynamics: equation of state (EoS), density n(μ,T,a), pressure P(μ,T,a)

• transport & dynamical properties...

• dilute gas of nonrelativistic ⬆ and ⬇ fermions with contact interaction
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2D Fermi gas

exact 2D scattering amplitude:

2D: f(k) =
1

ln(1/k2a22D) + i⇡

always bound state!

"B =
~2

ma22D

Adhikari 1986

3D: f(k) =
1

�1/a3D � ik

• typical scale k=kF: expansion parameter g=-1/ln(kFa2D)

Holstein 1993; Pitaevskii & Rosch 1997
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• vacuum (μ=0) classically scale invariant with z=2, dim[g0]=0
• exact beta function:

• log. running coupling, energy scale dependence breaks scale invariance
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Phase diagram of 2D Fermi gas
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(49) and determining the point at which � vanishes.87 From the resulting
linearized gap equation (or Thouless criterion) one obtains88
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A more thorough calculation that includes Gorkov–Melik-Barkhudarov cor-
rections56 yields the BCS result above reduced by a factor of e.
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Fig. 15. Schematic phase diagram throughout the BCS-Bose crossover. The critical
temperature for superfluidity is represented by the solid line, and corresponds to an
interpolation between the known limits. The dashed lines correspond to µ ⇡ 0 and the
onset of pairing T ⇤, which approximately bound the pseudogap region above T

c

. The
µ(T ) ⇡ 0 line is obtained by setting T = µ(0), while T ⇤ is estimated from the Thouless
criterion (64).

Referring to Fig. 15, we see that the results for T
c

in the BCS and Bose
limits can be smoothly interpolated, suggesting that T

c

/T
F

never exceeds
0.1. Note that T

c

has a maximum in the regime | ln(k
F

a
2D

)| < 1. As yet,
there is no experimental observation of T

c

in the 2D Fermi gas.

5.1.1. Quasi-2D case

Given that experiments deal with quasi-2D Fermi gases, it is important to
understand the e↵ect of a finite confinement length on T

c

. This is in general
a challenging problem to address throughout the BCS-Bose crossover, but
it is possible to estimate the dependence on "

F

/!
z

in the BCS limit. Using
the mean-field approach for the quasi-2D system described in Sec. 4.2, one

Fermi/BCS side:
small binding Eb
attractive Fermi gas
Tc~exp[-ln(kFa2D)]

Bose side:
large binding Eb
repulsive Bose gas
Tc~1/ln[ln(kFa2D)]

superfluid BKT
(algebraic corr.)

normal
(exp. corr.)

Levinsen & Parish 2014
Boettcher, PhD thesis

but see Jakubczyk & Metzner, 1606.04547



Thermodynamics

• dilute gas (kFr0≪1): universal properties depend only on T/TF and kFa2D

• Contact density: probability to find up and down in same place  [S. Tan 2008]

adiabatic theorem for internal energy E via Hellmann-Feynman

C = m2g20
⌦
 ̄" ̄# # "(r)

↵ dE

d ln a2D
=

C

2⇡m



Thermodynamics

• dilute gas (kFr0≪1): universal properties depend only on T/TF and kFa2D

• Contact density: probability to find up and down in same place  [S. Tan 2008]

adiabatic theorem for internal energy E via Hellmann-Feynman

C = m2g20
⌦
 ̄" ̄# # "(r)

↵ dE

d ln a2D
=

C

2⇡m

-2 0 2 4 6
-3

-2

-1

0

1

ln(kFa2 D)

E
/E

FG

Shi+ 2015 (AFQMC)

T=0

-2 0 2 4 6
0.0

0.5

1.0

1.5

2.0

ln(kFa2 D)

C



Universal relations

• dilute gas: Contact determines UV limit of correlation functions

• momentum distribution

• internal energy

n(k)
k�kF�! C

k4

light for the imaging propagates along the axial direction
of the trap, and thus we measure the radial momentum
distribution. Assuming the momentum distribution is
spherically symmetric, we obtain nðkÞ with an inverse
Abel transform.

Figure 1(a) shows an example nðkÞ for a strongly inter-
acting gas with a dimensionless interaction strength
ðkFaÞ#1 of #0:08$ 0:04. The measured nðkÞ exhibits a
1=k4 tail at large k, and we extractC from the average value
of k4nðkÞ for k > kC, where we use kC ¼ 1:85 for
ðkFaÞ#1 >#0:5 and kC ¼ 1:55 for ðkFaÞ#1 <#0:5.
These values for kC are chosen empirically such that for
k & kC, the momentum distributions are in the asymptotic
limit to within our statistical measurement uncertainties.
One issue for this measurement is whether or not the
interactions are switched off sufficiently quickly to accu-
rately measure nðkÞ. The data in Fig. 1(a) were taken using
a magnetic-field sweep rate of _B ¼ 1:2 G

!s to turn off the

interactions for the expansion. In the inset to Fig. 1a, we
show the dependence of the measured C on _B. Using an
empirical exponential fit [line in Fig. 1(a) inset], we esti-
mate that for our typical _B of 1.2 to 1:4 G

!s , C is system-

atically low by about 10%. We have therefore scaled C
measured with this method by 1:1.

The contact is also manifest in rf spectroscopy, where
one applies a pulsed rf field and counts the number of
atoms that are transferred from one of the two original
spin states into a third, previously unoccupied, spin state
[11]. We transfer atoms from the j9=2;#7=2i state to the
j9=2;#5=2i state. It is predicted that the number of atoms
transferred as a function of the rf frequency, ", scales as
"#3=2 for large ", and that the amplitude of this high
frequency tail is C

23=2#2 [12–14]. Here, " ¼ 0 is the single-

particle spin-flip resonance, and " is given in units of
EF=h. This prediction requires that atoms transferred to
the third spin-state have only weak interactions with the
other atoms so that ‘‘final-state effects’’ are small [14–21],
as is the case for 40K atoms. In Fig. 1(b), we plot a
measured rf spectrum, !ð"Þ, multiplied by 23=2#2"3=2.
The rf spectrum is normalized so that its integral equals
0:5. We observe the predicted 1="3=2 behavior for large ",
and obtain C by averaging 23=2#2"3=2!ð"Þ for "> "C,
where we use "C ¼ 5 for ðkFaÞ#1 >#0:5 and "C ¼ 3
for ðkFaÞ#1 <#0:5. These values for "C are chosen such
that for " & "C, !ð"Þ is in its asymptotic limit.
The connection between !ð"Þ and the high-k tail of nðkÞ

can be seen in the Fermi spectral function, which can be
probed using photoemission spectroscopy for ultra cold
atoms [8]. Recent photoemission spectroscopy results on
a strongly interacting Fermi gas [22] revealed a weak,
negatively dispersing feature at high k that persists to
temperatures well above TF. This feature was attributed
to the effect of interactions, or the contact, consistent with
a recent prediction [23]. Atom photoemission spectros-
copy, which is based upon momentum-resolved rf spec-
troscopy, also provides a method for measuring nðkÞ. By
integrating over the energy axis, or equivalently, summing
data taken for different rf frequencies, we obtain nðkÞ. This
alternative method for measuring nðkÞ yields results similar
to the ballistic expansion technique, but avoids the issue of
magnetic-field sweep rates.
In Fig. 2, we show the measured contact for different

values of 1=kFa. We restrict the data to values of 1=kFa
where our magnetic-field sweeps are adiabatic [24].
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FIG. 1. Extracting the contact from the momentum distribution
and rf line shape. (a) Measured momentum distribution for a
Fermi gas at 1

kFa
¼ #0:08$ 0:04. Here, the wave number k is

given in units of kF, and we plot the normalized nðkÞ multiplied
by k4. The dashed line corresponds to 2:2, which is the average
of k4nðkÞ for k > 1:85. (Inset) The measured value for C depends
on the rate of the magnetic-field sweep that turns off the
interactions before time-of-flight expansion. (b) rf line shape
measured for a Fermi gas at 1

kFa
¼ #0:03$ 0:04. Here, " is the

rf detuning from the single-particle Zeeman resonance, given in
units of EF=h. We plot the normalized rf line shape multiplied by
23=2#2"3=2, which is predicted to asymptote to C for large ".
Here, the dashed line corresponds to 2:1, from an average of the
data for "> 5.
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FIG. 2. The contact. We measure the contact, C, as a function
of ðkFaÞ#1 using three different methods. Filled circles corre-
spond to direct measurements of the fermion momentum distri-
bution nðkÞ using a ballistic expansion, in which a fast magnetic-
field sweep projects the many-body state onto a noninteracting
state. Open circles correspond to nðkÞ obtained using atom
photoemission spectroscopy measurements. Stars correspond to
the contact obtained from rf spectroscopy. The values obtained
with these different methods show good agreement. The contact
is nearly zero for a weakly interacting Fermi gas with attractive
interactions (left hand side of plot) and then increases as the
interaction strength increases to the unitarity regime where
ðkFaÞ#1 ¼ 0. The line is a theory curve obtained from Ref. [5].
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kinetic interaction energy
contact in fRG for 3D Fermi gas: Boettcher, Diehl, Pawlowski & Wetterich 2013



Pressure

       scale invariant:                                      interacting 2D Fermi gas:

                                                                     breaks scale invariance!

P = E P = E +
C

4⇡m
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Ground-state energy
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subtract two-body binding energy:
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Ground-state energy
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E

EFG
= 1 + g + ( 34 � ln 2)g2 + . . . [g = � 1

ln(kFa2D)
]Engelbrecht & Randeria 1992

Fermi liquid theory:

subtract two-body binding energy:
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Nozières & Schmitt-Rink 1985;
2D: Engelbrecht & Randeria 1990

Many-body T-matrix



Nozières & Schmitt-Rink 1985;
2D: Engelbrecht & Randeria 1990

step 1: compute many-body T-matrix

two-body T-matrix: T0(E) =
4⇡/m

ln("B/E) + i⇡

many-body: finite density medium scattering    Schmidt, Enss, Pietilä & Demler 2012

T�1(q,!) = T�1
0 (! + i0 + µ" + µ# � "q/2) +

Z
d2k

(2⇡)2
nF ("k � µ") + nF ("k+q � µ#)

! + i0 + µ" + µ# � "k � "k+q

we find compact solution

Many-body T-matrix
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Fermion spectral function

step 2: fermion self-energy

step 3: spectral function

A#(p,!) = �2 Im
1

! + i0 + µ# � "p � ⌃#(p,!)

⌃#(p,!) =

Z

k<kF

d2k

(2⇡)2
T (k+ p, "k � µ" + !)

contains full information about
energy spectrum, quasiparticle weights, decay rates...



Luttinger-Ward approach

• repeated particle-particle scattering dominant in dilute gas:

                                                    self-consistent T-matrix 

                                                    self-consistent fermion propagator
                                                    (400 momenta / 400 Matsubara frequencies)   

• spectral function A(k,ω)                           density of states ρ(ω)

Haussmann 1993, 1994;
Haussmann et al. 2007

Bauer, Parish, Enss PRL 2014

μ is taken to be the same for both species in a spin-balanced
gas. The energy scale is set by the Fermi energy εF ¼
kBTF ¼ ℏ2k2F=2m for a total density n ¼ k2F=2π. The bare
attractive contact interaction g0 has to be regularized and
is expressed in terms of the physical binding energy εB of
the two-body bound state which is always present in an
attractive 2D Fermi gas. We define the 2D scattering length
as a2D ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
mεB

p
and parametrize the interaction strength

by lnðkFa2DÞ ¼ lnð2εF=εBÞ=2. In the following, we set
kB ¼ 1, ℏ ¼ 1, and write β ¼ 1=kBT.
We investigate the behavior of the strongly interacting

Fermi gas in the normal state using the Luttinger-Ward, or
self-consistent T-matrix, approach [14,15], which goes
beyond earlier works [6,16] by including approximately
the interaction between dimers as well as dressed Green’s
functions. Thermodynamic precision measurements for the
unitary Fermi gas in 3D [17] have confirmed the accuracy
of this method, both for the value of Tc=TF ¼ 0.16ð1Þ and
the Bertsch parameter ξ ¼ 0.36ð1Þ [15,17]. Recently, the
Luttinger-Ward approach has been extended to study trans-
port properties [18]. The success of this method in three
dimensions encourages its application to the homogeneous
2D Fermi gas, which is particularly challenging due to the
logarithmic energy dependence of the scattering amplitude.
Within the Luttinger-Ward approach, pairs of dressed

fermions with Green’s function Gðk;ωÞ ¼ ½−ωþ εk − μ −
Σðk;ωÞ&−1 can form virtual molecules whose dynamics are
described by the T matrix ΓðK;ΩÞ. The fermions can scatter
from these molecules, which determines their lifetime and
self-energy Σðk;ωÞ (see Supplemental Material [19]). From
the self-consistent solution Gðk;ωÞ one obtains the spectral
function Aðk;ωÞ ¼ ImGðk;ωþ i0Þ=π.

Density of states.—The density of states ρðωÞ describes at
which energies fermionic quasiparticles can be excited, and is
computed as the momentum average of the spectral function,
ρðωÞ ¼

R
dkAðk;ωÞ=ð2πÞ2. Figure 1 shows the density of

states for an interaction strength of lnðkFa2DÞ ¼ 0.8, which
is weak enough that there should be a Fermi surface at low
temperatures [20]. For decreasing temperature, we see that
the density of states is strongly suppressed at the chemical
potential, while it increases on either side of the Fermi
surface. This marks the pseudogap regimewhich is part of the

FIG. 1 (color online). Density of states ρðωÞ, normalized by
ρ0 ¼ m=2π for the free Fermi gas, at interaction lnðkFa2DÞ ¼ 0.8
for different temperatures: T ¼ 0.45TF (top curve at ω ¼ 0) to
T ¼ 0.07TF (bottom). Inset: Spectral function Aðk;ωÞ for
T ¼ 0.07TF. The grey dashed line marks the maximum in the
spectral weight of the bottom band.

FIG. 2 (color online). Density n of the 2D Fermi gas vs chemical
potential βμ, for different interaction strengths βεB (see legend).
Since the density is normalized by n0ðβμÞ for the noninteracting
gas, the nonmonotonic behavior of n=n0 reflects the impact of
interactions, while the compressibility κ ¼ ð∂n=∂μÞ=n2 is always
positive. The inset shows a typical trajectory in T=TF vs lnðkFa2DÞ
corresponding to the dotted line of fixed βεB ¼ 1. Along this line,
βμ increases with decreasing T=TF.

FIG. 3 (color online). Pressure P vs interaction strength,
normalized by the pressure P0 ¼ nεF=2 of an ideal Fermi gas
of the same density at T ¼ 0. Luttinger-Ward data at temperature
T=TF ¼ 0.2 (top, dotted line) to T=TF ¼ 0.1 (solid line) in
comparison with experimental data [10] (symbols) and T ¼ 0
QMC results [11] (dashed line).
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FIG. 3 (color online). Pressure P vs interaction strength,
normalized by the pressure P0 ¼ nεF=2 of an ideal Fermi gas
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Density equation of state: theory

• maximum  &  density driven crossover

μ is taken to be the same for both species in a spin-balanced
gas. The energy scale is set by the Fermi energy εF ¼
kBTF ¼ ℏ2k2F=2m for a total density n ¼ k2F=2π. The bare
attractive contact interaction g0 has to be regularized and
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the two-body bound state which is always present in an
attractive 2D Fermi gas. We define the 2D scattering length
as a2D ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
mεB

p
and parametrize the interaction strength

by lnðkFa2DÞ ¼ lnð2εF=εBÞ=2. In the following, we set
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Density equation of state: theory

• maximum  &  density driven crossover

μ is taken to be the same for both species in a spin-balanced
gas. The energy scale is set by the Fermi energy εF ¼
kBTF ¼ ℏ2k2F=2m for a total density n ¼ k2F=2π. The bare
attractive contact interaction g0 has to be regularized and
is expressed in terms of the physical binding energy εB of
the two-body bound state which is always present in an
attractive 2D Fermi gas. We define the 2D scattering length
as a2D ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
mεB

p
and parametrize the interaction strength

by lnðkFa2DÞ ¼ lnð2εF=εBÞ=2. In the following, we set
kB ¼ 1, ℏ ¼ 1, and write β ¼ 1=kBT.
We investigate the behavior of the strongly interacting

Fermi gas in the normal state using the Luttinger-Ward, or
self-consistent T-matrix, approach [14,15], which goes
beyond earlier works [6,16] by including approximately
the interaction between dimers as well as dressed Green’s
functions. Thermodynamic precision measurements for the
unitary Fermi gas in 3D [17] have confirmed the accuracy
of this method, both for the value of Tc=TF ¼ 0.16ð1Þ and
the Bertsch parameter ξ ¼ 0.36ð1Þ [15,17]. Recently, the
Luttinger-Ward approach has been extended to study trans-
port properties [18]. The success of this method in three
dimensions encourages its application to the homogeneous
2D Fermi gas, which is particularly challenging due to the
logarithmic energy dependence of the scattering amplitude.
Within the Luttinger-Ward approach, pairs of dressed

fermions with Green’s function Gðk;ωÞ ¼ ½−ωþ εk − μ −
Σðk;ωÞ&−1 can form virtual molecules whose dynamics are
described by the T matrix ΓðK;ΩÞ. The fermions can scatter
from these molecules, which determines their lifetime and
self-energy Σðk;ωÞ (see Supplemental Material [19]). From
the self-consistent solution Gðk;ωÞ one obtains the spectral
function Aðk;ωÞ ¼ ImGðk;ωþ i0Þ=π.

Density of states.—The density of states ρðωÞ describes at
which energies fermionic quasiparticles can be excited, and is
computed as the momentum average of the spectral function,
ρðωÞ ¼

R
dkAðk;ωÞ=ð2πÞ2. Figure 1 shows the density of

states for an interaction strength of lnðkFa2DÞ ¼ 0.8, which
is weak enough that there should be a Fermi surface at low
temperatures [20]. For decreasing temperature, we see that
the density of states is strongly suppressed at the chemical
potential, while it increases on either side of the Fermi
surface. This marks the pseudogap regimewhich is part of the

FIG. 1 (color online). Density of states ρðωÞ, normalized by
ρ0 ¼ m=2π for the free Fermi gas, at interaction lnðkFa2DÞ ¼ 0.8
for different temperatures: T ¼ 0.45TF (top curve at ω ¼ 0) to
T ¼ 0.07TF (bottom). Inset: Spectral function Aðk;ωÞ for
T ¼ 0.07TF. The grey dashed line marks the maximum in the
spectral weight of the bottom band.

FIG. 2 (color online). Density n of the 2D Fermi gas vs chemical
potential βμ, for different interaction strengths βεB (see legend).
Since the density is normalized by n0ðβμÞ for the noninteracting
gas, the nonmonotonic behavior of n=n0 reflects the impact of
interactions, while the compressibility κ ¼ ð∂n=∂μÞ=n2 is always
positive. The inset shows a typical trajectory in T=TF vs lnðkFa2DÞ
corresponding to the dotted line of fixed βεB ¼ 1. Along this line,
βμ increases with decreasing T=TF.

FIG. 3 (color online). Pressure P vs interaction strength,
normalized by the pressure P0 ¼ nεF=2 of an ideal Fermi gas
of the same density at T ¼ 0. Luttinger-Ward data at temperature
T=TF ¼ 0.2 (top, dotted line) to T=TF ¼ 0.1 (solid line) in
comparison with experimental data [10] (symbols) and T ¼ 0
QMC results [11] (dashed line).
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3D: only 
goes up

tion and theory (23). At low temperatures, the
reduced chemical potential m/EF saturates to the
universal value x. As the internal energy E and
the free energy F satisfy E(T ) > E(0) = 3

5N xEF =
F(0) > F(T ) for all T, the reduced quantities
fE ≡ 5

3
E

NEF
¼ p̃ and fF ≡ 5

3
F

NEF
¼ 5

3
m
EF
− 2

3 p̃ (Fig.
3A) provide upper and lower bounds for x (29).
Taking the coldest points of these three curves and
including the systematic error due to the effective
interaction range, we find x = 0.376(4). The un-
certainty in the Feshbach resonance is expected
to shift x by at most 2% (13). This value is con-
sistent with a recent upper bound x < 0.383(1) from
(30), is close to x = 0.36(1) from a self-consistent
T-matrix calculation (23), and agrees with x =
0.367(9) from an epsilon expansion (31). It lies
below earlier estimates x = 0.44(2) (32) and x =
0.42(1) (33) from fixed-node quantumMonteCarlo
calculation that provides upper bounds on x. Our
measurement agrees with several less accurate ex-
perimental determinations (6) but disagrees with
the most recent experimental value 0.415(10) that
was used to calibrate the pressure in (12).

From the energy, pressure, and chemical po-
tential, we can obtain the entropy S = 1

T(E + PV −
mN), and hence the entropy per particle S=NkB ¼
TF
T

p̃ −
m
EF

! "
as a function of T/TF (Fig. 3B). At

high temperatures, S is close to the entropy of
an ideal Fermi gas at the same T/TF. Above Tc,
the entropy per particle is nowhere small com-
pared with kB. Also, the specific heat CV is not
linear in T in the normal phase. This shows that
the normal regime above Tc cannot be described in
terms of a Landau Fermi Liquid picture, although
some thermodynamic quantities agree surpris-
ingly well with the expectation for a Fermi liquid
[see (12) and (13)]. Below about T/TF = 0.17, the
entropy starts to strongly fall off comparedwith that
of a noninteracting Fermi gas, which we again
interpret as the freezing out of single-particle excita-
tions as a result of the formation of fermion pairs.
Far below Tc, phonons dominate. They only have a
minute contribution to the entropy (23), less than
0.02 kB at T/TF = 0.1, consistent with our measure-
ments. At the critical point, we obtain Sc = 0.73(13)
NkB, in agreement with theory (23). It is encourag-
ing for future experiments with fermions in optical
lattices that we obtain entropies less than 0.04 N
kB, far below critical entropies required to reach
magnetically ordered phases.

From the chemical potential m/EF andT=TF ¼
4p

ð3p2Þ2=3
1

ðnl3Þ2=3, we finally obtain the density EoS

n(m,T ) ≡ 1
l3
fnðbmÞ, with the de Broglie wave-

length l ¼
ffiffiffiffiffiffiffiffi
2pħ2
mkBT

q
. The pressure EoS follows

as P(m,T ) ≡ kBT
l3

fPðbmÞ, with fP ¼ 2
5
TF
T p̃fnðbmÞ.

Figure 4 shows the density and pressure nor-
malized by their noninteracting counterparts at
the same chemical potential and temperature. For
the normal state, a concurrent theoretical calcu-
lation employing a new Monte Carlo method
agrees excellently with our data (34). Our data

deviate from a previous experimental determi-
nation of the pressure EoS (12) that was cal-
ibrated with an independently measured value of

x = 0.415(10) (35) and disagree with the energy
measurement in (11) that used a thermometry in-
consistent with the Virial expansion (10). Around
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Fig. 3. (A) Chemical potential m, energy E, and free energy F of the unitary Fermi gas versus T/TF. m (red
solid circles) is normalized by the Fermi energy EF, and E (black solid circle) and F (green solid circle) are
normalized by E0 = 3

5N EF. At high temperatures, all quantities approximately track those for a non-
interacting Fermi gas, shifted by xn − 1 (dashed curves). The peak in the chemical potential signals the
onset of superfluidity. In the deeply superfluid regime at low temperatures, m/EF, E/E0, and F/F0 all approach
x (blue dashed line). (B) Entropy per particle. At high temperatures, the entropy closely tracks that of a
noninteracting Fermi gas (black solid curve). The open squares are from the self-consistent T-matrix
calculation (23). A few representative error bars are shown, representing mean T SD.
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Fig. 4. (A) Density and (B) pressure of a unitary Fermi gas versus m/kB T, normalized by the density and
pressure of a noninteracting Fermi gas at the same chemical potential m and temperature T. Red solid
circles: experimental EoS. Blue dashed curves: low-temperature behavior with x = 0.364 (upper), 0.376
(middle), and 0.388 (lower). Black dashed curve: low-temperature behavior with x at upper bound of 0.383
from (30). Green solid circles (black fine dashed line): MIT experimental data (theory) for the ideal Fermi
gas. Blue solid squares (blue curve): diagrammatic Monte Carlo calculation (34) for density (pressure, with
blue dashed curves denoting the uncertainty bands). Solid green line: third-order Virial expansion. Open
black squares: self-consistent T-matrix calculation (23). Open green circles: lattice calculation (36). Orange
star and blue triangle: critical point from the Monte Carlo calculations (26) and (27), respectively. Solid
diamonds: Ecole Normale Supérieure experiment (12). Purple open diamonds: Tokyo experiment (11).
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Equation of state: cold atom experiment
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FIG. 3: EOS in the crossover regime shown as the density normalized by the ideal gas result n0(µ, T ) = 2��2
T log(1+ e�µ). The

experimental data points (filled shapes) are compared to the second order virial expansion at low values of �µ (coloured dashed
lines). The displayed errors are purely statistical, with systematic uncertainties estimated at 13-15%. We compare our results
to theoretical predictions for the EOS in the 2D BCS-BEC crossover from LW theory ([22], solid black lines) and fermionic
QMC simulations ([23], dotted black lines), with the corresponding value of �"B being attached to the curves. Note that the
vertical scale di↵ers by a factor of 10 in each panel.

We further analyze density profiles obtained from Quan-
tum MC (QMC) computations for the trapped Bose gas
with similar trapping parameters as used in the experi-
ment. We refer to Refs. [32, 57, 58] for details on the
simulations. The QMC profiles allow us to determine T

and µ̃0 from the Boltzmann regime, and thus, applying
the LDA, we can extract an EOS. The latter need not
necessarily coincide with the one of a classical homoge-
neous gas.

We find excellent agreement of our results with the
EOS extracted from the QMC profiles with the LDA. For
g̃ = 0.60 our data is slightly below the bosonic simulation
for large �µ̃, whereas this trend changes for larger cou-
plings. We attribute this behavior to systematic errors
in the determination of T and µ̃0. Both our results and
QMC are, however, well below the classical predictions
for large �µ̃ from classical MC and mean field theory.
There are two e↵ects which could explain this behavior:
On the one hand, quantum fluctuations become impor-
tant for large g̃ and high densities. On the other hand,
both experiment and QMC are performed in a quasi-2D
setting with nonzero extent in the z-direction. We do
not expect e↵ects beyond LDA to play a role at the high
central densities found on the Bose side.

In Fig. 3 we show the EOS in the strongly correlated
crossover regime between the bosonic and the fermionic
limits. We obtain the EOS from sampling h(x, y) over
approximately 150 shots for each of the magnetic fields
B[G] = 812, 832, 852, 892. The central chemical potential
µ̃0 is determined from the TF fit of the central region,
and the binding energy "B again refers to the central
value. The temperature is estimated by T = (TV+TB)/2,
where TV and TB are obtained from second order virial
and Boltzmann fits to the outer region, respectively. This
choice is motivated by the fact that TV and TB are ex-
pected to give upper and lower bounds on the true tem-
perature of the sample for the interaction strengths con-

sidered here [42]. On the Fermi side, both temperatures
approach each other. The quality of the virial and Boltz-
mann fits is reflected in the overall good agreement of
the corresponding central chemical potentials with the
TF values.
We compare our results for the EOS in the crossover

regime to theoretical predictions for the homogeneous 2D
BCS-BEC crossover from Luttinger–Ward (LW) theory
[22] and fermionic QMC simulations [23]. We find an
overall good agreement between theory and experiment
for n/n0 varying over two orders of magnitude and con-
firm that n/n0 has a maximum of height 2e�"B/2 around
µ ⇡ �"B/2 for large �"B. The origin of this scaling
can be understood from the virial expansion of the PSD
in the Bose limit: n

�

�

2
T

⇡ 2 exp(2�µ̃) = 2 at �µ̃ = 0.
This implies n/n0 ⇡ 2/ log(1 + e

��"B/2) ⇡ 2e�"B/2 at
µ = �"B/2. The di↵erence of the EOS obtained from
LW and QMC methods lies within our systematic errors
from the T - and µ0-determination and thus cannot be
resolved with the present analysis.

On the Fermi side of the crossover, the filling-
dependent interaction strength "B varies substantially
inside the trap, and the EOS obtained from a individ-
ual density profile cannot be fully attributed to a single
value of �"B. In order to avoid this e↵ect, the number of
trapped particles should be kept low. In a recent work
by Fenech et al. [41] the EOS on the Fermi side for
�"B < 0.5 has been determined using 6Li-atoms, which
supplements our data from the Bose and crossover regime
to yield a complete picture of the EOS in the 2D BCS-
BEC crossover.

In this work we have measured the EOS of ultracold
fermions in the 2D BCS-BEC crossover. Our results con-
nect the perturbative Bose gas, the strongly interacting
Bose gas, the strongly interacting fermionic superfluid in
the crossover regime, and the perturbative Fermi liquid as
we tune interactions by means of a Feshbach resonance.
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High temperature: virial expansion

• virial expansion

• Bose limit (                     ):

• good variable between Fermi and Bose limits:

n��
2
T = ln(1 + e�µ) + 2�b2e

2�µ + 3�b3e
3�µ + · · ·

�b2 = e�"B �
Z 1

�1

exp[�es/(2⇡)] ds

⇡2
+ (s� ln(2⇡�"B))2

Barth & Hofmann PRA 2014

�b2 ⇡ e�"B

n
bos

⇡ 2e2�µ+�"B��2

T = e�µbos��2

bos

2µ̃ = 2µ+ "B = µ
bos



Scaling of density maximum

• maximum where            :

at density

(�µ)
max

' ��"B
2

+ ln 2

(n/n
0

)
max

' 2e�"B/2

7

B [G] a(0)
2D [µm] a2D[µm] "(0)B [nK] "B[nK] "CB[nK] µ̃0[nK] "F[nK] ln(kFa2D) µ̃0/"F 1/c

692 0.000137 0.000128 4.31 ⇥109 4.96 ⇥109 13600. 33(4) 1180(123) -7.27(5)
�
+8
�6

�
0.028(4)

�
+4
�4

�
0.024(2)

�
+4
�4

�

732 0.00703 0.00624 1.63 ⇥106 2.07 ⇥106 4330. 50(6) 951(132) -3.49(7)
�
+8
�6

�
0.052(10)

�
+8
�8

�
0.046(4)

�
+7
�7

�

782 0.147 0.12 3730. 5610. 766. 78(7) 590(44) -0.76(3)
�
+8
�6

�
0.13(2)

�
+2
�2

�
0.12(1)

�
+2
�2

�

812 0.517 0.376 302. 569. 191. 113(9) 469(36) 0.29(3)
�
+6
�5

�
0.24(3)

�
+3
�3

�
0.21(2)

�
+3
�3

�

832 1.02 0.699 77.3 165. 65.5 130(10) 417(45) 0.86(5)
�
+6
�5

�
0.31(4)

�
+4
�4

�
0.28(3)

�
+4
�3

�

852 1.83 1.15 24. 61.5 22.6 154(13) 371(41) 1.31(5)
�
+6
�5

�
0.41(6)

�
+6
�5

�
0.38(4)

�
+5
�5

�

892 4.73 2.45 3.61 13.5 3.58 193(16) 366(35) 2.10(8)
�
+6
�5

�
0.53(7)

�
+7
�7

�
0.48(5)

�
+7
�6

�

922 8.29 4.01 1.17 5.00 1.17 204(18) 341(40) 2.58(8)
�
+6
�5

�
0.60(9)

�
+8
�7

�
0.54(6)

�
+7
�7

�

952 13.2 6.96 0.46 1.66 0.459 191(19) 295(37) 3.02(7)
�
+6
�5

�
0.65(10)

�
+9
�8

�
0.59(6)

�
+8
�7

�

982 19.6 9.48 0.209 0.897 0.209 205(14) 319(25) 3.40(8)
�
+6
�5

�
0.64(7)

�
+9
�8

�
0.59(6)

�
+8
�7

�

1042 36.5 18.4 0.0605 0.237 0.0605 197(21) 268(33) 3.96(10)
�
+6
�5

�
0.74(12)

�
+10
�9

�
0.67(8)

�
+9
�8

�

TABLE IV: Scattering parameters and low temperature EOS as shown in Fig. 1. We show the result of averaging the
observables over approximately 30 shots for each magnetic field. The error is shown as (stat.)

�
+sys.
�sys.

�
, where the statistical error

is given by the standard deviation and the systematic error results from the systematic uncertainties discussed in this section.
Note that the 2D binding energy "B is generally larger than the quasi-2D universal dimer energy "CB.

sumption µ(~r) = µ0�V (~r) and hence inherits the system-
atic uncertainties in V (~r). Those result from the uncer-
tainty in the trapping frequencies and the magnification
of the imaging system, giving µ

+6%
�6%. The temperature is

fitted in the low-density region with a reference EOS of
the form n

�

= �

�2
T

⌫(�µ0 � �V (~r)), where ⌫(x) is a di-
mensionless function of x = �µ. The uncertainties of the
density influence both �

�2
T

and µ0. For instance, in the

Boltzmann case we have n

�

= e

�µ
0

�

2

T
e

��V (~r) = Ce

��V (~r),

such that density uncertainties are absorbed in the ir-
relevant prefactor C. We conclude that the systematic
uncertainty in T is the same as the one for µ, i.e. ±6%.

MAXIMUM OF THE EQUATION OF STATE

The EOS at nonzero temperature expressed by the
function n/n0 = h(�µ,�"B) exhibits a maximum as a
function of �µ for fixed �"B. Here we quantify the loca-
tion and height of this maximum from our experimental
data and compare to theoretical predictions from QMC
and LW calculations.

Our data is consistent with a maximum of height
(n/n0)max ' 2e�"B/2 at (�µ)max ' ��"

B

2 +ln(2). Writing
x = �µ and y = (n/n0), the maxima thus all approxi-
mately lie on the curve y = 4e�x. We demonstrate this
behavior in Fig. 3, where we also compare to theory.
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Summary & Outlook

• 2D Fermi gas:
scale invariance broken
exact universal relations for dilute gas 
large density renormalization
density driven crossover

• outlook:
pseudogap (from fRG...)
(transverse) spin diffusion D0~hbar/m
extension to low-temperature phase
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FIG. 3: EOS in the crossover regime shown as the density normalized by the ideal gas result n0(µ, T ) = 2��2
T log(1+ e�µ). The

experimental data points (filled shapes) are compared to the second order virial expansion at low values of �µ (coloured dashed
lines). The displayed errors are purely statistical, with systematic uncertainties estimated at 13-15%. We compare our results
to theoretical predictions for the EOS in the 2D BCS-BEC crossover from LW theory ([22], solid black lines) and fermionic
QMC simulations ([23], dotted black lines), with the corresponding value of �"B being attached to the curves. Note that the
vertical scale di↵ers by a factor of 10 in each panel.

We further analyze density profiles obtained from Quan-
tum MC (QMC) computations for the trapped Bose gas
with similar trapping parameters as used in the experi-
ment. We refer to Refs. [32, 57, 58] for details on the
simulations. The QMC profiles allow us to determine T

and µ̃0 from the Boltzmann regime, and thus, applying
the LDA, we can extract an EOS. The latter need not
necessarily coincide with the one of a classical homoge-
neous gas.

We find excellent agreement of our results with the
EOS extracted from the QMC profiles with the LDA. For
g̃ = 0.60 our data is slightly below the bosonic simulation
for large �µ̃, whereas this trend changes for larger cou-
plings. We attribute this behavior to systematic errors
in the determination of T and µ̃0. Both our results and
QMC are, however, well below the classical predictions
for large �µ̃ from classical MC and mean field theory.
There are two e↵ects which could explain this behavior:
On the one hand, quantum fluctuations become impor-
tant for large g̃ and high densities. On the other hand,
both experiment and QMC are performed in a quasi-2D
setting with nonzero extent in the z-direction. We do
not expect e↵ects beyond LDA to play a role at the high
central densities found on the Bose side.

In Fig. 3 we show the EOS in the strongly correlated
crossover regime between the bosonic and the fermionic
limits. We obtain the EOS from sampling h(x, y) over
approximately 150 shots for each of the magnetic fields
B[G] = 812, 832, 852, 892. The central chemical potential
µ̃0 is determined from the TF fit of the central region,
and the binding energy "B again refers to the central
value. The temperature is estimated by T = (TV+TB)/2,
where TV and TB are obtained from second order virial
and Boltzmann fits to the outer region, respectively. This
choice is motivated by the fact that TV and TB are ex-
pected to give upper and lower bounds on the true tem-
perature of the sample for the interaction strengths con-

sidered here [42]. On the Fermi side, both temperatures
approach each other. The quality of the virial and Boltz-
mann fits is reflected in the overall good agreement of
the corresponding central chemical potentials with the
TF values.
We compare our results for the EOS in the crossover

regime to theoretical predictions for the homogeneous 2D
BCS-BEC crossover from Luttinger–Ward (LW) theory
[22] and fermionic QMC simulations [23]. We find an
overall good agreement between theory and experiment
for n/n0 varying over two orders of magnitude and con-
firm that n/n0 has a maximum of height 2e�"B/2 around
µ ⇡ �"B/2 for large �"B. The origin of this scaling
can be understood from the virial expansion of the PSD
in the Bose limit: n

�

�

2
T

⇡ 2 exp(2�µ̃) = 2 at �µ̃ = 0.
This implies n/n0 ⇡ 2/ log(1 + e

��"B/2) ⇡ 2e�"B/2 at
µ = �"B/2. The di↵erence of the EOS obtained from
LW and QMC methods lies within our systematic errors
from the T - and µ0-determination and thus cannot be
resolved with the present analysis.

On the Fermi side of the crossover, the filling-
dependent interaction strength "B varies substantially
inside the trap, and the EOS obtained from a individ-
ual density profile cannot be fully attributed to a single
value of �"B. In order to avoid this e↵ect, the number of
trapped particles should be kept low. In a recent work
by Fenech et al. [41] the EOS on the Fermi side for
�"B < 0.5 has been determined using 6Li-atoms, which
supplements our data from the Bose and crossover regime
to yield a complete picture of the EOS in the 2D BCS-
BEC crossover.

In this work we have measured the EOS of ultracold
fermions in the 2D BCS-BEC crossover. Our results con-
nect the perturbative Bose gas, the strongly interacting
Bose gas, the strongly interacting fermionic superfluid in
the crossover regime, and the perturbative Fermi liquid as
we tune interactions by means of a Feshbach resonance.
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