Quantum gravity on foliated spacetime asymptotically safe and sound

Frank Saueressig

Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen

H. Gies, B. Knorr, S. Lippholdt and F. Saueressig, PRL 116 (2016) 211302

J. Biemans, A. Platania and F. Saueressig, arXiv:1609.04813

ERG2016

Trieste, Sept. 23nd, 2016

Goal: a consistent theory describing gravity on all scales

Quantum Gravity from the renormalization group

- a) fixed point
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences

Quantum Gravity from the renormalization group

- a) fixed point
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\rm UV}$

 - ensures predictivity

Quantum Gravity from the renormalization group

- a) fixed point
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\rm UV}$
 - fixing the position of a RG-trajectory in $S_{\rm UV}$ ⇐⇒ experimental determination of relevant parameters
 - ensures predictivity
- c) classical limit
 - RG-trajectories have part where GR is good approximation
 - recover gravitational physics captured by general relativity: (perihelion shift, gravitational lensing, nucleo-synthesis, ...)

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{\rm EH} = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left[-R + 2\Lambda \right]$$

• Newton's constant G_N has negative mass-dimension

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{\rm EH} = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left[-R + 2\Lambda \right]$$

• Newton's constant G_N has negative mass-dimension

Wilsonian picture of perturbative renormalization:

- \Rightarrow dimensionless coupling constant attracted to GFP (free theory) in UV
- introduce dimensionless coupling constants

$$g_k = k^2 G_N , \quad \lambda_k \equiv \Lambda k^{-2}$$

• GFP: flow governed by mass-dimension:

$$k\partial_k g_k = 2g + \mathcal{O}(g^2)$$
$$k\partial_k \lambda_k = -2\lambda + \mathcal{O}(g)$$

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{\rm EH} = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left[-R + 2\Lambda \right]$$

• Newton's constant G_N has negative mass-dimension

Wilsonian picture of perturbative renormalization:

- \Rightarrow dimensionless coupling constant attracted to GFP (free theory) in UV
- introduce dimensionless coupling constants

$$g_k = k^2 G_N , \quad \lambda_k \equiv \Lambda k^{-2}$$

• GFP: flow governed by mass-dimension:

$$k\partial_k g_k = 2g + \mathcal{O}(g^2)$$

 $k\partial_k \lambda_k = -2\lambda + \mathcal{O}(g)$

General Relativity is not asymptotically free

Quantizing general relativity

[M. H. Goroff and A. Sagnotti, Phys. Lett. B160 (1985) 81][M. H. Goroff and A. Sagnotti, Nucl. Phys. B266 (1986) 709][A. E. M. van de Ven, Nucl. Phys. B378 (1992) 309]

Einstein-Hilbert action

$$S = -\frac{1}{16\pi G} \int d^4x \sqrt{g} R$$

gives rise to a two-loop divergence:

$$S^{\text{div}} = \frac{1}{\epsilon} \frac{209}{2880} \frac{1}{(16\pi^2)^2} \int d^4x \sqrt{g} C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\alpha\beta} C_{\alpha\beta}{}^{\mu\nu}$$

Quantizing general relativity

[M. H. Goroff and A. Sagnotti, Phys. Lett. B160 (1985) 81][M. H. Goroff and A. Sagnotti, Nucl. Phys. B266 (1986) 709][A. E. M. van de Ven, Nucl. Phys. B378 (1992) 309]

Einstein-Hilbert action

$$S = -\frac{1}{16\pi G} \int d^4x \sqrt{g} R$$

gives rise to a two-loop divergence:

$$S^{\text{div}} = \frac{1}{\epsilon} \frac{209}{2880} \frac{1}{(16\pi^2)^2} \int d^4x \sqrt{g} C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\alpha\beta} C_{\alpha\beta}{}^{\mu\nu} ,$$

divergence not of Einstein-Hilbert form:

 \implies cannot be absorbed into bare Newton's constant

- need to add new C^3 -interaction to bare action
 - \implies introduce a new free parameter
 - \implies hallmark of perturbative non-renormalizability

Quantizing general relativity

[M. H. Goroff and A. Sagnotti, Phys. Lett. B160 (1985) 81][M. H. Goroff and A. Sagnotti, Nucl. Phys. B266 (1986) 709][A. E. M. van de Ven, Nucl. Phys. B378 (1992) 309]

Einstein-Hilbert action

$$S = -\frac{1}{16\pi G} \int d^4x \sqrt{g} R$$

gives rise to a two-loop divergence:

$$S^{\text{div}} = \frac{1}{\epsilon} \frac{209}{2880} \frac{1}{(16\pi^2)^2} \int d^4x \sqrt{g} C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\alpha\beta} C_{\alpha\beta}{}^{\mu\nu} ,$$

• divergence not of Einstein-Hilbert form:

 \implies cannot be absorbed into bare Newton's constant

- need to add new C^3 -interaction to bare action
 - \implies introduce a new free parameter
 - \implies hallmark of perturbative non-renormalizability

General Relativity is perturbatively non-renormalizable

- Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbative coupling: G_N

- Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbative coupling: G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbative coupling: higher-derivative coupling

- Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbative coupling: G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbative coupling: higher-derivative coupling

- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - Lorentz-invariant, non-perturbatively renormalizable

- Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbative coupling: G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbative coupling: higher-derivative coupling
- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - Lorentz-invariant, non-perturbatively renormalizable
- anisotropic Gaussian Fixed Point (aGFP)
 - fundamental theory: Hořava-Lifshitz gravity
 - Lorentz-violating, perturbatively renormalizable

Gravity

Gravity

- Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbative coupling: G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbative coupling: higher-derivative coupling

- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - Lorentz-invariant, non-perturbatively renormalizable
- anisotropic Gaussian Fixed Point (aGFP)
 - fundamental theory: Hořava-Lifshitz gravity
 - Lorentz-violating, perturbatively renormalizable

Gravity

Gravity

Outline

- Introduction
- Asymptotic Safety: recent developments
- Goroff-Sagnotti counterterm in Asymptotic Safety
- real-time computations in quantum gravity
- the unitarity question: a brief comment
- Summary and outlook

Asymptotic Safety status report

RG flows: effective average action for gravity

C. Wetterich, Phys. Lett. **B301** (1993) 90
M. Reuter, Phys. Rev. D **57** (1998) 971

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

$$k\partial_k\Gamma_k[h_{\mu\nu},\bar{g}_{\mu\nu}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

RG flows: effective average action for gravity

C. Wetterich, Phys. Lett. **B301** (1993) 90
M. Reuter, Phys. Rev. D **57** (1998) 971

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

$$k\partial_k\Gamma_k[h_{\mu\nu},\bar{g}_{\mu\nu}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

- \ominus background formalism: required for defining RG scale k
- ⊕ independent of a "preset" fundamental action
- ⊕ flexible approximation schemes

Projecting the RG flow of $\Gamma_k^{\text{grav}}[g]$

key results: pure gravity

- non-Gaussian fixed point established in a wide range of approximations
 - derivative expansion at the background level
 - vertex expansions

[N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski and M. Reichert, arXiv:1506.07016]

• low number of relevant parameters (\simeq 3)

[R. Percacci and A. Codello, arXiv:0705.1769] [P.F. Machado and F. Saueressig, arXiv:0712.0445] [D. Benedetti, P.F. Machado and F. Saueressig, arXiv:0901.2984] [K. Falls, D. F. Litim, K. Nikolakopoulos and C. Rahmede, arXiv:1301.4191]

• non-Gaussian fixed point in d = 2 is a unitary CFT

[A. Nink and M. Reuter, arXiv:1512.06805]

structural analysis (gauge/background-dependence, c-theorems, ...)

[D. Becker and M. Reuter, arXiv:1404.4537]
 [D. Becker and M. Reuter, arXiv:1412.0468]
 [A. Codello, G. D'Odorico and C. Pagani, arXiv:1502.02439]
 [H. Gies, B. Knorr and S. Lippoldt, arXiv:1507.08859]
 [P. Labus, T. R. Morris and Z. H. Slade, arXiv:1603.04772]
 [J. A. Dietz, T. R. Morris and Z. H. Slade, arXiv:1605.07636]

key results: gravity coupled to matter

• gravity + scalars: asymptotic safety survives 1-loop counterterm

[D. Benedetti, P.F. Machado and F. Saueressig, arXiv:0902.4630]

non-Gaussian fixed point compatible with standard-model matter

[R. Percacci and D. Perini, hep-th/0207033] [P. Dona, A. Eichhorn and R. Percacci, arXiv:1311.2898] [J. Meibohm, J. M. Pawlowski and M. Reichert, arXiv:1510.07018]

• prediction of the Higgs mass $m_H \simeq 126 \text{ GeV}$

[M. Shaposhnikov and C. Wetterich, arXiv:0912.0208]

investigations of gravity-Higgs-Yukawa systems on the way

[K. Y. Oda and M. Yamada, arXiv:1510.03734] [A. Eichhorn, A. Held and J. M. Pawlowski, arXiv:1604.02041]

cosmology-inspired gravity-matter systems

[R. Percacci and G. P. Vacca, arXiv:1501.00888] [A. Bonanno and A. Platania, arXiv:1507.03375] [N. Ohta, R. Percacci and G. P. Vacca, arXiv:1511.09393] [I. D. Saltas, arXiv:1512.06134] [T. Henz, J. M. Pawlowski and C. Wetterich, arXiv:1605.01858] [K. Falls, D. F. Litim, K. Nikolakopoulos and C. Rahmede, arXiv:1607.04962]

... and many open questions

- does the NGFP indeed come with complex critical exponents?
- what is the role of the background field?
- how to treat truncations with an infinite number of couplings?
- is there an intrinsic definition of the NGFP?
 (correlation functions, conformal field theory data, ...)
- does Asymptotic Safety manifests in phenomenological signatures?

... and many open questions

- does the NGFP indeed come with complex critical exponents?
- what is the role of the background field?
- how to treat truncations with an infinite number of couplings?
- is there an intrinsic definition of the NGFP?
 (correlation functions, conformal field theory data, ...)
- does Asymptotic Safety manifests in phenomenological signatures?

!!! WORK AHEAD !!!

Does the Goroff-Sagnotti counterterm destroy asymptotic safety?

[H. Nicolai]

including the two-loop counterterm in Γ_k

including the two-loop counterterm in Γ_k

Projecting the gravitational RG flow on the Einstein-Hilbert action

Einstein-Hilbert truncation: Γ_k retains two running couplings: G_k, Λ_k

$$\Gamma_k^{\text{grav}} = \frac{1}{16\pi G_k} \int d^4x \sqrt{g} \left[-R + 2\Lambda_k \right]$$

 β -functions for dimensionless couplings $g_k \equiv k^2 G_k \,, \; \lambda_k \equiv \Lambda_k k^{-2}$

$$k\partial_k g_k = (\eta_N + 2)g_k \,,$$

$$k\partial_k\lambda_k = -\left(2-\eta_N\right)\lambda_k + \frac{g_k}{2\pi}\left[5\frac{1}{1-2\lambda_k} - 4 - \frac{5}{6}\frac{1}{1-2\lambda_k}\eta_N\right]$$

• η_N is the anomalous dimension of Newton's constant

Projecting the gravitational RG flow on the Einstein-Hilbert action

Einstein-Hilbert truncation: Γ_k retains two running couplings: G_k, Λ_k

$$\Gamma_{k}^{\text{grav}} = \frac{1}{16\pi G_{k}} \int d^{4}x \sqrt{g} \left[-R + 2\Lambda_{k}\right]$$

 β -functions for dimensionless couplings $g_k \equiv k^2 G_k$, $\lambda_k \equiv \Lambda_k k^{-2}$

$$k\partial_k g_k = (\eta_N + 2)g_k \,,$$

$$k\partial_k\lambda_k = -\left(2-\eta_N\right)\lambda_k + \frac{g_k}{2\pi}\left[5\frac{1}{1-2\lambda_k} - 4 - \frac{5}{6}\frac{1}{1-2\lambda_k}\eta_N\right]$$

• η_N is the anomalous dimension of Newton's constant

Gaussian fixed point at $g^* = 0, \lambda^* = 0$:

saddle point in the g-λ-plane

non-Gaussian fixed point at $g^* > 0, \lambda^* > 0$:

• UV attractive in g_k, λ_k

asymptotic safety: non-Gaussian fixed point is UV completion for gravity

Einstein-Hilbert-truncation: the phase diagram

M. Reuter and F. Saueressig, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054]

including the two-loop counterterm in Γ_k

Including the two-loop counterterm in Γ_k

H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, arXiv:1601.01800

Supplement Einstein-Hilbert action by Goroff-Sagnotti term: $\Gamma_k^{\text{grav}} = \Gamma_k^{\text{EH}} + \Gamma_k^{\text{GS}}$

$$\Gamma_k^{\rm EH} = \frac{1}{16\pi G_k} \int d^4 x \sqrt{g} \left[-R + 2\Lambda_k \right]$$
$$\Gamma_k^{\rm GS} = \bar{\sigma}_k \int d^4 x \sqrt{g} C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\kappa\lambda} C_{\kappa\lambda}{}^{\mu\nu}$$

dimensionless coupling constants

$$\lambda = \Lambda_k k^{-2}, \qquad g = G_k k^2, \qquad \sigma = \bar{\sigma}_k k^2$$

Including the two-loop counterterm in Γ_k

H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, arXiv:1601.01800

Supplement Einstein-Hilbert action by Goroff-Sagnotti term: $\Gamma_k^{\text{grav}} = \Gamma_k^{\text{EH}} + \Gamma_k^{\text{GS}}$

$$\Gamma_k^{\rm EH} = \frac{1}{16\pi G_k} \int d^4 x \sqrt{g} \left[-R + 2\Lambda_k \right]$$
$$\Gamma_k^{\rm GS} = \bar{\sigma}_k \int d^4 x \sqrt{g} C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\kappa\lambda} C_{\kappa\lambda}{}^{\mu\nu}$$

dimensionless coupling constants

$$\lambda = \Lambda_k k^{-2}, \qquad g = G_k k^2, \qquad \sigma = \bar{\sigma}_k k^2$$

1. surprise: the counterterm does not feed back into the Einstein-Hilbert sector

flow of g, λ is not changed \iff EH-sector has NGFP

Goroff-Sagnotti does not feed into Einstein-Hilbert sector

FRGE uses the background field method:

 \implies obtain beta functions as expansion in background curvature

Contribution of Γ_k^{GS} to the flow equation

$$\Gamma_k^{\rm GS} = \bar{\sigma}_k \int d^4 x \sqrt{g} \, C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\kappa\lambda} C_{\kappa\lambda}{}^{\mu\nu}$$

Goroff-Sagnotti term enters trace as contribution to $\delta^2 \Gamma_k^{(2)}$:

$$\delta^2 \Gamma_k^{\rm GS} \big|_{g=\bar{g}} \sim \sigma \, \bar{C}_{\alpha\beta}{}^{\mu\nu} + \mathcal{O}(\bar{R}^2)$$

• $\delta^2 \Gamma_k^{\text{GS}}$ starts at linear order in the background curvature, but:

$$\operatorname{tr} \bar{C}_{\alpha\beta}{}^{\mu\nu} = 0$$

Goroff-Sagnotti does not give rise to a structure $\int d^4x \sqrt{g}R$

Including the two-loop counterterm in Γ_k

Supplement Einstein-Hilbert action by Goroff-Sagnotti term: $\Gamma_k^{\text{grav}} = \Gamma_k^{\text{EH}} + \Gamma_k^{\text{GS}}$

$$\Gamma_k^{\rm EH} = \frac{1}{16\pi G_k} \int d^4 x \sqrt{g} \left[2\Lambda_k - R \right]$$
$$\Gamma_k^{\rm GS} = \bar{\sigma}_k \int d^4 x \sqrt{g} C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\kappa\lambda} C_{\kappa\lambda}{}^{\mu\nu}$$

dimensionless coupling constants

$$\lambda = \Lambda_k k^{-2}, \qquad g = G_k k^2, \qquad \sigma = \bar{\sigma}_k k^2$$

1. surprise: the counterterm does not feed back into the Einstein-Hilbert sector

flow of g, λ is not changed \iff EH-sector has NGFP

2. surprise: the beta-function for σ_k is cubic

$$\beta_{\sigma} = c_0 + (2 + c_1) \,\sigma + c_2 \,\sigma^2 + c_3 \,\sigma^3$$

β_{σ} is cubic in σ

FRGE uses the background field method:

 \implies obtain beta functions as expansion in background curvature

Contribution of Γ_k^{GS} to the flow equation

$$\Gamma_k^{\rm GS} = \bar{\sigma}_k \int d^4 x \sqrt{g} \, C_{\mu\nu}{}^{\rho\sigma} C_{\rho\sigma}{}^{\kappa\lambda} C_{\kappa\lambda}{}^{\mu\nu}$$

Goroff-Sagnotti term enters trace as contribution to $\delta^2 \Gamma_k^{(2)}$:

$$\delta^2 \Gamma_k^{\rm GS} \big|_{g=\bar{g}} \sim \sigma \, \bar{C}_{\alpha\beta}{}^{\mu\nu} + \mathcal{O}(\bar{R}^2)$$

• beta function of σ is read off from the \overline{C}^3 -term:

$$\left(\delta^2 \Gamma_k^{\rm GS}\right)^n \propto \sigma^n \, \bar{C}^n + \mathcal{O}(\sigma^{n-1})$$

 β_{σ} can at most be cubic in σ

$$\beta_{\sigma} = c_0 + (2 + c_1) \,\sigma + c_2 \,\sigma^2 + c_3 \,\sigma^3$$

Compute the coefficients c_i

After one month of CPU time crunching 900 vertex-insertions

Beta functions of the Goroff-Sagnotti projection

flow in the Einstein-Hilbert sector is unchanged:

$$\beta_g = (2 + \eta_N) g,$$

$$\beta_\lambda = (\eta_N - 2) \lambda + \frac{g}{2\pi} \left(\frac{5}{1 - 2\lambda} - 4 - \frac{5}{6} \eta_N \frac{1}{1 - 2\lambda} \right).$$

Beta function for the Goroff-Sagnotti coupling

$$\beta_{\sigma} = c_0 + (2 + c_1) \,\sigma + c_2 \,\sigma^2 + c_3 \,\sigma^3$$

Coefficients c_i are functions of g, λ :

$$c_{0} = \frac{1}{64\pi^{2}(1-2\lambda)} \left(\frac{2-\eta_{N}}{2(1-2\lambda)} + \frac{6-\eta_{N}}{(1-2\lambda)^{3}} - \frac{5\eta_{N}}{378} \right) ,$$

$$c_{1} = \frac{3g}{16\pi(1-2\lambda)^{2}} \left(5(6-\eta_{N}) + \frac{23(8-\eta_{N})}{8(1-2\lambda)} - \frac{7(10-\eta_{N})}{10(1-2\lambda)^{2}} \right) ,$$

$$c_{2} = \frac{g^{2}}{2(1-2\lambda)^{3}} \left(\frac{233(12-\eta_{N})}{10} - \frac{9(14-\eta_{N})}{7(1-2\lambda)} \right) ,$$

$$c_{3} = \frac{6\pi g^{3}(18-\eta_{N})}{(1-2\lambda)^{4}} \neq 0 .$$

Beta functions of the Goroff-Sagnotti projection

flow in the Einstein-Hilbert sector is unchanged:

$$\beta_g = (2 + \eta_N) g,$$

$$\beta_\lambda = (\eta_N - 2) \lambda + \frac{g}{2\pi} \left(\frac{5}{1 - 2\lambda} - 4 - \frac{5}{6} \eta_N \frac{1}{1 - 2\lambda} \right)$$

Beta function for the Goroff-Sagnotti coupling

$$\beta_{\sigma} = c_0 + (2 + c_1) \,\sigma + c_2 \,\sigma^2 + c_3 \,\sigma^3$$

Coefficients c_i are functions of g, λ :

$$c_{0} = \frac{1}{64\pi^{2}(1-2\lambda)} \left(\frac{2-\eta_{N}}{2(1-2\lambda)} + \frac{6-\eta_{N}}{(1-2\lambda)^{3}} - \frac{5\eta_{N}}{378} \right) ,$$

$$c_{1} = \frac{3g}{16\pi(1-2\lambda)^{2}} \left(5(6-\eta_{N}) + \frac{23(8-\eta_{N})}{8(1-2\lambda)} - \frac{7(10-\eta_{N})}{10(1-2\lambda)^{2}} \right) ,$$

$$c_{2} = \frac{g^{2}}{2(1-2\lambda)^{3}} \left(\frac{233(12-\eta_{N})}{10} - \frac{9(14-\eta_{N})}{7(1-2\lambda)} \right) ,$$

$$c_{3} = \frac{6\pi g^{3}(18-\eta_{N})}{(1-2\lambda)^{4}} \neq 0 .$$

 $g_* > 0$ implies $c_3 > 0 \iff$ NGFP extents to GS-projection

Fixed point structure of the Goroff-Sagnotti projection

Gaussian fixed point is shifted:

GFP^{GS}:
$$\lambda_* = 0$$
, $g_* = 0$, $\sigma_* = -\frac{7}{128\pi^2}$.

• stability coefficients indicate: GFP is a saddle point

$$\theta_g = -2, \qquad \theta_\lambda = 2, \qquad \theta_\sigma = -2.$$

Fixed point structure of the Goroff-Sagnotti projection

Gaussian fixed point is shifted:

GFP^{GS}:
$$\lambda_* = 0$$
, $g_* = 0$, $\sigma_* = -\frac{7}{128\pi^2}$.

• stability coefficients indicate: GFP is a saddle point

$$\theta_g = -2, \qquad \theta_\lambda = 2, \qquad \theta_\sigma = -2.$$

non-Gaussian fixed point has a unique extension:

NGFP^{GS}:
$$\lambda_* = 0.193$$
, $g_* = 0.707$, $\sigma_* = -0.305$.

• stability coefficients indicate: new coupling is irrelevant:

$$\theta_{1,2}^{\text{NGFP}} = 1.475 \pm 3.043i$$
, $\theta_3^{\text{NGFP}} = -79.39$.

Fixed point structure of the Goroff-Sagnotti projection

Gaussian fixed point is shifted:

GFP^{GS}:
$$\lambda_* = 0$$
, $g_* = 0$, $\sigma_* = -\frac{7}{128\pi^2}$.

stability coefficients indicate: GFP is a saddle point

$$\theta_g = -2, \qquad \theta_\lambda = 2, \qquad \theta_\sigma = -2.$$

non-Gaussian fixed point has a unique extension:

NGFP^{GS}:
$$\lambda_* = 0.193$$
, $g_* = 0.707$, $\sigma_* = -0.305$.

• stability coefficients indicate: new coupling is irrelevant:

$$\theta_{1,2}^{\text{NGFP}} = 1.475 \pm 3.043i$$
, $\theta_3^{\text{NGFP}} = -79.39$.

NGFP: counterterm does not increase number of free couplings!

Phase portrait of the Goroff-Sagnotti projection

H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, arXiv:1601.01800

blue trajectory: crossover to classical regime intact

renormalization group flows in the presence of a causal structure

Introducing time through the ADM formalism

Preferred "time"-direction via foliation of space-time

• foliation structure $\mathcal{M}^{d+1} = \mathbb{R} \times \mathcal{M}^d$ with $y^{\mu} \mapsto (t, x^a)$:

$$ds^{2} = N^{2}dt^{2} + \sigma_{ij} \left(dx^{i} + N^{i}dt \right) \left(dx^{j} + N^{j}dt \right)$$

• fundamental fields:
$$g_{\mu\nu} \mapsto (N, N_i, \sigma_{ij})$$

$$g_{\mu\nu} = \begin{pmatrix} N^2 + N_i N^i & N_j \\ N_i & \sigma_{ij} \end{pmatrix}$$

Off-shell flows in the ADM formalism

Einstein-Hilbert action in ADM variables

$$\Gamma_{k}^{\text{grav}} = \frac{1}{16\pi G_{k}} \int dt d^{d}x N \sqrt{\sigma} \left[K_{ij} K^{ij} - K^{2} - R + 2\Lambda_{k} \right]$$

background: flat Friedmann-Robertson-Walker spacetime

$$\bar{N} = 1$$
, $\bar{N}_i = 0$, $\bar{\sigma}_{ij} = a^2(t)\delta_{ij}$.

fluctuations: adapted to cosmological perturbation theory

$$\hat{N}_{i} = u_{i} + \partial_{i} \frac{1}{\sqrt{\Delta}} B, \qquad \partial^{i} u_{i} = 0$$
$$\hat{\sigma}_{ij} = h_{ij} - \left(\bar{\sigma}_{ij} + \partial_{i}\partial_{j} \frac{1}{\Delta}\right)\psi + \partial_{i}\partial_{j} \frac{1}{\Delta} E + \partial_{i} \frac{1}{\sqrt{\Delta}} v_{j} + \partial_{j} \frac{1}{\sqrt{\Delta}} v_{i}.$$

Off-shell flows in the ADM formalism

Einstein-Hilbert action in ADM variables

$$\Gamma_{k}^{\text{grav}} = \frac{1}{16\pi G_{k}} \int dt d^{d}x N \sqrt{\sigma} \left[K_{ij} K^{ij} - K^{2} - R + 2\Lambda_{k} \right]$$

background: flat Friedmann-Robertson-Walker spacetime

$$\bar{N} = 1$$
, $\bar{N}_i = 0$, $\bar{\sigma}_{ij} = a^2(t)\delta_{ij}$.

fluctuations: adapted to cosmological perturbation theory

$$\hat{N}_{i} = u_{i} + \partial_{i} \frac{1}{\sqrt{\Delta}} B, \qquad \partial^{i} u_{i} = 0$$
$$\hat{\sigma}_{ij} = h_{ij} - \left(\bar{\sigma}_{ij} + \partial_{i}\partial_{j} \frac{1}{\Delta}\right)\psi + \partial_{i}\partial_{j} \frac{1}{\Delta} E + \partial_{i} \frac{1}{\sqrt{\Delta}} v_{j} + \partial_{j} \frac{1}{\sqrt{\Delta}} v_{i}.$$

unique gauge-fixing of diffeomorphisms

$$F = \partial_t \hat{N} + \partial^i \hat{N}_i - \frac{1}{2} \partial_t \hat{\sigma} + \frac{2(d-1)}{d} \bar{K} \hat{N},$$

$$F_i = \partial_t \hat{N}_i - \partial_i \hat{N} - \frac{1}{2} \partial_i \hat{\sigma} + \partial^j \hat{\sigma}_{ji} + (d-2) \bar{K}_{ij} \hat{N}^j,$$

Gauge-fixing in the ADM formalism (flat space)

 $\delta^2\Gamma_k^{\rm grav}$

Index	matrix element of $32\pi G_k \delta^2 \Gamma_k^{ m grav}$
h h	$-\partial_t^2 + \Delta - 2\Lambda_k$
vv	$2\left[-\partial_t^2 - 2\Lambda_k\right]$
E E	$-\Lambda_k$
$\psi\psi$	$-(d-1)\left[(d-2)\left(-\partial_t^2 + \Delta\right) - (d-3)\Lambda_k\right]$
ψE	$-\frac{1}{2}(d-1)\left[-\partial_t^2 - 2\Lambda_k\right]$
$\hat{N}\hat{N}$	0
BB	0
u u	2Δ
uv	$-2 \partial_t \sqrt{\Delta}$
$B\psi$	$2(d-1)\sqrt{\Delta}\partial_t$
$\hat{N}\psi$	$2(d-1)[\Delta - \Lambda_k]$
$\hat{N} E$	$-2\Lambda_k$

Gauge-fixing in the ADM formalism (flat space)

 $\delta^2 \Gamma_k^{\rm grav} + S^{\rm gf}$

Index	matrix element of $32\pi G_k \left(\delta^2 \Gamma_k^{\text{grav}} + S^{\text{gf}}\right)$
h h	$-\partial_t^2 + \Delta - 2\Lambda_k$
vv	$2\left[-\partial_t^2 + \Delta - 2\Lambda_k\right]$
	$\frac{1}{2} \left[-\partial_t^2 + \Delta - \Lambda_k \right]$
$\psi\psi$	$\frac{(d-1)(d-3)}{4} \left[-\partial_t^2 + \Delta - 2\Lambda_k \right]$
ψE	$-\frac{1}{2}(d-1)\left[-\partial_t^2 + \Delta - 2\Lambda_k\right]$
$\hat{N}\hat{N}$	$-\partial_t^2 + \Delta$
BB	$-\partial_t^2 + \Delta$
u u	$2\left[-\partial_t^2 + \Delta\right]$
uv	$=2\partial_t\sqrt{\Delta}$
$B \psi$	$2(d-1)\sqrt{\Delta}\partial_t$
$\hat{N}\psi$	$(d-1)\left[-\partial_t^2 + \Delta - \Lambda_k\right]$
$\hat{N} E$	$-\partial_t^2 + \Delta - 2\Lambda_k$

RG flows in the ADM formalism

Einstein-Hilbert action in ADM variables

$$\Gamma_{k}^{\text{grav}} = \frac{1}{16\pi G_{k}} \int dt d^{d}x N \sqrt{\sigma} \left[K_{ij} K^{ij} - K^{2} - R + 2\Lambda_{k} \right]$$

background: flat Friedmann-Robertson-Walker spacetime

$$\bar{N} = 1$$
, $\bar{N}_i = 0$, $\bar{\sigma}_{ij} = a^2(t)\delta_{ij}$.

fluctuations: adapted to cosmological perturbation theory

$$\hat{N}_{i} = u_{i} + \partial_{i} \frac{1}{\sqrt{\Delta}} B, \qquad \partial^{i} u_{i} = 0$$
$$\hat{\sigma}_{ij} = h_{ij} - \left(\bar{\sigma}_{ij} + \partial_{i}\partial_{j} \frac{1}{\Delta}\right)\psi + \partial_{i}\partial_{j} \frac{1}{\Delta} E + \partial_{i} \frac{1}{\sqrt{\Delta}} v_{j} + \partial_{j} \frac{1}{\sqrt{\Delta}} v_{i}.$$

unique gauge-fixing of diffeomorphisms

$$F = \partial_t \hat{N} + \partial^i \hat{N}_i - \frac{1}{2} \partial_t \hat{\sigma} + \frac{2(d-1)}{d} \bar{K} \hat{N},$$

$$F_i = \partial_t \hat{N}_i - \partial_i \hat{N} - \frac{1}{2} \partial_i \hat{\sigma} + \partial^j \hat{\sigma}_{ji} + (d-2) \bar{K}_{ij} \hat{N}^j,$$

well-defined Hessian $\Gamma_k^{(2)}$ with relativistic propagators

Einstein-Hilbert-truncation on cosmological background

J. Biemans, A. Platania and F. Saueressig, arXiv:1609.04813

towards testing unitarity

Ansatz for testing unitarity

D. Becker, C. Ripken and F. Saueressig, in preparation

Goal: include higher-derivative terms in Γ_k :

$$\Gamma_k = \Gamma_k^{\rm EH} + \frac{1}{2} \int d^d x \sqrt{g} \left[\phi f_k(\Delta) \phi \right] + \Gamma_k^{\rm gf} + \Gamma_k^{\rm ghost} \,.$$

- ideally: determine structure function $f_*(\Delta)$
- currently: only polynomials

$$f_k(\Delta) \simeq Z_{1,k} \left(\Delta + \sum_{n=2}^{N_{\Delta}} \bar{Y}_{n,k} \, \Delta^n \right)$$

• Ostrogradski-instability if $f_0(\Delta)$ has more than one real root

• ideally:

$$f_*(\Delta) = \Delta \tilde{f}_0(\Delta)$$
 where $\tilde{f}_0(\Delta)$ positive function

Phase diagram for $N_{\Delta} = 2$

D. Becker, C. Ripken and F. Saueressig, in preparation

summary and outlook

summary

gravity possesses a non-trivial renormalization group fixed point

- candidate for the completion of gravity at trans-Planckian scales
 - resolves non-renormalizability issue encountered in perturbation theory
 - stable against including perturbative counterterms
- transparent connection to classical low-energy physics
- extends to gravity-matter systems
- ADM decomposition:
 - bridge towards computing real-time correlation functions
 - tailored to cosmological investigations

3nd roadmap workshop Quantum spacetime and the Renormalization Group

Lorentz Center Leiden (NL) 13 - 17 February 2017