Functional renormalization group approach to the continuum limit of Group Field Theories

Daniele Oriti

Albert Einstein Institute

8th International Conference on the Exact Renormalization Group ERG2016
ICTP, Trieste, Italy, EU
23/09/2016

Plan of the talk

- GFTs : what are they?
- general formalism
- relation with other QG approaches
- continuum limit in GFT (and QG)
- FRG analysis of GFT models
general set-up
overview of results
- FRG analysis of an abelian rank-d TGFT
- effective continuum physics
- cosmology from GFT (and QG)
- GFT condensate cosmology
- bouncing cosmologies from GFT

Part I:
 the GFT formalism

Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin,)

Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin,)

Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin,)

QFT of spacetime, not defined on spacetime
a QFT for the building blocks of (quantum) space
Quantum field theories over group manifold G (or corresponding Lie algebra) $\varphi: G^{\times d} \rightarrow \mathbb{C}$
relevant classical phase space for "GFT quanta":

$$
\left(\mathcal{T}^{*} G\right)^{\times d} \simeq(\mathfrak{g} \times G)^{\times d}
$$

can reduce to subspaces in specific models depending on conditions on the field
d is dimension of "spacetime-to-be"; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)
example: $\mathrm{d}=4 \quad \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}$ arguments of GFT field: $\quad b_{i} \in \mathfrak{s u}(2)$ $|b| \sim J=$ irrep of $S U(2) \sim$ "area of triangles"

Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin,)

QFT of spacetime, not defined on spacetime
a QFT for the building blocks of (quantum) space
Quantum field theories over group manifold G (or corresponding Lie algebra) $\varphi: G^{\times d} \rightarrow \mathbb{C}$
relevant classical phase space for "GFT quanta": $\quad\left(\mathcal{T}^{*} G\right)^{\times d} \simeq(\mathfrak{g} \times G)^{\times d}$
can reduce to subspaces in specific models depending on conditions on the field
d is dimension of "spacetime-to-be"; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)
example: d=4 $\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}$ arguments of GFT field: $\quad b_{i} \in \mathfrak{s u}(2)$

$$
\text { | b | } \sim \mathrm{J}=\text { irrep of } \mathrm{SU}(2) \sim \text { "area of triangles" }
$$

Group field theories

$$
(\mathrm{d}=4)
$$

Group field theories

a QFT for the building blocks of (quantum) space

Fock vacuum: "no-space" ("emptiest") state | 0 >

Group field theories

Fock vacuum: "no-space" ("emptiest") state $\mid 0>$ (d=4) single field "quantum": spin network vertex or tetrahedron ("building block of space")

Group field theories

Fock vacuum: "no-space" ("emptiest") state $\mid 0>$ (d=4) single field "quantum": spin network vertex or tetrahedron ("building block of space")

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or tetrahedra (including glued ones)

Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+c . c .
$$

Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
\begin{aligned}
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+ & \frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
& \text { "combinatorial non-locality" } \\
& \text { in pairing of field arguments }
\end{aligned}
$$

Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. }
$$

specific combinatorics depends on model
simplest example (case $d=4$): simplicial setting

Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
\begin{aligned}
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+ & \frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
& \text { "combinatorial non-locality" } \\
& \text { in pairing of field arguments }
\end{aligned}
$$

specific combinatorics depends on model
simplest example (case $d=4$): simplicial setting
combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common triangles, to form 4-simplex ("building block of spacetime")

Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
\begin{aligned}
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+ & \frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
& \text { "combinatorial non-locality" } \\
& \text { in pairing of field arguments }
\end{aligned}
$$

specific combinatorics depends on model
simplest example (case $d=4$): simplicial setting

Group field theories

Feynman perturbative expansion around trivial vacuum

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Group field theories

Feynman perturbative expansion around trivial vacuum

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams (obtained by convoluting propagators with interaction kernels) $=$
= stranded diagrams dual to cellular complexes of arbitrary topology
(simplicial case: simplicial complexes obtained by gluing d-simplices)

Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams (obtained by convoluting propagators with interaction kernels) $=$
= stranded diagrams dual to cellular complexes of arbitrary topology
(simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):
equivalently:

- spin foam models (sum-over-histories of
spin networks ~ covariant LQG)
Reisenberger,Rovelli, '00
lattice path integrals
(with group+Lie algebra variables)
A. Baratin, DO, '11

Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams (obtained by convoluting propagators with interaction kernels) $=$
= stranded diagrams dual to cellular complexes of arbitrary topology
(simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):
equivalently:

- spin foam models (sum-over-histories of spin networks ~ covariant LQG)

Reisenberger,Rovelli, '00

lattice path integrals
(with group+Lie algebra variables)
A. Baratin, DO, '11

Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams (obtained by convoluting propagators with interaction kernels) $=$
= stranded diagrams dual to cellular complexes of arbitrary topology
(simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):
equivalently:

- spin foam models (sum-over-histories of
spin networks ~ covariant LQG)
Reisenberger,Rovelli, '00
lattice path integrals
(with group+Lie algebra variables)
A. Baratin, DO, '11

Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams (obtained by convoluting propagators with interaction kernels) = = stranded diagrams dual to cellu/ar complexes of arbitrary topology (simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent): equivalently:

- spin foam models (sum-over-histories of spin networks ~ covariant LQG)

Reisenberger,Rovelli, '00
lattice path integrals
(with group+Lie algebra variables)
A. Baratin, DO, '11

GFT as lattice quantum gravity:
dynamical triangulations + quantum Regge calculus

GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity
but dynamics not derived from canonical quantization of GR
(DO, 1310.7786 [gr-qc]) DO, J. Ryan, J. Thurigen, '14
(LQG spin network states ~ many-particles states, "particle" ~ spin network vertex)

GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity
but dynamics not derived from canonical quantization of GR
(DO, 1310.7786 [gr-qc]) DO, J. Ryan, J. Thurigen, '14
(LQG spin network states ~ many-particles states, "particle" ~ spin network vertex)

GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity
but dynamics not derived from canonical quantization of GR
(DO, 1310.7786 [gr-qc]) DO, J. Ryan, J. Thurigen, '14
(LQG spin network states ~ many-particles states, "particle" ~ spin network vertex)

GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity
but dynamics not derived from canonical quantization of GR
(DO, 1310.7786 [gr-qc])
DO, J. Ryan, J. Thurigen, '14
(LQG spin network states ~ many-particles states, "particle" ~ spin network vertex)

GFT Hilbert space $=$ Fock space of open spin network vertices - contains any LQG state (all spin networks) any LQG observable has a 2nd quantised, GFT counterpart choice of LQG dynamics (Hamiltonian constraint operator) translates into choice of GFT action

GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity
but dynamics not derived from canonical quantization of GR
(DO, 1310.7786 [gr-qc])
DO, J. Ryan, J. Thurigen, '14
(LQG spin network states ~ many-particles states, "particle" ~ spin network vertex)

GFT Hilbert space $=$ Fock space of open spin network vertices - contains any LQG state (all spin networks) any LQG observable has a 2nd quantised, GFT counterpart choice of LQG dynamics (Hamiltonian constraint operator) translates into choice of GFT action

GFTs and Loop Quantum Gravity

(DO, 1310.7786 [gr-qc]) DO, J. Ryan, J. Thurigen, '14
(LQG spin network states ~ many-particles states, "particle" ~ spin network vertex)

GFT Hilbert space $=$ Fock space of open spin network vertices - contains any LQG state (all spin networks) any LQG observable has a 2nd quantised, GFT counterpart choice of LQG dynamics (Hamiltonian constraint operator) translates into choice of GFT action

GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity
but dynamics not derived from canonical quantization of GR
(DO, 1310.7786 [gr-qc]) DO, J. Ryan, J. Thurigen, '14
(LQG spin network states ~ many-particles states, "particle" ~ spin network vertex)

GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity
but dynamics not derived from canonical quantization of GR
(DO, 1310.7786 [gr-qc])
DO, J. Ryan, J. Thurigen, '14
(LQG spin network states ~ many-particles states, "particle" ~ spin network vertex)

QFT methods (i.e. GFT reformulation of LQG and spin foam models) useful to address physics of large numbers of LQG d.o.f.s, i.e. many and refined graphs (continuum limit)

Group Field Theory: crossroad of approaches

Matrix models

how GFT tackles open issues in QG

how GFT tackles open issues in QG

- how to constrain quantisation and construction ambiguities in model building?
- GFT perturbative renormalization
--> renormalizability of GFT for given discrete gravity path integral/spin foam amplitudes
- GFT symmetries (at both classical and quantum level)

Ben Geloun, '11; Girelli, Livine, '11; Baratin, Girelli, DO, '11
$-->$ in particular, those with geometric interpretation (e.g. diffeomorphisms)

how GFT tackles open issues in QG

- how to constrain quantisation and construction ambiguities in model building?
- GFT perturbative renormalization
$-->$ renormalizability of GFT for given discrete gravity path integral/spin foam amplitudes
- GFT symmetries (at both classical and quantum level)

Ben Geloun, '11; Girelli, Livine, '11; Baratin, Girelli, DO, '11
$-->$ in particular, those with geometric interpretation (e.g. diffeomorphisms)
Kegeles, DO, '15

- how to define the continuum limit (of the LQG/SF dynamics or, equivalently, of discrete gravity path integral)?
controlling quantum dynamics of more and more interacting degrees of freedom
new analytic tools from QFT embedding
- Non-perturbative GFT renormalization and phase diagram - what are the QG phases? which one is geometric?
- Extraction of effective continuum dynamics in different phases

Part II: the continuum limit of GFTs

The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom ("building blocks") for space-time

The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom ("building blocks") for space-time
new direction to explore: number of fundamental degrees of freedom

The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom ("building blocks") for space-time
new direction to explore: number of fundamental degrees of freedom
(quantum) continuum, geometric space-time should be recovered in the regime of large number N of non-spatio-temporal d.o.f.s

The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom ("building blocks") for space-time new direction to explore: number of fundamental degrees of freedom
(quantum) continuum, geometric space-time should be recovered in the regime of large number N of non-spatio-temporal d.o.f.s
continuum approximation very different (conceptually, technically) from classical approximation

The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom ("building blocks") for space-time new direction to explore: number of fundamental degrees of freedom
(quantum) continuum, geometric space-time should be recovered in the regime of large number N of non-spatio-temporal d.o.f.s
continuum approximation very different (conceptually, technically) from classical approximation

N -direction
(collective behaviour of many interacting degrees of freedom): continuum approximation
h-direction: classical approximation

few QG d.o.f.s in classical approx. (e.g. discrete/lattice gravity)

General Relativity
(continuum spacetime)

The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom ("building blocks") for space-time new direction to explore: number of fundamental degrees of freedom
(quantum) continuum, geometric space-time should be recovered in the regime of large number N of non-spatio-temporal d.o.f.s
continuum approximation very different (conceptually, technically) from classical approximation

N -direction
(collective behaviour of many interacting degrees of freedom): continuum approximation
h-direction: classical approximation

"well-understood" in spin foam models and discrete gravity

few QG d.o.f.s in classical approx. (e.g. discrete/lattice gravity)

General Relativity (continuum spacetime)

Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool
for taking into account the physics of more and more d.o.f.s

Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool

for taking into account the physics of more and more d.o.f.s
for our QG models, do not expect to have a unique continuum limit
collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases, separated by phase transitions
for a non-spatio-temporal QG system (e.g. LQG in GFT formulation), which of the macroscopic phases is described by a smooth geometry with matter fields?

Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool

for taking into account the physics of more and more d.o.f.s
for our QG models, do not expect to have a unique continuum limit
collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases, separated by phase transitions
for a non-spatio-temporal QG system (e.g. LQG in GFT formulation), which of the macroscopic phases is described by a smooth geometry with matter fields?
in specific GFT case:
treat GFT models as analogous to atomic QFTs in condensed matter systems
need to understand effective dynamics at different "GFT scales":
RG flow of effective actions \& phase structure \& phase transitions

Continuum limit of GFT (and LQG, discrete gravity etc)

the issue:
controlling quantum dynamics of more and more interacting degrees of freedom

Continuum limit of GFT (and LQG, discrete gravity etc)

the issue:

controlling quantum dynamics of more and more interacting degrees of freedom

- control GFT quantum dynamics for boundary states involving (superpositions of) large graphs -compute- spin foam amplitudes for finer complexes and corresponding sum over complexes
up to infinite refinement (infinite number of degrees of freedom), at least in simple approximations

Continuum limit of GFT (and LQG, discrete gravity etc)

the issue:

controlling quantum dynamics of more and more interacting degrees of freedom

- control GFT quantum dynamics for boundary states involving (superpositions of) large graphs -compute- spin foam amplitudes for finer complexes and corresponding sum over complexes
up to infinite refinement (infinite number of degrees of freedom), at least in simple approximations
need control over parameter space
of SF models
(full theory space)
expect different phases
and phase transitions Koslowski, '07; DO, '07
as result of quantum dynamics
(what are the phases of LQG?)

Continuum limit of GFT (and LQG, discrete gravity etc)

the issue:

controlling quantum dynamics of more and more interacting degrees of freedom

- control GFT quantum dynamics for boundary states involving (superpositions of) large graphs -compute- spin foam amplitudes for finer complexes and corresponding sum over complexes
up to infinite refinement (infinite number of degrees of freedom), at least in simple approximations
need control over parameter space of SF models (full theory space)
expect different phases
and phase transitions Koslowski, ${ }^{\circ} 07$; DO, ‘07 as result of quantum dynamics (what are the phases of LQG?)

Part III:
 the FRG analysis of GFTs

GFT renormalisation - general scheme

$$
\begin{aligned}
& \mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma} \\
& S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. }
\end{aligned}
$$

GFT renormalisation - general scheme

$$
\begin{aligned}
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma} \\
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. }
\end{aligned}
$$

general strategy:
treat GFTs as ordinary QFTs defined on Lie group manifold
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration subtleties of quantum gravity context at the level of interpretation

GFT renormalisation - general scheme

$$
\begin{aligned}
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma} \\
\quad S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \frac{\bar{\varphi}\left(g_{i}\right)}{} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. }
\end{aligned}
$$

general strategy:
treat GFTs as ordinary QFTs defined on Lie group manifold
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration subtleties of quantum gravity context at the level of interpretation
scales:
defined by propagator: e.g. spectrum of Laplacian on $G=$ indexed by group representations

GFT renormalisation - general scheme

$$
\begin{aligned}
& \mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma} \\
& S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. }
\end{aligned}
$$

general strategy:
treat GFTs as ordinary QFTs defined on Lie group manifold
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration subtleties of quantum gravity context at the level of interpretation
scales:
defined by propagator: e.g. spectrum of Laplacian on $G=$ indexed by group representations
key difficulties:

- need to have control over "theory space" (e.g. via symmetries)
- main difficulty (at perturbative level):
controlling the combinatorics of GFT Feynman diagrams to control the structure of divergences need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering,

GFT renormalisation - general scheme

$$
\begin{aligned}
& \mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma} \\
& S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a]}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. }
\end{aligned}
$$

general strategy:
treat GFTs as ordinary QFTs defined on Lie group manifold
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration subtleties of quantum gravity context at the level of interpretation
scales:
defined by propagator: e.g. spectrum of Laplacian on $G=$ indexed by group representations
key difficulties:

- need to have control over "theory space" (e.g. via symmetries)
- main difficulty (at perturbative level):
controlling the combinatorics of GFT Feynman diagrams to control the structure of divergences need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering,

Tensorial GFTs (key insights from tensor models)

[^0]
Tensorial GFTs (key insights from tensor models)

locality principle and soft breaking of locality:
tensor invariant interactions

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} l_{b}(\varphi, \bar{\varphi})
$$

indexed by bipartite d-colored graphs ("bubbles")
dual to d-cells with triangulated boundary

$$
\begin{gathered}
\int\left[\mathrm{d} g_{i}\right]^{12} \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \bar{\varphi}\left(g_{1}, g_{2}, g_{3}, g_{5}\right) \varphi\left(g_{8}, g_{7}, g_{6}, g_{5}\right) \\
\bar{\varphi}\left(g_{8}, g_{9}, g_{10}, g_{11}\right) \varphi\left(g_{12}, g_{9}, g_{10}, g_{11}\right) \bar{\varphi}\left(g_{12}, g_{7}, g_{6}, g_{4}\right)
\end{gathered}
$$

Tensorial GFTs (key insights from tensor models)

locality principle and soft breaking of locality:
tensor invariant interactions
kinetic term = e.g. Laplacian on G

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} l_{b}(\varphi, \bar{\varphi})
$$

indexed by bipartite d-colored graphs ("bubbles") dual to d-cells with triangulated boundary

$$
\text { propagator } \quad\left(m^{2}-\sum_{\ell=1}^{d} \Delta_{\ell}\right)^{-1} \quad \begin{aligned}
& \int\left[\mathrm{d} g_{i}\right]^{12} \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \bar{\varphi}\left(g_{1}, g_{2}, g_{3}, g_{5}\right) \varphi\left(g_{8}, g_{7}, g_{6}, g_{5}\right) \\
& \bar{\varphi}\left(g_{8}, g_{9}, g_{10}, g_{11}\right) \varphi\left(g_{12}, g_{9}, g_{10}, g_{11}\right) \bar{\varphi}\left(g_{12}, g_{7}, g_{6}, g_{4}\right)
\end{aligned}
$$

Tensorial GFTs (key insights from tensor models)

locality principle and soft breaking of locality:
tensor invariant interactions
kinetic term = e.g. Laplacian on G

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} I_{b}(\varphi, \bar{\varphi})
$$

indexed by bipartite d-colored graphs ("bubbles")
dual to d-cells with triangulated boundary

$$
\text { propagator } \quad\left(m^{2}-\sum_{\ell=1}^{d} \Delta_{\ell}\right)^{-1} \quad \begin{aligned}
& \int\left[\mathrm{d} g_{i}\right]^{12} \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \bar{\varphi}\left(g_{1}, g_{2}, g_{3}, g_{5}\right) \varphi\left(g_{8}, g_{7}, g_{6}, g_{5}\right) \\
& \bar{\varphi}\left(g_{8}, g_{9}, g_{10}, g_{11}\right) \varphi\left(g_{12}, g_{9}, g_{10}, g_{11}\right) \bar{\varphi}\left(g_{12}, g_{7}, g_{6}, g_{4}\right)
\end{aligned}
$$

"coloring" allows control over topology of Feynman diagrams

Tensorial GFTs (key insights from tensor models)

locality principle and soft breaking of locality:
tensor invariant interactions

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} I_{b}(\varphi, \bar{\varphi})
$$

indexed by bipartite d-colored graphs ("bubbles")
dual to d-cells with triangulated boundary

kinetic term $=$ e.g. Laplacian on G

$$
\text { propagator } \quad\left(m^{2}-\sum_{\ell=1}^{d} \Delta_{\ell}\right)^{-1} \quad \begin{aligned}
& \int\left[g_{i}\right]^{12} \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \bar{\varphi}\left(g_{1}, g_{2}, g_{3}, g_{5}\right) \varphi\left(g_{8}, g_{7}, g_{6}, g_{5}\right) \\
& \bar{\varphi}\left(g_{8}, g_{9}, g_{10}, g_{11}\right) \varphi\left(g_{12}, g_{9}, g_{10}, g_{11}\right) \bar{\varphi}\left(g_{12}, g_{7}, g_{6}, g_{4}\right)
\end{aligned}
$$

"coloring" allows control over topology of Feynman diagrams

require generalization of notions of "connectedness", "contraction of high subgraphs", "locality", Wick ordering, taking into account internal structure of Feynman graphs, full combinatorics of dual cellular complex, results from crystallization theory (dipole moves)

TGFT renormalization

example of Feynman diagram

- building blocks: coloured bubbles, dual to d-cells with triangulated boundary
- glued along their boundary (d-1)-simplices
- parallel transports (discrete connection) associated to dashed (color 0, propagator) lines
- faces of color $\mathrm{i}=$ connected set of (alternating) lines of color 0 and i
"contraction of internal line" \sim dipole contraction

GFT Renormalization: "geometric" interpretation?

consistent with cosmological interpretation of classical GFT fields and with results of GFT condensate cosmology (see later)

GFT Renormalization: "geometric" interpretation?

- GFT "UV" cut-off N ~ Jmax
- \quad RG flow: Jmax ---s small J
- (perturbative) GFT renormalizability: UV fixed point as $J_{\max }-->$ oo
consistent with cosmological interpretation of classical GFT fields and with results of GFT condensate cosmology (see later)

GFT Renormalization: "geometric" interpretation?

-
- (perturbative) GFT
from LQG
from Regge calculus
arguments of GFT field: $\quad b_{i} \in \mathfrak{s u}(2) \quad$ gravity case: $\mathrm{d}=4$
$|b| \sim J=$ irrep of $S U(2) \sim$ "area of triangles"

consistent with cosmological interpretation of classical GFT fields and with results of GFT condensate cosmology (see later)

GFT Renormalization: "geometric" interpretation?

- GFT "UV" cut-off $N \sim J_{\max }$
- RG flow: Jmax _--> small J
- (perturbative) GFT renormalizability: UV fixed point as Jmax - --> 00
from LQG
from Regge calculus

arguments of GFT field: $\quad b_{i} \in \mathfrak{s u}(2) \quad$ gravity case: $\mathrm{d}=4$
| b | $\sim \mathrm{J}=$ irrep of $\mathrm{SU}(2) \sim$ "area of triangles"
"geometric" interpretation of the RG flow?

- RG flow from large areas to small areas? not quite
- theory defined in non-geometric phase of "large" disconnected tetrahedra
- flow of couplings to region of many interacting (thus, connected) "small" tetrahedra
consistent with cosmological interpretation of classical GFT fields and with results of GFT condensate cosmology (see later)

GFT Renormalization: "geometric" interpretation?

- GFT "UV" cut-off $\mathrm{N} \sim \mathrm{J}_{\max }$
- RG flow: Jmax ---> small J
- (perturbative) GFT renormalizability: UV fixed point as Jmax ---> 00
from LQG
from Regge calculus

arguments of GFT field: $\quad b_{i} \in \mathfrak{s u}(2) \quad$ gravity case: $\mathrm{d}=4$
| b | $\sim J=$ irrep of $S U(2) \sim$ "area of triangles"

"geometric" interpretation of the RG flow?
RG flow from large areas to small areas? not quite
- theory defined in non-geometric phase of "large" disconnected tetrahedra
- flow of couplings to region of many interacting (thus, connected) "small" tetrahedra
- CAUTION in interpreting things geometrically outside continuum geometric approx
- e.g. expect "physical" continuum areas $A \sim<J><n>$
- expect proper continuum geometric interpretation (and effective metric field) for $<\mathrm{J}\rangle$ small, $<\mathrm{n}\rangle$ large, A finite (not too small), and small curvature
consistent with cosmological interpretation of classical GFT fields and with results of GFT condensate cosmology (see later)

GFT perturbative renormalisation

GFT perturbative renormalisation

step by step, towards renormalizable 4d gravity models:

- scale indexed by group representations
- interplay between algebraic data and combinatorics of diagrams

- calculation of some radiative corrections T. Krajewski, J. Magnen, V. Rivasseau, A. Tanasa, P. Vitale, '10; A. Riello, '13; Bonzom, Dittrich, ' 15
- finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term)
- renormalizable TGFT models (3d, 4d, and higher) - Laplacian + tensorial interactions

Ben Geloun, Rivasseau, '11
Carrozza, DO, Rivasseau, '12. '13
$->$ with gauge invariance
$\rightarrow>$ non-abelian (SU(2))

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} I_{b}(\varphi, \bar{\varphi})
$$

$-\rightarrow>S O(4)$ or $S O(3,1)$ with simplicity constraints: first results on BC-like 4 d models
$-— —>$ generic (and robust?) asymptotic freedom Ben Geloun, '12; Carrozza, '14

GFT perturbative renormalisation

step by step, towards renormalizable 4d gravity models:

- scale indexed by group representations
- interplay between algebraic data and combinatorics of diagrams

- calculation of some radiative corrections T. Krajewski, J. Magnen, V. Rivasseau, A. Tanasa, P. Vitale, '10; A. Riello, '13; Bonzom, Dittrich, ' 15
- finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term)
- renormalizable TGFT models (3d, 4d, and higher) - Laplacian + tensorial interactions

Ben Geloun, Rivasseau, '11
Carrozza, DO, Rivasseau, '12. '13
$->$ with gauge invariance
$\rightarrow>$ non-abelian (SU(2))

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} I_{b}(\varphi, \bar{\varphi})
$$

$\rightarrow->S O(4)$ or $S O(3,1)$ with simplicity constraints: first results on $B C$-like 4 d models

GFT perturbative renormalisation

step by step, towards renormalizable 4d gravity models:

- scale indexed by group representations
- interplay between algebraic data and combinatorics of diagrams

- calculation of some radiative corrections T. Krajewski, J. Magnen, V. Rivasseau, A. Tanasa, P. Vitale, '10; A. Riello, '13; Bonzom, Dittrich, ' 15
- finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term)
- renormalizable TGFT models (3d, 4d, and higher) - Laplacian + tensorial interactions

Ben Geloun, Rivasseau, '11
Carrozza, DO, Rivasseau, '12. ‘13
$->$ with gauge invariance
$\rightarrow>$ non-abelian (SU(2))

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} I_{b}(\varphi, \bar{\varphi})
$$

$\rightarrow->S O(4)$ or $S O(3,1)$ with simplicity constraints: first results on $B C$-like 4 d models
many important lessons
(e.g. learnt to deal with combinatorics and topology of spin foam complex)
main open issues:

- characterise better theory space (kinetic term, combinatorics of interactions, ...)
- deal with non-group structures (due to Immirzi parameter) understand in full the geometric interpretation of UV/IR and of RG flow

GFT perturbative renormalisation

recent results:

step by step, towards renormalizable 4d gravity models:

- scale indexed by group representations
- interplay between algebraic data and combinatorics of diagrams

- calculation of some radiative corrections T. Krajewski, J. Magnen, V. Rivasseau, A. Tanasa, P. Vitale, '10; A. Riello, '13; Bonzom, Dittrich, ' 15
- finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term)
- renormalizable TGFT models (3d, 4d, and higher) - Laplacian + tensorial interactions

Ben Geloun, Rivasseau, '11
Carrozza, DO, Rivasseau, '12. '13
$->$ with gauge invariance
$\rightarrow>$ non-abelian ($\mathrm{SU}(2)$)

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} I_{b}(\varphi, \bar{\varphi})
$$

$-\rightarrow>S O(4)$ or $S O(3,1)$ with simplicity constraints: first results on BC-like 4 d models
many important lessons
(e.g. learnt to deal with combinatorics and topology of spin foam complex)
main open issues:

- characterise better theory space (kinetic term, combinatorics of interactions, ...)
- deal with non-group structures (due to Immirzi parameter) understand in full the geometric interpretation of UV/IR and of RG flow

GFT non-perturbative renormalisation

the GFT proposal: $\quad \mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}$
controlling the continuum limit ~ evaluating GFT path integral (in some non-perturbative approximation)
(computing full SF sum)

Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Douarte,

Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve,

GFT non-perturbative renormalisation

the GFT proposal:

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

controlling the continuum limit \sim evaluating GFT path integral (in some non-perturbative approximation) (computing full SF sum)
two directions:

- GFT non-perturbative renormalization and "IR" fixed points (e.g. FRG analysis - e.g. a la Wetterich Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Douarte,
- GFT constructive analysis

Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve, non-perturbative resummation of perturbative (SF) series variety of techniques: - intermediate field method

- loop-vertex expansion
- Borel summability

GFT non-perturbative renormalisation

recent results:

FRG for (tensorial) GFT models

GFT non-perturbative renormalisation

recent results:

FRG for (tensorial) GFT models

(similar to matrix model but distinctively field-theoretic)
Eichhorn, Koslowski, '14

GFT non-perturbative renormalisation

recent results:

FRG for (tensorial) GFT models

(similar to matrix model but distinctively field-theoretic)
Eichhorn, Koslowski, ‘14

- Polchinski formulation based on SD equations
- general set-up for Wetterich formulation based on effective action
- analysis of TGFT on compact $U(1)^{\wedge} d$
- RG flow and phase diagram established
- analysis of TGFT on non-compact $\mathrm{R}^{\wedge} \mathrm{d}$
- RG flow and phase diagram established
- analysis of TGFT on non-compact R^{\wedge} d with gauge invariance
- RG flow and phase diagram established
- analysis of TGFT on $\operatorname{SU}(2)^{\wedge} 3$ Carrozza, Lahoche, ' 16
generically (so far):
two FPs (Gaussian-UV, Wilson-Fisher-IR)
asymptotic freedom
one symmetric phase
one broken or condensate phase
Benedetti, Ben Geloun, DO, '14 ; Ben Geloun, Martini, DO, '15, '16, Benedetti, Lahoche, '15; Douarte, DO, '16

FRG analysis of GFT models

FRG analysis of GFT models

regularised path integral:

$$
\mathcal{Z}_{k}[J, \bar{J}]=e^{W_{k c}[J, \bar{J}]}=\int d \phi d \bar{\phi} e^{-S[\phi, \bar{\phi}]-\Delta S_{k k}[\phi, \bar{\phi}]+\operatorname{Tr}(J \cdot \bar{\phi})+\operatorname{Tr}(\bar{J} \cdot \phi)}
$$

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

$$
\begin{gathered}
\Delta S_{k}[\phi, \bar{\phi}]=\operatorname{Tr}\left(\bar{\phi} \cdot R_{k} \cdot \phi\right)=\sum_{\mathbf{P}_{\mathbf{P}} \mathbf{P}^{\prime}} \bar{\phi}_{\mathbf{P}} R_{k}\left(\mathbf{P} ; \mathbf{P}^{\prime}\right) \phi_{\mathbf{P}^{\prime}} \\
R_{k}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)=\theta\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) Z_{k}\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{gathered}
$$

FRG analysis of GFT models

regularised path integral:

$$
\mathcal{Z}_{k}[J, \bar{J}]=e^{W_{k t}[J, \bar{J}]}=\int d \phi d \bar{\phi} e^{-S[\phi, \bar{\phi}]-\Delta S_{k k}[\phi, \bar{\phi}]+\operatorname{Tr}(J \cdot \bar{\phi})+\operatorname{Tr}(\bar{J} \cdot \phi)}
$$

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

$$
\begin{gathered}
\Delta S_{k}[\phi, \bar{\phi}]=\operatorname{Tr}\left(\bar{\phi} \cdot R_{k} \cdot \phi\right)=\sum_{\mathbf{P}_{\mathbf{P}} \mathbf{P}^{\prime}} \bar{\phi}_{\mathbf{P}} R_{k}\left(\mathbf{P} ; \mathbf{P}^{\prime}\right) \phi_{\mathbf{P}^{\prime}} \\
R_{k}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)=\theta\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) Z_{k}\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{gathered}
$$

effective action: $\quad \Gamma k[\varphi, \bar{\varphi}]=\sup _{J, \bar{J}}\left\{\operatorname{Tr}(J \cdot \bar{\varphi})+\operatorname{Tr}(\bar{J} \cdot \varphi)-W_{k}[J, \bar{J}]-\Delta S_{k}[\varphi, \bar{\varphi}]\right\}$

FRG analysis of GFT models

regularised path integral:

$$
\mathcal{Z}_{k}[J, \bar{J}]=e^{W_{k r}[J, \bar{J}]}=\int d \phi d \bar{\phi} e^{-S[\phi, \bar{\phi}]-\Delta S_{k k}[\phi, \bar{\phi}]+\operatorname{Tr}(J \cdot \bar{\phi})+\operatorname{Tr}(\bar{J} \cdot \phi)}
$$

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

$$
\begin{gathered}
\Delta S_{k}[\phi, \bar{\phi}]=\operatorname{Tr}\left(\bar{\phi} \cdot R_{k} \cdot \phi\right)=\sum_{\mathbf{P}_{\mathbf{P}} \mathbf{P}^{\prime}} \bar{\phi}_{\mathbf{P}} R_{k}\left(\mathbf{P} ; \mathbf{P}^{\prime}\right) \phi_{\mathbf{P}^{\prime}} \\
R_{k}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)=\theta\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) Z_{k}\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{gathered}
$$

effective action: $\quad \Gamma k[\varphi, \bar{\varphi}]=\sup _{J, \bar{J}}\left\{\operatorname{Tr}(J \cdot \bar{\varphi})+\operatorname{Tr}(\bar{J} \cdot \varphi)-W_{k}[J, \bar{J}]-\Delta S_{k}[\varphi, \bar{\varphi}]\right\}$
Wetterich equation:

$$
\left.\partial_{t} \Gamma_{k}=\operatorname{Tr}\left[\partial_{t} R_{k} \cdot\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\right]\right) t=\log k
$$

FRG analysis of GFT models

regularised path integral:

$$
\mathcal{Z}_{k}[J, \bar{J}]=e^{W_{k r}[J, \bar{J}]}=\int d \phi d \bar{\phi} e^{-S[\phi, \bar{\phi}]-\Delta S_{k k}[\phi, \bar{\phi}]+\operatorname{Tr}(J \cdot \bar{\phi})+\operatorname{Tr}(\bar{J} \cdot \phi)}
$$

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

$$
\begin{gathered}
\Delta S_{k}[\phi, \bar{\phi}]=\operatorname{Tr}\left(\bar{\phi} \cdot R_{k} \cdot \phi\right)=\sum_{\mathbf{P}_{\mathbf{P}} \mathbf{P}^{\prime}} \bar{\phi}_{\mathbf{P}} R_{k}\left(\mathbf{P} ; \mathbf{P}^{\prime}\right) \phi_{\mathbf{P}^{\prime}} \\
R_{k}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)=\theta\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) Z_{k}\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{gathered}
$$

effective action: $\quad \Gamma k[\varphi, \bar{\varphi}]=\sup _{J, \bar{J}}\left\{\operatorname{Tr}(J \cdot \bar{\varphi})+\operatorname{Tr}(\bar{J} \cdot \varphi)-W_{k}[J, \bar{J}]-\Delta S_{k}[\varphi, \bar{\varphi}]\right\}$
Wetterich equation:

$$
\left.\partial_{t} \Gamma_{k}=\operatorname{Tr}\left[\partial_{t} R_{k} \cdot\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\right]\right) t=\log k
$$

boundary conditions: $\quad \Gamma_{k=0}[\varphi, \bar{\varphi}]=\Gamma[\varphi, \bar{\varphi}], \quad \Gamma_{k=\Lambda}[\varphi, \bar{\varphi}]=S[\varphi, \bar{\varphi}] \quad \varphi=\langle\phi\rangle$

FRG analysis of GFT models

regularised path integral:

$$
\mathcal{Z}_{k}[J, \bar{J}]=e^{W_{k t}[J, \bar{J}]}=\int d \phi d \bar{\phi} e^{-S[\phi, \bar{\phi}]-\Delta S_{k^{k}}[\phi, \bar{\phi}]+\operatorname{Tr}(J \cdot \bar{\phi})+\operatorname{Tr}(\bar{J} \cdot \phi)}
$$

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

$$
\begin{gathered}
\Delta S_{k}[\phi, \bar{\phi}]=\operatorname{Tr}\left(\bar{\phi} \cdot R_{k} \cdot \phi\right)=\sum_{\mathbf{P}_{\mathbf{P}} \mathbf{P}^{\prime}} \bar{\phi}_{\mathbf{P}} R_{k}\left(\mathbf{P} ; \mathbf{P}^{\prime}\right) \phi_{\mathbf{P}^{\prime}} \\
R_{k}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)=\theta\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) Z_{k}\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{gathered}
$$

effective action: $\quad \Gamma k[\varphi, \bar{\varphi}]=\sup _{J, \bar{J}}\left\{\operatorname{Tr}(J \cdot \bar{\varphi})+\operatorname{Tr}(\bar{J} \cdot \varphi)-W_{k}[J, \bar{J}]-\Delta S k[\varphi, \bar{\varphi}]\right\}$
Wetterich equation:

$$
\partial_{t} \Gamma_{k}=\operatorname{Tr}\left[\partial_{t} R_{k} \cdot\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\right] \quad t=\log k
$$

boundary conditions: $\quad \Gamma_{k=0}[\varphi, \bar{\varphi}]=\Gamma[\varphi, \bar{\varphi}], \quad \Gamma_{k=\lambda}[\varphi, \bar{\varphi}]=S[\varphi, \bar{\varphi}] \quad \varphi=\langle\phi\rangle$
computing the effective action solving the Wetterich equation amounts to solving the GFT path integral

FRG analysis of GFT models

D. Benedetti, J. Ben Geloun, DO, '14
regularised path integral:

$$
\mathcal{Z}_{k}[J, \bar{J}]=e^{W_{k r}[J, \bar{J}]}=\int d \phi d \bar{\phi} e^{-S[\phi, \bar{\phi}]-\Delta S_{k r}[\phi, \bar{\phi}]+\operatorname{Tr}(J \cdot \bar{\phi})+\operatorname{Tr}(\bar{J} \cdot \phi)}
$$

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

$$
\begin{gathered}
\Delta S_{k}[\phi, \bar{\phi}]=\operatorname{Tr}\left(\bar{\phi} \cdot R_{k} \cdot \phi\right)=\sum_{\mathbf{P}_{P} \mathbf{P}^{\prime}} \bar{\phi}_{\mathbf{P}} R_{k}\left(\mathbf{P} ; \mathbf{P}^{\prime}\right) \phi_{\mathbf{P}^{\prime}} \\
R_{k}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)=\theta\left(k^{2}-\Sigma_{s} p_{s}^{2}\right) Z_{k}\left(k^{2^{\prime}}-\Sigma_{s} p_{s}^{2}\right) \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{gathered}
$$

effective action:

$$
\Gamma k[\varphi, \bar{\varphi}]=\sup _{J, \tilde{J}}\left\{\operatorname{Tr}(J \cdot \bar{\varphi})+\operatorname{Tr}(\bar{J} \cdot \varphi)-W_{k}[J, \bar{J}]-\Delta S_{k}[\varphi, \bar{\varphi}]\right\}
$$

$$
\left.\partial_{t} \Gamma_{k}=\operatorname{Tr}\left[\partial_{t} R_{k} \cdot\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\right]\right) t=\log k
$$

boundary conditions: $\quad \Gamma_{k=0}[\varphi, \bar{\varphi}]=\Gamma[\varphi, \bar{\varphi}], \quad \Gamma_{k=\wedge}[\varphi, \bar{\varphi}]=S[\varphi, \bar{\varphi}] \quad \varphi=\langle\phi\rangle$
computing the effective action solving the Wetterich equation amounts to solving the GFT path integral
Wetterich equation expanded in field powers, with all possible contractions; truncation matching classical action system of flow equations is generically non-homogeneous, because of combinatorial patterns of contractions for compact groups, it is also non-autonomous, due to hidden scale (size of group)

FRG analysis of a quartic abelian rank-d TGFT model

the model: $\quad S[\phi, \bar{\phi}]=(2 \pi)^{d} \int_{\mathbb{R}^{\times d}}\left[d x_{i}\right]_{i=1}^{d} \bar{\phi}\left(x_{1}, \ldots, x_{d}\right)\left(-\sum_{s=1}^{d} \triangle_{s}+\mu\right) \phi\left(x_{1}, \ldots, x_{d}\right)$
$G=\mathbb{R}$

FRG analysis of a quartic abelian rank-d TGFT model

the model: $\quad S[\phi, \bar{\phi}]=(2 \pi)^{d} \int_{\mathbb{R}^{\times d}}\left[d x_{i}\right]_{i=1}^{d} \bar{\phi}\left(x_{1}, \ldots, x_{d}\right)\left(-\sum_{s=1}^{d} \triangle_{s}+\mu\right) \phi\left(x_{1}, \ldots, x_{d}\right)$

$$
G=\mathbb{R}
$$

$$
\begin{aligned}
\Gamma_{k}[\varphi, \bar{\varphi}]= & \int_{\mathbb{R}^{\times d}}\left[d p_{i}\right]_{i=1}^{d} \bar{\varphi}_{12 \ldots d}\left(Z_{k} \sum_{s} p_{s}^{2}+\mu_{k}\right) \varphi_{12 \ldots d} \\
& +\frac{\lambda_{k}}{2} \int_{\mathbb{R}^{\times 2 d}}\left[d p_{i}\right]_{i=1}^{d}\left[d p_{j}^{\prime}\right]_{j=1}^{d}\left[\varphi_{12 \ldots d} \bar{\varphi}_{1^{\prime} 2 \ldots d} \varphi_{1^{\prime} 2^{\prime} \ldots d^{\prime}} \bar{\varphi}_{12^{\prime} \ldots d^{\prime}}+\operatorname{sym}\{1,2, \ldots, d\}\right]
\end{aligned}
$$

FRG analysis of a quartic abelian rank-d TGFT model

$$
\begin{aligned}
& \text { the model: } \quad S[\phi, \bar{\phi}]=(2 \pi)^{d} \int_{\mathbb{R} \times d}\left[d x_{i}\right]_{i=1}^{d} \bar{\phi}\left(x_{1}, \ldots, x_{d}\right)\left(-\sum_{s=1}^{d} \triangle_{s}+\mu\right) \phi\left(x_{1}, \ldots, x_{d}\right) \\
& \begin{array}{rcc}
G=\mathbb{R} & +\frac{\lambda}{2}(2 \pi)^{2 d} & \int_{\mathbb{R} \times 2 d}\left[d x_{i}\right]_{i=1}^{d}\left[d x_{j}^{\prime}\right]_{j=1}^{d}\left[\begin{array}{cc}
\phi & \\
\phi & \\
\phi & \left.x_{1}, x_{2}, \ldots, x_{d}\right) \bar{\phi}\left(x_{1}^{\prime}, x_{2}, \ldots, x_{d}\right) \phi\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{d}^{\prime}\right) \bar{\phi}\left(x_{1}, x_{2}^{\prime}, \ldots, x_{d}^{\prime}\right)+\operatorname{sym} \\
\bar{\phi} & \phi
\end{array}\right]
\end{array} \\
& \Gamma_{k}[\varphi, \bar{\varphi}]=\int_{\mathbb{R}^{\times d}}\left[d p_{i}\right]_{i=1}^{d} \bar{\varphi}_{12 \ldots d}\left(Z_{k} \sum_{s} p_{s}^{2}+\mu_{k}\right) \varphi_{12 \ldots d} \\
& +\frac{\lambda_{k}}{2} \int_{\mathbb{R} \times 2 d}\left[d p_{i}\right]_{i=1}^{d}\left[d p_{j}^{\prime}\right]_{j=1}^{d}\left[\varphi_{12 \ldots d} \bar{\varphi}_{1^{\prime} 2 \ldots d} \varphi_{1^{\prime} 2^{\prime} \ldots d^{\prime}} \bar{\varphi}_{12^{\prime} \ldots d^{\prime}}+\operatorname{sym}\{1,2, \ldots, d\}\right]
\end{aligned}
$$

- divergences in Wetterich equation due to non-compactness of group manifold
- non-locality of interactions prevents from using standard methods, e.g. local potential approx.
- thermodynamic limit must be taken carefully
step 1: compactly configuration space to $U(1)^{\wedge} d$, with $V=\left(\frac{2 \pi}{l}\right)^{d}$
step 2: determine (non-standard) scaling of coupling constants
step 3: take non-compact limit so to regularise the most divergent contributions to the RG flow

FRG analysis of a quartic abelian rank-d TGFT model

scaling of couplings: $\quad Z_{k}=\left.\bar{Z}_{k}\right|^{\chi} k^{-\chi}, \quad \mu_{k}=\bar{\mu}_{k} \bar{Z}_{k} l^{\chi} k^{2-\chi}, \quad \lambda_{k}=\bar{\lambda}_{k} \bar{Z}_{k}^{2} \xi^{\xi} k^{4-\xi}$

FRG analysis of a quartic abelian rank-d TGFT model

scaling of couplings: $\quad Z_{k}=\left.\bar{Z}_{k}\right|^{\chi} k^{-\chi}, \quad \mu_{k}=\left.\bar{\mu}_{k} \overline{\overline{ }}_{k}\right|^{\chi} k^{2-\chi}, \quad \lambda_{k}=\bar{\lambda}_{k} \bar{Z}_{k}^{2}{ }^{\xi} k^{4-\xi}$
(regularized) flow equations:

$$
\begin{aligned}
\eta_{k} & =\frac{\bar{\lambda}_{k} l^{\xi} k^{\sigma}}{l^{2 \chi} k^{2(2-\chi)}\left(1+\bar{\mu}_{k}\right)^{2}}\left\{\left(\eta_{k}-\chi\right)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{k^{d-1}}{l^{d-1}}+2(d-1) \frac{k}{l}\right]+2\left[(d-1) \frac{k}{l}+\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d-1}{2}\right)} \frac{k^{d-1}}{l^{d-1}}\right]\right\}+\chi \\
\beta\left(\bar{\mu}_{k}\right) & =-\frac{d \bar{\lambda}_{k} l^{\xi} k^{\sigma}}{l^{2 \chi} k^{6-2 \chi}\left(1+\bar{\mu}_{k}\right)^{2}}\left\{(\eta-\chi)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+3}{2}\right)} \frac{k^{d+1}}{l^{d-1}}+\frac{4}{3} \frac{k^{3}}{l}\right]+2\left[2 \frac{k^{3}}{l}+\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{k^{d+1}}{l^{d-1}}\right]\right\}-\eta_{k} \bar{\mu}_{k}-(2-\chi) \bar{\mu}_{k} \\
\beta\left(\bar{\lambda}_{k}\right) & =\frac{2 \bar{\lambda}_{k}^{2} l^{\xi} k^{\sigma}}{l^{2 \chi} k^{6-2 \chi\left(1+\bar{\mu}_{k}\right)^{3}}}\left\{(\eta-\chi)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+3}{2}\right)} \frac{k^{d+1}}{l^{d-1}}+\frac{4(2 d-1)}{3} \frac{k^{3}}{l}+2 \delta_{d, 3} k^{2}\right]\right. \\
& \left.+2\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{k^{d+1}}{l^{d-1}}+2(2 d-1) \frac{k^{3}}{l}+2 \delta_{d, 3} k^{2}\right]\right\}-2 \eta_{k} \bar{\lambda}_{k}-\sigma \bar{\lambda}_{k}
\end{aligned}
$$

non-autonomous, non-homogeneous; matches TGFT on $\mathrm{U}(1)^{\wedge} \mathrm{d}$

FRG analysis of a quartic abelian rank-d TGFT model

scaling of couplings: $\quad Z_{k}=\left.\bar{Z}_{k}\right|^{\chi} k^{-\chi}, \quad \mu_{k}=\left.\bar{\mu}_{k} \bar{Z}_{k}\right|^{\chi} k^{2-\chi}, \quad \lambda_{k}=\bar{\lambda}_{k} \bar{Z}_{k}^{2} \xi^{\xi} k^{4-\xi}$
(regularized) flow equations:

$$
\begin{aligned}
\eta_{k} & =\frac{\bar{\lambda}_{k} l k^{\sigma}}{l^{2} \chi k^{2(2-\chi)}\left(1+\bar{\mu}_{k}\right)^{2}}\left\{\left(\eta_{k}-\chi\right)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{k^{d-1}}{l^{d-1}}+2(d-1) \frac{k}{l}\right]+2\left[(d-1) \frac{k}{l}+\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d-1}{2}\right)} \frac{k^{d-1}}{l^{d-1}}\right]\right\}+\chi \\
\beta\left(\bar{\mu}_{k}\right) & =-\frac{d \bar{\lambda}_{k} l^{\xi} k^{\sigma}}{l^{2} \chi k^{6-2 \chi}\left(1+\bar{\mu}_{k}\right)^{2}}\left\{(\eta-\chi)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+3}{2}\right)} \frac{k^{d+1}}{l^{d-1}}+\frac{4}{3} \frac{k^{3}}{l}\right]+2\left[2 \frac{k^{3}}{l}+\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{k^{d+1}}{l^{d-1}}\right]\right\}-\eta_{k} \bar{\mu}_{k}-(2-\chi) \bar{\mu}_{k} \\
\beta\left(\bar{\lambda}_{k}\right) & =\frac{2 \bar{\lambda}_{k}^{2} l l^{\xi} k^{\sigma}}{l^{2} \chi k^{6-2 \chi}\left(1+\bar{\mu}_{k}\right)^{3}}
\end{aligned}(\eta-\chi)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+3}{2}\right)} \frac{k^{d+1}}{l^{d-1}}+\frac{4(2 d-1)}{3} \frac{k^{3}}{l}+2 \delta_{d, 3} k^{2}\right] .
$$

non-autonomous, non-homogeneous; matches TGFT on $U(1)^{\wedge} d$
most divergent contributions finite for: $\quad \xi=2 \chi+(d-1)$ and redefined anomalous dimension: $\quad \eta_{k}^{\prime}=\eta_{k}-\chi \quad \eta_{k}=\frac{1}{\bar{Z}_{k}} \beta\left(\bar{Z}_{k}\right)=\frac{1}{Z_{k}} \beta\left(Z_{k}\right)+\chi$

FRG analysis of a quartic abelian rank-d TGFT model

scaling of couplings: $\quad Z_{k}=\left.\bar{Z}_{k}\right|^{\chi} k^{-\chi}, \quad \mu_{k}=\left.\bar{\mu}_{k} \bar{Z}_{k}\right|^{\chi} k^{2-\chi}, \quad \lambda_{k}=\bar{\lambda}_{k} \bar{Z}_{k}^{2} \xi^{\xi} k^{4-\xi}$
(regularized) flow equations:

$$
\begin{aligned}
\eta_{k} & =\frac{\bar{\lambda}_{k} l k^{\sigma}}{l^{2} \chi k^{2(2-\chi)}\left(1+\bar{\mu}_{k}\right)^{2}}\left\{\left(\eta_{k}-\chi\right)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{k^{d-1}}{l^{d-1}}+2(d-1) \frac{k}{l}\right]+2\left[(d-1) \frac{k}{l}+\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d-1}{2}\right)} \frac{k^{d-1}}{l^{d-1}}\right]\right\}+\chi \\
\beta\left(\bar{\mu}_{k}\right) & =-\frac{d \bar{\lambda}_{k} l^{\xi} k^{\sigma}}{l^{2} \chi k^{6-2 \chi}\left(1+\bar{\mu}_{k}\right)^{2}}\left\{(\eta-\chi)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+3}{2}\right)} \frac{k^{d+1}}{l^{d-1}}+\frac{4}{3} \frac{k^{3}}{l}\right]+2\left[2 \frac{k^{3}}{l}+\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{k^{d+1}}{l^{d-1}}\right]\right\}-\eta_{k} \bar{\mu}_{k}-(2-\chi) \bar{\mu}_{k} \\
\beta\left(\bar{\lambda}_{k}\right) & =\frac{2 \bar{\lambda}_{k}^{2} l l^{\xi} k^{\sigma}}{l^{2} \chi k^{6-2 \chi}\left(1+\bar{\mu}_{k}\right)^{3}}
\end{aligned}(\eta-\chi)\left[\frac{\pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+3}{2}\right)} \frac{k^{d+1}}{l^{d-1}}+\frac{4(2 d-1)}{3} \frac{k^{3}}{l}+2 \delta_{d, 3} k^{2}\right] .
$$

non-autonomous, non-homogeneous; matches TGFT on $U(1)^{\wedge} d$
most divergent contributions finite for: $\quad \xi=2 \chi+(d-1)$
and redefined anomalous dimension: $\quad \eta_{k}^{\prime}=\eta_{k}-\chi \quad \eta_{k}=\frac{1}{\bar{Z}_{k}} \beta\left(\bar{Z}_{k}\right)=\frac{1}{Z_{k}} \beta\left(Z_{k}\right)+\chi$

FRG analysis of a quartic abelian rank-d TGFT model

flow equations for couplings: $\quad \eta_{k}=\frac{2 \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d-1}{2}\right)} \frac{\bar{\lambda}_{k}}{\left(1+\bar{\mu}_{k}\right)^{2}}\left[\frac{\eta_{k}}{d-1}+1\right]$
autonomous,
still non-homogeneous

$$
\begin{aligned}
& \beta\left(\bar{\mu}_{k}\right)=\frac{-2 d \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{\bar{\lambda}_{k}}{\left(1+\bar{\mu}_{k}\right)^{2}}\left[\frac{\eta_{k}}{d+1}+1\right]-\eta_{k} \bar{\mu}_{k}-2 \bar{\mu}_{k} \\
& \beta\left(\bar{\lambda}_{k}\right)=\frac{4 \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{\bar{\lambda}_{k}^{2}}{\left(1+\bar{\mu}_{k}\right)^{3}}\left[\frac{\eta_{k}}{d+1}+1\right]-2 \eta_{k} \bar{\lambda}_{k}-(5-d) \bar{\lambda}_{k}
\end{aligned}
$$

FRG analysis of a quartic abelian rank-d TGFT model

flow equations for couplings: $\quad \eta_{k}=\frac{2 \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d-1}{2}\right)} \frac{\bar{\lambda}_{k}}{\left(1+\bar{\mu}_{k}\right)^{2}}\left[\frac{\eta_{k}}{d-1}+1\right]$
autonomous,
still non-homogeneous

$$
\begin{aligned}
& \beta\left(\bar{\mu}_{k}\right)=\frac{-2 d \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{\bar{\lambda}_{k}}{\left(1+\bar{\mu}_{k}\right)^{2}}\left[\frac{\eta_{k}}{d+1}+1\right]-\eta_{k} \bar{\mu}_{k}-2 \bar{\mu}_{k} \\
& \beta\left(\bar{\lambda}_{k}\right)=\frac{4 \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{\bar{\lambda}_{k}^{2}}{\left(1+\bar{\mu}_{k}\right)^{3}}\left[\frac{\eta_{k}}{d+1}+1\right]-2 \eta_{k} \bar{\lambda}_{k}-(5-d) \bar{\lambda}_{k}
\end{aligned}
$$

FRG analysis of a quartic abelian rank-d TGFT model

flow equations for couplings: $\quad \eta_{k}=\frac{2 \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d-1}{2}\right)} \frac{\bar{\lambda}_{k}}{\left(1+\bar{\mu}_{k}\right)^{2}}\left[\frac{\eta_{k}}{d-1}+1\right]$
autonomous,
still non-homogeneous

$$
\beta\left(\bar{\mu}_{k}\right)=\frac{-2 d \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{\bar{\lambda}_{k}}{\left(1+\bar{\mu}_{k}\right)^{2}}\left[\frac{\eta_{k}}{d+1}+1\right]-\eta_{k} \bar{\mu}_{k}-2 \bar{\mu}_{k}
$$

$$
\beta\left(\bar{\lambda}_{k}\right)=\frac{4 \pi^{\frac{d-1}{2}}}{\Gamma_{E}\left(\frac{d+1}{2}\right)} \frac{\bar{\lambda}_{k}^{2}}{\left(1+\bar{\mu}_{k}\right)^{3}}\left[\frac{\eta_{k}}{d+1}+1\right]-2 \eta_{k} \bar{\lambda}_{k}-(5-d) \bar{\lambda}_{k}
$$

general features independent of rank-d:

Gaussian-UV FP, Wilson-Fisher-IR FP asymptotic freedom
one symmetric phase
one broken or condensate phase
2nd non-G IR FP at negative coupling

$\bar{\lambda}_{N}$

FRG analysis of a quartic abelian rank-d TGFT model

similar model with gauge invariance (imposed in both kinetic and interaction terms):

$$
\begin{aligned}
& \Gamma_{k}[\varphi, \bar{\varphi}]=\int d \mathbf{p} \bar{\varphi}(\mathbf{p})\left[Z_{k} \Sigma_{s} p_{s}^{2}+\mu_{k}\right] \varphi(\mathbf{p}) \delta(\Sigma p) \\
& +\frac{\lambda_{k}}{2} \int d \mathbf{p} d \mathbf{p}^{\prime} \varphi_{12 \ldots d} \bar{\varphi}_{1^{\prime} 2 \ldots d} \varphi_{1^{\prime} 2^{\prime} \ldots d^{\prime}} \bar{\varphi}_{12^{\prime} \ldots d^{\prime}} \delta(\Sigma p) \delta\left(\Sigma p^{\prime}\right) \delta\left(p_{1}^{\prime}+p_{2}+\cdots+p_{d}\right) \delta\left(p_{1}+p_{2}^{\prime}+\right.
\end{aligned}
$$

FRG analysis of a quartic abelian rank-d TGFT model

similar model with gauge invariance (imposed in both kinetic and interaction terms):

$$
\begin{aligned}
& \Gamma_{k}[\varphi, \bar{\varphi}]=\int d \mathbf{p} \bar{\varphi}(\mathbf{p})\left[Z_{k} \Sigma_{s} p_{s}^{2}+\mu_{k}\right] \varphi(\mathbf{p}) \delta(\Sigma p) \\
& +\frac{\lambda_{k}}{2} \int d \mathbf{p} d \mathbf{p}^{\prime} \varphi_{12 \ldots d} \bar{\varphi}_{1^{\prime} 2 \ldots d} \varphi_{1^{\prime} 2^{\prime} \ldots d^{\prime}} \bar{\varphi}_{12^{\prime} \ldots d^{\prime}} \delta(\Sigma p) \delta\left(\Sigma p^{\prime}\right) \delta\left(p_{1}^{\prime}+p_{2}+\cdots+p_{d}\right) \delta\left(p_{1}+p_{2}^{\prime}+\right.
\end{aligned}
$$

similar RG flow equations, different scaling dimensions of couplings:
$\eta_{k}^{\prime}=\frac{d \lambda_{k}}{\left(1+\bar{\mu}_{k}\right)^{2}} \frac{\pi \overline{{ }^{2}}}{(d-1)^{\frac{3}{2}}}\left\{\eta_{k}^{\prime} \frac{1}{\Gamma_{E}\left(\frac{d}{2}\right)}+\frac{2}{\Gamma_{E}\left(\frac{d-2}{2}\right)}\right\}$
$\beta_{d \neq 4}\left(\bar{\mu}_{k}\right)=-\frac{d \bar{\lambda}_{k}}{\left(1+\bar{\mu}_{k}\right)^{2}} \frac{\pi^{\frac{d-2}{2}}}{\sqrt{d-1}}\left\{\eta_{k}^{\prime} \frac{1}{\Gamma_{E}\left(\frac{d+2}{2}\right)}+\frac{2}{\Gamma_{E}\left(\frac{d}{2}\right)}\right\}-\left(\eta_{k}^{\prime}+2\right) \bar{\mu}_{k}$
$\beta_{d \neq 4}\left(\bar{\lambda}_{k}\right)=\frac{2 \bar{\lambda}_{k}^{2}}{\left(1+\bar{\mu}_{k}\right)^{3}} \frac{\pi^{\frac{d-2}{2}}}{\sqrt{d-1}}\left\{\eta_{k}^{\prime} \frac{1}{\Gamma_{E}\left(\frac{d+2}{2}\right)}+\frac{2}{\Gamma_{E}\left(\frac{d}{2}\right)}\right\}-2 \eta_{k}^{\prime} \bar{\lambda}_{k}+(d-6) \bar{\lambda}_{k}$

FRG analysis of a quartic abelian rank-d TGFT model

similar model with gauge invariance (imposed in both kinetic and interaction terms):

$$
\begin{aligned}
& \Gamma_{k}[\varphi, \bar{\varphi}]=\int d \mathbf{p} \bar{\varphi}(\mathbf{p})\left[Z_{k} \Sigma_{s} p_{s}^{2}+\mu_{k}\right] \varphi(\mathbf{p}) \delta(\Sigma p) \\
& +\frac{\lambda_{k}}{2} \int d \mathbf{p} d \mathbf{p}^{\prime} \varphi_{12 \ldots d} \bar{\varphi}_{1^{\prime} 2 \ldots d} \varphi_{1^{\prime} 2^{\prime} \ldots d^{\prime}} \bar{\varphi}_{12^{\prime} \ldots d^{\prime}} \delta(\Sigma p) \delta\left(\Sigma p^{\prime}\right) \delta\left(p_{1}^{\prime}+p_{2}+\cdots+p_{d}\right) \delta\left(p_{1}+p_{2}^{\prime}+\right.
\end{aligned}
$$

similar RG flow equations, different scaling dimensions of couplings:

FRG analysis of a quartic abelian rank-d TGFT model

similar model with gauge invariance (imposed in both kinetic and interaction terms):

$$
\begin{aligned}
& \Gamma_{k}[\varphi, \bar{\varphi}]=\int d \mathbf{p} \bar{\varphi}(\mathbf{p})\left[Z_{k} \Sigma_{s} p_{s}^{2}+\mu_{k}\right] \varphi(\mathbf{p}) \delta(\Sigma p) \\
& +\frac{\lambda_{k}}{2} \int d \mathbf{p} d \mathbf{p}^{\prime} \varphi_{12 \ldots d} \bar{\varphi}_{1^{\prime} 2 \ldots d} \varphi_{1^{\prime} 2^{\prime} \ldots d^{\prime}} \bar{\varphi}_{12^{\prime} \ldots d^{\prime}} \delta(\Sigma p) \delta\left(\Sigma p^{\prime}\right) \delta\left(p_{1}^{\prime}+p_{2}+\cdots+p_{d}\right) \delta\left(p_{1}+p_{2}^{\prime}+\right.
\end{aligned}
$$

similar RG flow equations, different scaling dimensions of couplings:

Part IV:
 effective continuum physics from GFTs

Quantum spacetime:
 the difficult path from microstructure to cosmology

the issue:
identify relevant phase for effective continuum geometry
extract effective continuum dynamics and relate it to GR
is GR a good effective description of LQG/SF/GFT in some approximation (in one continuum phase)?

Quantum spacetime:
 the difficult path from microstructure to cosmology

the issue:

> identify relevant phase for effective continuum geometry extract effective continuum dynamics and relate it to GR
is GR a good effective description of LQG/SF/GFT in some approximation (in one continuum phase)?

Quantum Gravity problem:
identify microscopic d.o.f. of quantum spacetime and their fundamental dynamics

derive effective (QG-inspired) models for fundamental (quantum) cosmology:
explain features of early Universe, obtain testable QG predictions
various models: loop quantum cosmology,

Quantum spacetime:
 the difficult path from microstructure to cosmology

the issue:

> identify relevant phase for effective continuum geometry extract effective continuum dynamics and relate it to GR
is GR a good effective description of LQG/SF/GFT in some approximation (in one continuum phase)?

Quantum Gravity problem:
identify microscopic d.o.f. of quantum spacetime and their fundamental dynamics

derive effective (QG-inspired) models for fundamental (quantum) cosmology:
explain features of early Universe, obtain testable QG predictions
various models: loop quantum cosmology, also work by:

Cosmology as hydrodynamics of (quantum) spacetime

 re-thinking the "Cosmological Principle":"every point is equivalent to any other" ~ homogeneity of space

Cosmology as hydrodynamics of (quantum) spacetime

re-thinking the "Cosmological Principle":
"every point is equivalent to any other" ~ homogeneity of space
really means: a certain approximation is assumed valid:
universe is in state where inhomogeneities can be neglected, in relation to dynamics of homogeneous modes
~ universe is in state where effects on largest wavelengths of shorter wavelengths is negligible
~ can neglect wavelengths (much) shorter than scale factor

Cosmology as hydrodynamics of (quantum) spacetime

re-thinking the "Cosmological Principle":
"every point is equivalent to any other" ~ homogeneity of space
really means: a certain approximation is assumed valid:
universe is in state where inhomogeneities can be neglected, in relation to dynamics of homogeneous modes
~ universe is in state where effects on largest wavelengths of shorter wavelengths is negligible
~ can neglect wavelengths (much) shorter than scale factor
very similar in spirit to hydrodynamic approximation:
dynamics of microscopic degrees of freedom can be neglected + effects of small wavelengths can be neglected
degrees of freedom of local region can describe whole of system (in a coarse grained, statistical sense)
i.e. whole universe (dynamics) well-approximated by local patch (dynamics)

Cosmology as hydrodynamics of (quantum) spacetime

re-thinking the "Cosmological Principle":
"every point is equivalent to any other" ~ homogeneity of space
really means: a certain approximation is assumed valid:
universe is in state where inhomogeneities can be neglected, in relation to dynamics of homogeneous modes
\sim universe is in state where effects on largest wavelengths of shorter wavelengths is negligible
\sim can neglect wavelengths (much) shorter than scale factor
very similar in spirit to hydrodynamic approximation:
dynamics of microscopic degrees of freedom can be neglected + effects of small wavelengths can be neglected
degrees of freedom of local region can describe whole of system (in a coarse grained, statistical sense)
i.e. whole universe (dynamics) well-approximated by local patch (dynamics)
end result of (any) proper construction:

```
basic variable is "single-patch density" with arguments the geometric data of minisuperspace
```


From Quantum Gravity to Cosmological hydrodynamics

key strategy:
coarse graining of QG configurations

From Quantum Gravity to Cosmological hydrodynamics

key strategy:
coarse graining of QG configurations

very difficult in general
(see comparatively simpler problem of coarse graining classical GR)
(see also analogous problem in condensed matter theory)

From Quantum Gravity to Cosmological hydrodynamics

key strategy:
coarse graining of QG configurations

very difficult in general
(see comparatively simpler problem of coarse graining classical GR) (see also analogous problem in condensed matter theory)
one special case:
quantum condensates (BEC)
effective hydrodynamics directly read out of microscopic quantum dynamics (in simplest approximation)

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16; M. De Cesare, M. Sakellariadou, '16

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16; M. De Cesare, M. Sakellariadou, '16 problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16; M. De Cesare, M. Sakellariadou, '16 problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16; M. De Cesare, M. Sakellariadou, '16 problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

e.g. (simplest):	$\|\sigma\rangle:=\exp (\hat{\sigma})\|0\rangle$
GFT field coherent state	$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right)$

$\{$ geometries of tetrahedron $\} \simeq$ $\simeq \quad\{$ continuum spatial geometries at a point $\} \simeq$ $\simeq \quad$ minisuperspace of homogeneous geometries

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation $(A, B=0,1,2,3 ; i, j, k=1,2,3)$

describes geometric tetrahedron
(closure + simplicity constraints)

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation ($\mathrm{A}, \mathrm{B}=0,1,2,3 ; \mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3$)
 describes geometric tetrahedron

$$
B_{i}^{A B}=\epsilon_{i}^{j k} e_{j}^{A} e_{k}^{B} \quad \text { (closure + simplicity constraints) }
$$

many results in LQG, simplicial geometry

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation ($\mathrm{A}, \mathrm{B}=0,1,2,3 ; \mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3$)

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation ($\mathrm{A}, \mathrm{B}=0,1,2,3 ; \mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3$)

- from B's of each GFT quantum, construct:

$$
g_{i j}=\frac{1}{8 \operatorname{tr}\left(B_{1} B_{2} B_{3}\right)} \epsilon_{i}^{k l} \epsilon_{j}^{m n} \tilde{B}_{k m} \tilde{B}_{l n} \quad \quad \tilde{B}_{i j}:=B_{i}^{A B} B_{j A B}
$$

interpretation: spatial metric coefficients (and conjugate variables) "sampled" at N points

$$
B_{I(m)} \leftrightarrow g_{i j}\left(x_{m}\right) \leftrightarrow a_{i}\left(x_{m}\right) \quad g_{I(m)} \leftrightarrow K_{i j}\left(x_{m}\right) \leftrightarrow p_{a_{i}}\left(x_{m}\right)
$$

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation ($\mathrm{A}, \mathrm{B}=0,1,2,3 ; \mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3$)

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}
$$ describes geometric tetrahedron

$$
B_{i}^{A B}=\epsilon_{i}^{j k} e_{j}^{A} e_{k}^{B}
$$ (closure + simplicity constraints)

- generic N -particle GFT state (N geometric tetrahedra):

$$
\left|B_{I(m)}\right\rangle:=\prod_{m=1}^{N} \hat{\tilde{\varphi}}^{\dagger}\left(B_{1(m)}, \ldots, B_{4(m)}\right)|0\rangle
$$

- from B's of each GFT quantum, construct:

$$
g_{i j}=\frac{1}{8 \operatorname{tr}\left(B_{1} B_{2} B_{3}\right)} \epsilon_{i}^{k l} \epsilon_{j}^{m n} \tilde{B}_{k m} \tilde{B}_{l n} \quad \quad \tilde{B}_{i j}:=B_{i}^{A B} B_{j A B}
$$

interpretation: spatial metric coefficients (and conjugate variables) "sampled" at N points

$$
B_{I(m)} \leftrightarrow g_{i j}\left(x_{m}\right) \leftrightarrow a_{i}\left(x_{m}\right) \quad g_{I(m)} \leftrightarrow K_{i j}\left(x_{m}\right) \leftrightarrow p_{a_{i}}\left(x_{m}\right)
$$

- classical criterion for homogeneity (for GFT data):

$$
g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N
$$

i.e. all GFT quanta are labelled by the same (gauge invariant) data

Homogeneous geometries \& GFT condensates

Homogeneous geometries \& GFT condensates

- lift homogeneity criterion to quantum level (and include conjugate information):

Homogeneous geometries \& GFT condensates

- lift homogeneity criterion to quantum level (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

Homogeneous geometries \& GFT condensates

- lift homogeneity criterion to quantum level (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

- in GFT: such states can be expressed in 2nd quantized language and one can consider superpositions of states of arbitrary N

Homogeneous geometries \& GFT condensates

- lift homogeneity criterion to quantum level (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

- in GFT: such states can be expressed in 2nd quantized language and one can consider superpositions of states of arbitrary N
- \quad sending N to infinity means improving arbitrarily the accuracy of the sampling

Homogeneous geometries \& GFT condensates

- lift homogeneity criterion to quantum level (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

- in GFT: such states can be expressed in 2nd quantized language and one can consider superpositions of states of arbitrary N
- sending N to infinity means improving arbitrarily the accuracy of the sampling
quantum GFT condensates are continuum homogeneous (quantum) spaces

Homogeneous geometries \& GFT condensates

- lift homogeneity criterion to quantum level (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

- in GFT: such states can be expressed in 2nd quantized language and one can consider superpositions of states of arbitrary N
- sending N to infinity means improving arbitrarily the accuracy of the sampling
quantum GFT condensates are continuum homogeneous (quantum) spaces

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16
problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces
described by single collective wave function (depending on homogeneous anisotropic geometric data)

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16
problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces
described by single collective wave function (depending on homogeneous anisotropic geometric data)
problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16
problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces
described by single collective wave function (depending on homogeneous anisotropic geometric data)
problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states
following procedures of standard BEC

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16
problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces
described by single collective wave function (depending on homogeneous anisotropic geometric data)
problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states
following procedures of standard BEC

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs is
non-linear and non-local extension of (loop) quantum cosmology equation for collective wave function

(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16
problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces
described by single collective wave function (depending on homogeneous anisotropic geometric data)
problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states
following procedures of standard BEC

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
is
non-linear and non-local extension of (loop) quantum cosmology equation for collective wave function

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
single-particle GFT condensate:
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle \quad \hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$
S. Gielen, DO, L. Sindoni,

PRL, arXiv:1303.3576 [gr-qc];
JHEP, arXiv:1311.1238 [gr-qc]
superposition of infinitely many SN dofs

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
S. Gielen, DO, L. Sindoni,

PRL, arXiv:1303.3576 [gr-qc];
single-particle GFT condensate:
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle \quad \hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$ JHEP, arXiv:1311.1238 [gr-qc]
superposition of infinitely many SN dofs
from truncation of SD equations for GFT model applied to (coherent) GFT condensate state, gives equation for "wave function":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \sigma\left(g_{i}^{\prime}\right)+\left.\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \varphi\left(g_{i}\right)}\right|_{\varphi \equiv \sigma}=0
$$

basically (up to some approximations), the "classical GFT eqns"
similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc]

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
S. Gielen, DO, L. Sindoni,

PRL, arXiv:1303.3576 [gr-qc]; single-particle GFT condensate:
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle \quad \hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$ JHEP, arXiv:1311.1238 [gr-qc]
superposition of infinitely many SN dofs
from truncation of SD equations for GFT model applied to (coherent) GFT condensate state, gives equation for "wave function":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \sigma\left(g_{i}^{\prime}\right)+\left.\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \varphi\left(g_{i}\right)}\right|_{\varphi \equiv \sigma}=0
$$

no perturbative (spin foam) expansion -
infinite superposition of SF amplitudes
basically (up to some approximations), the "classical GFT eqns" similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc]

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs single-particle GFT condensate:
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle \quad \hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$
S. Gielen, DO, L. Sindoni,

PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
superposition of infinitely many SN dofs
from truncation of SD equations for GFT model applied to (coherent) GFT condensate state, gives equation for "wave function":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \sigma\left(g_{i}^{\prime}\right)+\left.\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \varphi\left(g_{i}\right)}\right|_{\varphi \equiv \sigma}=0
$$

no perturbative (spin foam) expansion infinite superposition of SF amplitudes
basically (up to some approximations), the "classical GFT eqns" similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc]
non-linear and non-local extension of quantum cosmology-like equation for "collective wave function"
QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, '16

- starting from (generalised) EPRL model for 4d Lorentzian QG (simplicial interactions, $G=S U(2)$, dynamics encodes embedding into $S L(2, C) \sim$ simplicity constraints)

Engle,Pereira, Rovelli, Livine, '07; Freidel, Krasnov, ‘07

Emergent bouncing cosmology from full QG

- starting from (generalised) EPRL model for 4d Lorentzian QG (simplicial interactions, $\mathrm{G}=\mathrm{SU}(2)$, dynamics encodes embedding into $\mathrm{SL}(2, \mathrm{C}) \sim$ simplicity constraints)

Engle,Pereira, Rovelli, Livine, '07; Freidel, Krasnov, '07

- coupling of free massless scalar field (+ truncation at lowest order ~ slowly varying field)

$$
\begin{array}{r}
\hat{\varphi}\left(g_{v}\right) \rightarrow \hat{\varphi}\left(g_{v}, \phi\right) \quad K_{2}\left(g_{v_{1}}, g_{v_{2}}, \phi_{1}, \phi_{2}\right)=K_{2}\left(g_{v_{1}}, g_{v_{2}},\left(\phi_{1}-\phi_{2}\right)^{2}\right) \\
\mathcal{V}_{5}\left(g_{v_{a}}, \phi_{a}\right)=\mathcal{V}_{5}\left(g_{v_{a}}\right) \prod \delta\left(\phi_{a}-\phi_{1}\right)
\end{array}
$$

Emergent bouncing cosmology from full QG

- starting from (generalised) EPRL model for 4d Lorentzian QG (simplicial interactions, $\mathrm{G}=\mathrm{SU}(2)$, dynamics encodes embedding into $\mathrm{SL}(2, \mathrm{C}) \sim$ simplicity constraints)

Engle,Pereira, Rovelli, Livine, '07; Freidel, Krasnov, '07

- coupling of free massless scalar field (+ truncation at lowest order ~ slowly varying field)

$$
\begin{array}{r}
\hat{\varphi}\left(g_{v}\right) \rightarrow \hat{\varphi}\left(g_{v}, \phi\right) \quad K_{2}\left(g_{v_{1}}, g_{v_{2}}, \phi_{1}, \phi_{2}\right)=K_{2}\left(g_{v_{1}}, g_{v_{2}},\left(\phi_{1}-\phi_{2}\right)^{2}\right) \\
\mathcal{V}_{5}\left(g_{v_{a}}, \phi_{a}\right)=\mathcal{V}_{5}\left(g_{v_{a}}\right) \prod \delta\left(\phi_{a}-\phi_{1}\right)
\end{array}
$$

- reduction to isotropic condensate configurations (depending on single spin variable j):

$$
|\sigma\rangle \sim \exp \left(\int \mathrm{d} g_{v} \mathrm{~d} \phi \sigma\left(g_{v}, \phi\right) \hat{\phi}^{\dagger}\left(g_{v}, \phi\right)\right)|\mathbf{0}\rangle \quad \sigma\left(g_{v}, \phi\right) \rightarrow \sigma_{j}(\phi)
$$

Emergent bouncing cosmology from full QG

- starting from (generalised) EPRL model for 4d Lorentzian QG (simplicial interactions, $G=S U(2)$, dynamics encodes embedding into $S L(2, C) \sim$ simplicity constraints)

Engle,Pereira, Rovelli, Livine, '07; Freidel, Krasnov, '07

- coupling of free massless scalar field (+ truncation at lowest order ~slowly varying field)

$$
\begin{array}{r}
\hat{\varphi}\left(g_{v}\right) \rightarrow \hat{\varphi}\left(g_{v}, \phi\right) \quad K_{2}\left(g_{v_{1}}, g_{v_{2}}, \phi_{1}, \phi_{2}\right)=K_{2}\left(g_{v_{1}}, g_{v_{2}},\left(\phi_{1}-\phi_{2}\right)^{2}\right) \\
\mathcal{V}_{5}\left(g_{v_{a}}, \phi_{a}\right)=\mathcal{V}_{5}\left(g_{v_{a}}\right) \prod \delta\left(\phi_{a}-\phi_{1}\right)
\end{array}
$$

- reduction to isotropic condensate configurations (depending on single spin variable j):

$$
|\sigma\rangle \sim \exp \left(\int \mathrm{d} g_{v} \mathrm{~d} \phi \sigma\left(g_{v}, \phi\right) \hat{\phi}^{\dagger}\left(g_{v}, \phi\right)\right)|\mathbf{0}\rangle \quad \sigma\left(g_{v}, \phi\right) \rightarrow \sigma_{j}(\phi)
$$

- effective condensate hydrodynamics (non-linear quantum cosmology):

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

Emergent bouncing cosmology from full QG

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

$$
\rho_{j}^{\prime \prime}-\frac{Q_{j}^{2}}{\rho_{j}^{3}}-m_{j}^{2} \rho_{j} \approx 0
$$

Emergent bouncing cosmology from full QG

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

interaction terms sub-dominant (dilute-gas approx., consistent with simple approximation of vacuum state)

$$
\rho_{j}^{\prime \prime}-\frac{Q_{j}^{2}}{\rho_{j}^{3}}-m_{j}^{2} \rho_{j} \approx 0
$$

Emergent bouncing cosmology from full QG

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

interaction terms sub-dominant (dilute-gas approx., consistent with simple approximation of vacuum state)

- two (approximately) conserved quantities (per mode):

$$
\begin{aligned}
E_{j} & =A_{j}\left|\partial_{\phi} \sigma_{j}(\phi)\right|^{2}-B_{j}\left|\sigma_{j}(\phi)\right|^{2}+\frac{2}{5} \operatorname{Re}\left(w_{j} \sigma_{j}(\phi)^{5}\right) \\
Q_{j} & =-\frac{i}{2}\left[\bar{\sigma}_{j}(\phi) \partial_{\phi} \sigma_{j}(\phi)-\sigma_{j}(\phi) \partial_{\phi} \bar{\sigma}_{j}(\phi)\right]
\end{aligned}
$$

$$
\rho_{j}^{\prime \prime}-\frac{Q_{j}^{2}}{\rho_{j}^{3}}-m_{j}^{2} \rho_{j} \approx 0
$$

Emergent bouncing cosmology from full QG

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

interaction terms sub-dominant (dilute-gas approx., consistent with simple approximation of vacuum state)

- two (approximately) conserved quantities (per mode):

$$
E_{j}=A_{j}\left|\partial_{\phi} \sigma_{j}(\phi)\right|^{2}-B_{j}\left|\sigma_{j}(\phi)\right|^{2}+\frac{2}{5} \operatorname{Re}\left(w_{j} \sigma_{j}(\phi)^{5}\right)
$$

$$
\begin{aligned}
& \sigma_{j}(\phi)=\rho_{j}(\phi) e^{i \theta_{j}(\phi)} \\
& m_{j}^{2}=B_{j} / A_{j} \quad \rho_{j}^{\prime \prime}-\frac{Q_{j}^{2}}{\rho_{j}^{3}}-m_{j}^{2} \rho_{j} \approx 0
\end{aligned}
$$

$$
Q_{j}=-\frac{i}{2}\left[\bar{\sigma}_{j}(\phi) \partial_{\phi} \sigma_{j}(\phi)-\sigma_{j}(\phi) \partial_{\phi} \bar{\sigma}_{j}(\phi)\right]
$$

$$
E_{j} \approx\left(\rho_{j}^{\prime}\right)^{2}+\rho_{j}^{2}\left(\theta_{j}^{\prime}\right)^{2}-m_{j}^{2} \rho^{2}
$$

$$
Q_{j} \approx \rho_{j}^{2} \theta_{j}^{\prime}
$$

Emergent bouncing cosmology from full QG

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

interaction terms sub-dominant (dilute-gas approx., consistent with simple approximation of vacuum state)

- two (approximately) conserved quantities (per mode):

$$
E_{j}=A_{j}\left|\partial_{\phi} \sigma_{j}(\phi)\right|^{2}-B_{j}\left|\sigma_{j}(\phi)\right|^{2}+\frac{2}{5} \operatorname{Re}\left(w_{j} \sigma_{j}(\phi)^{5}\right)
$$

$$
\begin{aligned}
& \sigma_{j}(\phi)=\rho_{j}(\phi) e^{i \theta_{j}(\phi)} \\
& m_{j}^{2}=B_{j} / A_{j} \quad \rho_{j}^{\prime \prime}-\frac{Q_{j}^{2}}{\rho_{j}^{3}}-m_{j}^{2} \rho_{j} \approx 0
\end{aligned}
$$

$$
Q_{j}=-\frac{i}{2}\left[\bar{\sigma}_{j}(\phi) \partial_{\phi} \sigma_{j}(\phi)-\sigma_{j}(\phi) \partial_{\phi} \bar{\sigma}_{j}(\phi)\right]
$$

$$
E_{j} \approx\left(\rho_{j}^{\prime}\right)^{2}+\rho_{j}^{2}\left(\theta_{j}^{\prime}\right)^{2}-m_{j}^{2} \rho^{2}
$$

$$
Q_{j} \approx \rho_{j}^{2} \theta_{j}^{\prime}
$$

- key relational observables (expectation values in condensate state) with scalar field as clock:

Emergent bouncing cosmology from full QG

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

interaction terms sub-dominant (dilute-gas approx., consistent with simple approximation of vacuum state)

- two (approximately) conserved quantities (per mode):

$$
E_{j}=A_{j}\left|\partial_{\phi} \sigma_{j}(\phi)\right|^{2}-B_{j}\left|\sigma_{j}(\phi)\right|^{2}+\frac{2}{5} \operatorname{Re}\left(w_{j} \sigma_{j}(\phi)^{5}\right)
$$

$$
\begin{aligned}
& \sigma_{j}(\phi)=\rho_{j}(\phi) e^{i \theta_{j}(\phi)} \\
& m_{j}^{2}=B_{j} / A_{j} \quad \rho_{j}^{\prime \prime}-\frac{Q_{j}^{2}}{\rho_{j}^{3}}-m_{j}^{2} \rho_{j} \approx 0
\end{aligned}
$$

$$
Q_{j}=-\frac{i}{2}\left[\bar{\sigma}_{j}(\phi) \partial_{\phi} \sigma_{j}(\phi)-\sigma_{j}(\phi) \partial_{\phi} \bar{\sigma}_{j}(\phi)\right]
$$

$$
E_{j} \approx\left(\rho_{j}^{\prime}\right)^{2}+\rho_{j}^{2}\left(\theta_{j}^{\prime}\right)^{2}-m_{j}^{2} \rho^{2}
$$

$$
Q_{j} \approx \rho_{j}^{2} \theta_{j}^{\prime}
$$

- key relational observables (expectation values in condensate state) with scalar field as clock:
universe volume (at fixed "time")

$$
V(\phi)=\sum_{j} V_{j} \bar{\sigma}_{j}(\phi) \sigma_{j}(\phi)=\sum_{j} V_{j} \rho_{j}(\phi)^{2} \quad V_{j} \sim j^{3 / 2} \ell_{\mathrm{Pl}}^{3}
$$

Emergent bouncing cosmology from full QG

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

interaction terms sub-dominant (dilute-gas approx., consistent with simple approximation of vacuum state)

- two (approximately) conserved quantities (per mode):

$$
\begin{aligned}
& \sigma_{j}(\phi)=\rho_{j}(\phi) e^{i \theta_{j}(\phi)} \\
& m_{j}^{2}=B_{j} / A_{j} \quad \rho_{j}^{\prime \prime}-\frac{Q_{j}^{2}}{\rho_{j}^{3}}-m_{j}^{2} \rho_{j} \approx 0
\end{aligned}
$$

$$
E_{j}=A_{j}\left|\partial_{\phi} \sigma_{j}(\phi)\right|^{2}-B_{j}\left|\sigma_{j}(\phi)\right|^{2}+\frac{2}{5} \operatorname{Re}\left(w_{j} \sigma_{j}(\phi)^{5}\right)
$$

$$
Q_{j}=-\frac{i}{2}\left[\bar{\sigma}_{j}(\phi) \partial_{\phi} \sigma_{j}(\phi)-\sigma_{j}(\phi) \partial_{\phi} \bar{\sigma}_{j}(\phi)\right]
$$

$$
E_{j} \approx\left(\rho_{j}^{\prime}\right)^{2}+\rho_{j}^{2}\left(\theta_{j}^{\prime}\right)^{2}-m_{j}^{2} \rho^{2}
$$

$$
Q_{j} \approx \rho_{j}^{2} \theta_{j}^{\prime}
$$

- key relational observables (expectation values in condensate state) with scalar field as clock:
universe volume (at fixed "time")

$$
V(\phi)=\sum_{j} V_{j} \bar{\sigma}_{j}(\phi) \sigma_{j}(\phi)=\sum_{j} V_{j} \rho_{j}(\phi)^{2} \quad V_{j} \sim j^{3 / 2} \ell_{\mathrm{Pl}}^{3}
$$

momentum of scalar field (at fixed "time") $\quad \pi_{\phi}=\langle\sigma| \hat{\pi}_{\phi}(\phi)|\sigma\rangle=\hbar \sum_{j} Q_{j}$
constant of motion \sim continuity equation

Emergent bouncing cosmology from full QG

$$
A_{j} \partial_{\phi}^{2} \sigma_{j}(\phi)-B_{j} \sigma_{j}(\phi)+w_{j} \sigma_{j}(\phi)^{4}=0
$$

interaction terms sub-dominant (dilute-gas approx., consistent with simple approximation of vacuum state)

- two (approximately) conserved quantities (per mode):

$$
\begin{aligned}
& \sigma_{j}(\phi)=\rho_{j}(\phi) e^{i \theta_{j}(\phi)} \\
& m_{j}^{2}=B_{j} / A_{j} \quad \rho_{j}^{\prime \prime}-\frac{Q_{j}^{2}}{\rho_{j}^{3}}-m_{j}^{2} \rho_{j} \approx 0
\end{aligned}
$$

$$
E_{j}=A_{j}\left|\partial_{\phi} \sigma_{j}(\phi)\right|^{2}-B_{j}\left|\sigma_{j}(\phi)\right|^{2}+\frac{2}{5} \operatorname{Re}\left(w_{j} \sigma_{j}(\phi)^{5}\right)
$$

$$
Q_{j}=-\frac{i}{2}\left[\bar{\sigma}_{j}(\phi) \partial_{\phi} \sigma_{j}(\phi)-\sigma_{j}(\phi) \partial_{\phi} \bar{\sigma}_{j}(\phi)\right]
$$

$$
E_{j} \approx\left(\rho_{j}^{\prime}\right)^{2}+\rho_{j}^{2}\left(\theta_{j}^{\prime}\right)^{2}-m_{j}^{2} \rho^{2}
$$

$$
Q_{j} \approx \rho_{j}^{2} \theta_{j}^{\prime}
$$

- key relational observables (expectation values in condensate state) with scalar field as clock:
universe volume (at fixed "time")

$$
V(\phi)=\sum_{j} V_{j} \bar{\sigma}_{j}(\phi) \sigma_{j}(\phi)=\sum_{j} V_{j} \rho_{j}(\phi)^{2} \quad V_{j} \sim j^{3 / 2} \ell_{\mathrm{Pl}}^{3}
$$

momentum of scalar field (at fixed "time") $\quad \pi_{\phi}=\langle\sigma| \hat{\pi}_{\phi}(\phi)|\sigma\rangle=\hbar \sum_{j} Q_{j}$
constant of motion \sim continuity equation
energy density of scalar field (at fixed "time")

$$
\rho=\frac{\pi_{\phi}^{2}}{2 V^{2}}=\frac{\hbar^{2}\left(\sum_{j} Q_{j}\right)^{2}}{2\left(\sum_{j} V_{j} \rho_{j}^{2}\right)^{2}}
$$

Emergent bouncing cosmology from full QG

effective dynamics for volume - generalised Friedmann equations:

$$
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} \rho_{j} \sqrt{E_{j}-\frac{Q_{j}^{2}}{\rho_{j}^{2}}+m_{j}^{2} \rho_{j}^{2}}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2}
$$

$$
\frac{V^{\prime \prime}}{V}=\frac{2 \sum_{j} V_{j}\left[E_{j}+2 m_{j}^{2} \rho_{j}^{2}\right]}{\sum_{j} V_{j} \rho_{j}^{2}}
$$

Emergent bouncing cosmology from full QG

effective dynamics for volume - generalised Friedmann equations:

$$
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} \rho_{j} \sqrt{E_{j}-\frac{Q_{j}^{2}}{\rho_{j}^{2}}+m_{j}^{2} \rho_{j}^{2}}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2} \quad \frac{V^{\prime \prime}}{V}=\frac{2 \sum_{j} V_{j}\left[E_{j}+2 m_{j}^{2} \rho_{j}^{2}\right]}{\sum_{j} V_{j} \rho_{j}^{2}}
$$

$\exists j / \rho_{j}(\phi) \neq 0 \forall \phi$

$$
\begin{aligned}
& V=\sum_{j} V_{j} \rho_{j}^{2} \\
& \text { remains positive at all times }
\end{aligned}
$$

Emergent bouncing cosmology from full QG

effective dynamics for volume - generalised Friedmann equations:

$$
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} \rho_{j} \sqrt{E_{j}-\frac{Q_{j}^{2}}{\rho_{j}^{2}}+m_{j}^{2} \rho_{j}^{2}}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2} \quad \frac{V^{\prime \prime}}{V}=\frac{2 \sum_{j} V_{j}\left[E_{j}+2 m_{j}^{2} \rho_{j}^{2}\right]}{\sum_{j} V_{j} \rho_{j}^{2}}
$$

$$
\exists j / \rho_{j}(\phi) \neq 0 \forall \phi \leadsto \quad \begin{aligned}
& V=\sum_{j} V_{j} \rho_{j}^{2} \\
& \text { remains positive at all times }
\end{aligned}
$$

generic quantum bounce! + primordial accelleration De Cesare, Sakellariadou, ‘16

Emergent bouncing cosmology from full QG

effective dynamics for volume - generalised Friedmann equations:

$$
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} \rho_{j} \sqrt{E_{j}-\frac{Q_{j}^{2}}{\rho_{j}^{2}}+m_{j}^{2} \rho_{j}^{2}}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2}
$$

$$
\frac{V^{\prime \prime}}{V}=\frac{2 \sum_{j} V_{j}\left[E_{j}+2 m_{j}^{2} \rho_{j}^{2}\right]}{\sum_{j} V_{j} \rho_{j}^{2}}
$$

$\exists j / \rho_{j}(\phi) \neq 0 \forall \phi$
$V=\sum_{j} V_{j} \rho_{j}^{2}$
remains positive at all times
generic quantum bounce! + primordial accelleration De Cesare, Sakellariadou, '16

- classical approx. $\rho_{j}^{2} \gg\left|E_{j}\right| / m_{j}^{2}$ and $\rho_{j}^{4} \gg Q_{j}^{2} / m_{j}^{2}$

$$
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} m_{j} \rho_{j}^{2}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2} \quad \frac{V^{\prime \prime}}{V}=\frac{4 \sum_{j} V_{j} m_{j}^{2} \rho_{j}^{2}}{\sum_{j} V_{j} \rho_{j}^{2}}
$$

approx. classical Friedmann eqns if $m_{j}^{2} \approx 3 G_{N}$

Emergent bouncing cosmology from full QG

effective dynamics for volume - generalised Friedmann equations:

$$
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} \rho_{j} \sqrt{E_{j}-\frac{Q_{j}^{2}}{\rho_{j}^{2}}+m_{j}^{2} \rho_{j}^{2}}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2}
$$

$$
\frac{V^{\prime \prime}}{V}=\frac{2 \sum_{j} V_{j}\left[E_{j}+2 m_{j}^{2} \rho_{j}^{2}\right]}{\sum_{j} V_{j} \rho_{j}^{2}}
$$

$\exists j / \rho_{j}(\phi) \neq 0 \forall \phi$

$$
\begin{aligned}
& V=\sum_{j} V_{j} \rho_{j}^{2} \\
& \text { remains positive at all times }
\end{aligned}
$$

generic quantum bounce! + primordial accelleration De Cesare, Sakellariadou, '16

- classical approx. $\rho_{j}^{2} \gg\left|E_{j}\right| / m_{j}^{2}$ and $\rho_{j}^{4} \gg Q_{j}^{2} / m_{j}^{2}$

$$
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} m_{j} \rho_{j}^{2}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2}
$$

$$
\frac{V^{\prime \prime}}{V}=\frac{4 \sum_{j} V_{j} m_{j}^{2} \rho_{j}^{2}}{\sum_{j} V_{j} \rho_{j}^{2}}
$$

approx. classical Friedmann

$$
\text { eqns if } m_{j}^{2} \approx 3 G_{N}
$$

- simple condensate:

$$
\sigma_{j}(\phi)=0, \text { for all } j \neq j_{o}
$$

$$
\begin{gathered}
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\frac{4 \pi G}{3}\left(1-\frac{\rho}{\rho_{c}}\right)+\frac{V_{j_{o}} E_{j_{o}}}{9 V} \\
\rho_{c}=6 \pi G \hbar^{2} / V_{j_{o}}^{2} \sim\left(6 \pi / j_{o}^{3}\right) \rho_{\mathrm{Pl}}
\end{gathered}
$$

Emergent bouncing cosmology from full QG

effective dynamics for volume - generalised Friedmann equations:

$$
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} \rho_{j} \sqrt{E_{j}-\frac{Q_{j}^{2}}{\rho_{j}^{2}}+m_{j}^{2} \rho_{j}^{2}}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2}
$$

$$
\frac{V^{\prime \prime}}{V}=\frac{2 \sum_{j} V_{j}\left[E_{j}+2 m_{j}^{2} \rho_{j}^{2}\right]}{\sum_{j} V_{j} \rho_{j}^{2}}
$$

$$
\exists j / \rho_{j}(\phi) \neq 0 \forall \phi \Rightarrow \quad \begin{aligned}
& V=\sum_{j} V_{j} \rho_{j}^{2} \\
& \text { remains positive at all times }
\end{aligned}
$$

generic quantum bounce! + primordial accelleration De Cesare, Sakellariadou, '16

- classical approx. $\rho_{j}^{2} \gg\left|E_{j}\right| / m_{j}^{2}$ and $\rho_{j}^{4} \gg Q_{j}^{2} / m_{j}^{2}$

$$
\begin{array}{cc}
\left(\frac{V^{\prime}}{3 V}\right)^{2}=\left(\frac{2 \sum_{j} V_{j} m_{j} \rho_{j}^{2}}{3 \sum_{j} V_{j} \rho_{j}^{2}}\right)^{2} & \frac{V^{\prime \prime}}{V}=\frac{4 \sum_{j} V_{j} m_{j}^{2} \rho_{j}^{2}}{\sum_{j} V_{j} \rho_{j}^{2}} \text { approx. classical Friedmann } \\
\text { eqns if } m_{j}^{2} \approx 3 G_{N}
\end{array}
$$

can show that

1) generic solutions approximate such simple condensates at late times

Gielen, '16 De Cesare, Pithis, Sakellariadou, '16
2) GFT interactions can make primordial acceleration last enough e-folds to avoid need for inflation

Thank you for your attention!

[^0]: locality principle and soft breaking of locality:

