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Plan of the talk

•  GFTs : what are they? 
• general formalism 
• relation with other QG approaches 

• continuum limit in GFT (and QG) 

• FRG analysis of GFT models 
• general set-up 
• overview of results 
• FRG analysis of an abelian rank-d TGFT 

• effective continuum physics 
• cosmology from GFT (and QG) 
• GFT condensate cosmology 
• bouncing cosmologies from GFT
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' : G⇥d ! CQuantum field theories over group manifold  G (or corresponding Lie algebra)

relevant classical phase space for “GFT quanta”: (T ⇤G)⇥d ' (g⇥G)⇥d

can reduce to subspaces in specific models depending on conditions on the field

'(g1, g2, g3, g4)$ '(B1, B2, B3, B4)! Cexample: d=4

d is dimension of  “spacetime-to-be”; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)
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Fock vacuum: “no-space” (“emptiest”) state   | 0 >

single field “quantum”: spin network vertex or tetrahedron
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Fock vacuum: “no-space” (“emptiest”) state   | 0 >

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or 
tetrahedra (including glued ones)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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single field “quantum”: spin network vertex or tetrahedron

(“building block of space”)
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Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)
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S(',') =
1
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�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common 
triangles, to form 4-simplex (“building block of spacetime”)

simplest example (case d=4): simplicial setting

specific combinatorics depends on model
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)⇤ SO(3)]4:

⇤⇤(x1, · · · x4) :=
⇥

[dgi]4 ⇤(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⌅ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2⇤ 2 matrices1 as Trxg=

�
± ⇥g±tr[x±g±] with ⇥g±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=ei�g±trx±g± . The plane waves satisfy the
properties: ⇥

d6x Eg(x) = �(g), Eg-1(x) = Eg(�x) (8)

1Let ⇧j be i times the Pauli matrices, then tr⇧i⇧j =��ij . Given and SU(2) element u=e�nj⇥j parametrized by
the angle ⇤ ⇤ [0, ⌅] and the unit R3-vector ⌦n and a=aj⇧j in the algebra su(2), we thus have tr[au]=� sin ⇤⌦n · ⌦a.
Also ⇥u :=sign(tru)=sign(cos ⇤).

5

simplest example (case d=4): simplicial setting
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Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =


= stranded diagrams dual to cellular complexes of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices)
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Group field theories

Feynman amplitudes (model-dependent):


equivalently:

• spin foam models (sum-over-histories of 

spin networks ~ covariant LQG)


• lattice path integrals         

(with group+Lie algebra variables)

Reisenberger,Rovelli, ’00

A. Baratin, DO, ‘11

GFT as lattice quantum gravity:

dynamical triangulations + quantum Regge calculus

a QFT for the building blocks of (quantum) space
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GFTs and Loop Quantum Gravity

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR (DO, 1310.7786 [gr-qc])

QFT methods (i.e. GFT reformulation of LQG and spin foam models) useful to address physics of large 
numbers of LQG d.o.f.s, i.e. many and refined graphs (continuum limit)

DO, J. Ryan, J. Thurigen, ‘14



   Group Field Theory: crossroad of approaches

Matrix models

Tensor modelsGFT

Non-commutative geometry

LQG

Spin foam models

Simplicial gravity path integrals 

(e.g. quantum Regge calculus)

(causal) Dynamical 
Triangulations
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• how to constrain quantisation and construction ambiguities in model building?

• GFT perturbative renormalization 
—-> renormalizability of GFT for given discrete gravity path integral/spin foam amplitudes 

• GFT symmetries (at both classical and quantum level) 
—-> in particular, those with geometric interpretation (e.g. diffeomorphisms)

Ben Geloun, ’11; Girelli, Livine, ’11; Baratin, Girelli, DO, ‘11

Kegeles, DO, ‘15

• Non-perturbative GFT renormalization and phase diagram - what are the QG phases? which one is geometric?
• Extraction of effective continuum dynamics in different phases

controlling quantum dynamics of more and more interacting degrees of freedom 

• how to define the continuum limit (of the LQG/SF dynamics or, equivalently, of discrete gravity path integral)?

(as in QFT for condensed matter systems….)

new analytic tools from QFT embedding
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new direction to explore: number of fundamental degrees of freedom

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of 
non-spatio-temporal d.o.f.s

few QG d.o.f.s in classical approx.!
(e.g. discrete/lattice gravity)

General Relativity!
(continuum spacetime)

full Quantum Gravity

N

h

few QG d.o.f.s!
(e.g. simple LQG spinnets)

continuum approximation very different (conceptually, technically) 
from classical approximation

N-direction 
(collective behaviour of many interacting degrees of freedom): 

continuum approximation

h-direction: classical approximation

“well-understood” in spin foam models and 
discrete gravity
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Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool

for taking into account the physics of more and more d.o.f.s 

in specific GFT case:

• treat GFT models as analogous to atomic QFTs in condensed matter systems 

• need to understand effective dynamics at different “GFT scales”: 
RG flow of effective actions & phase structure & phase transitions

•  for our QG models, do not expect to have a unique continuum limit   

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases, 
separated by phase transitions

• for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),
which of the macroscopic phases is described by a smooth geometry with matter fields?
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- control GFT quantum dynamics for boundary states involving (superpositions of) large graphs
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(full theory space)
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AL 
vacuum

KS 
vacuum

DG vacuum 

(or BF vacuum)

?

?

GFT 
condensate

phase 
transitions ?

Ashtekar, Lewandowski, ’94      Koslowski, Sahlmann, ’10     Dittrich, Geiller, ’14, ‘15
Gielen, DO, Sindoni, ’13       Kegeles, DO, Tomlin, to appear
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GFT renormalisation - general scheme

general strategy: 
treat GFTs as ordinary QFTs defined on Lie group manifold 
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:   
  defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
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• need to have control over “theory space” (e.g. via symmetries)

• main difficulty (at perturbative level):
controlling the combinatorics of GFT Feynman diagrams to control the structure of divergences 
need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering, ….. 
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GFT renormalisation - general scheme

general strategy: 
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tensor invariant interactions 

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
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kinetic term = e.g. Laplacian on G

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇥ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) �

m2 �
d⇤

⇥=1

�⇥

⇥�1

Boulatov-like restriction of d.o.f:

⌅h ⇤ G , ⇤(hg1, . . . , hgd) = ⇤(g1, . . . gd) .

Implemented by a group averaging.

This defines our measure dµC :
⇧

dµC (⇤,⇤)⇤(g⇥)⇤(g
⇥
⇥) = C(g⇥; g

⇥
⇥) =

⇧ +⇤

0

d� e��m2
⇧

dh
d⌅

⇥=1

K�(g⇥hg
⇥�1
⇥ ) ,

where K� is the heat kernel on G at time �.
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Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇥ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) �
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Boulatov-like restriction of d.o.f:
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Implemented by a group averaging.

This defines our measure dµC :
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A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Graphs

The amplitudes are indexed by (d + 1)-colored graphs, obtained by
connecting d-bubble vertices through propagators (dotted, color-0 lines).
Example: 4-point graph with 3 vertices and 6 (internal) lines.

Nomenclature:
L(G) = set of (dotted) lines of a graph G.
Face of color (0�) = connected set of (alternating) color-0 and color-� lines.
Fint(G) (resp. Fext(G)) = set of internal (resp. external) i.e. closed (resp.
open) faces of G.

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

“coloring” allows control over 
topology of Feynman diagrams
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Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇥ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) �
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Boulatov-like restriction of d.o.f:
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Implemented by a group averaging.

This defines our measure dµC :
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require generalization of notions of “connectedness”, “contraction of high subgraphs”, “locality”, Wick ordering, 
…. 


taking into account internal structure of Feynman graphs, full combinatorics of dual cellular complex, results from 
crystallization theory (dipole moves)

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Graphs

The amplitudes are indexed by (d + 1)-colored graphs, obtained by
connecting d-bubble vertices through propagators (dotted, color-0 lines).
Example: 4-point graph with 3 vertices and 6 (internal) lines.

Nomenclature:
L(G) = set of (dotted) lines of a graph G.
Face of color (0�) = connected set of (alternating) color-0 and color-� lines.
Fint(G) (resp. Fext(G)) = set of internal (resp. external) i.e. closed (resp.
open) faces of G.
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topology of Feynman diagrams



TGFT renormalization

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Graphs

The amplitudes are indexed by (d + 1)-colored graphs, obtained by
connecting d-bubble vertices through propagators (dotted, color-0 lines).
Example: 4-point graph with 3 vertices and 6 (internal) lines.

Nomenclature:
L(G) = set of (dotted) lines of a graph G.
Face of color (0�) = connected set of (alternating) color-0 and color-� lines.
Fint(G) (resp. Fext(G)) = set of internal (resp. external) i.e. closed (resp.
open) faces of G.
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example of Feynman diagram

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Contraction of a subgraph

The contraction of a line is implemented by so-called dipole moves,
which in d = 4 are:

The contraction of a subgraph H � G is obtained by successive
contractions of its lines.

Net result

The contraction of a subgraph H ⇤ G amounts to delete all the internal faces of
H and reconnect its external legs according to the pattern of its external faces.

⇥ well-suited for coarse-graining / renormalization steps!

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

“contraction of internal line” ~ dipole contraction

• building blocks: coloured bubbles, dual to d-cells with triangulated boundary

• glued along their boundary (d-1)-simplices

• parallel transports (discrete connection) associated to dashed (color 0, propagator) lines

• faces of color i = connected set of (alternating) lines of color 0 and i
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and with results of GFT condensate cosmology (see later)
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• GFT “UV” cut-off  N  ~  Jmax
• RG flow: Jmax  ——->  small  J
• (perturbative) GFT renormalizability:  UV fixed point as Jmax ——->  oo

“geometric” interpretation of the RG flow?

• RG flow from large areas to small areas? not quite
• theory defined in non-geometric phase of “large” disconnected tetrahedra
• flow of couplings to region of many interacting (thus, connected) “small” tetrahedra 

• CAUTION in interpreting things geometrically outside continuum geometric approx

• e.g. expect “physical” continuum areas   A ~ < J > < n >
• expect proper continuum geometric interpretation (and effective metric field) 

for  < J >  small,  < n >  large,  A  finite (not too small), and small curvature 
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GFT perturbative renormalisation

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

PERTURBATIVE GFT RENORMALIZATION

radiative corrections to the GFT 2-point function of the BF GFT models

Ben Geloun, Bonzom, arXiv:1101.4294 [hep-th]

g1

g2

g3

g′1
g′2
g′3

h1

h2

h3

two leading divergences:
a mass renormalization

a divergence proportional to the second derivatives of the propagator

this needs to be balanced by a new counter-term in the GFT Boulatov action:

m2
Z

[dg]φ(g1, g2, g3) →

Z
[dg]φ(g1, g2, g3)

"
3X

i=1

∆i + m2

#

φ(g1, g2, g3)

similar (and higher) derivative divergences in higher dimensions
BF GFT model could be fixed point of more general GFT dynamics - attractive or
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Graphs

The amplitudes are indexed by (d + 1)-colored graphs, obtained by
connecting d-bubble vertices through propagators (dotted, color-0 lines).
Example: 4-point graph with 3 vertices and 6 (internal) lines.

Nomenclature:
L(G) = set of (dotted) lines of a graph G.
Face of color (0�) = connected set of (alternating) color-0 and color-� lines.
Fint(G) (resp. Fext(G)) = set of internal (resp. external) i.e. closed (resp.
open) faces of G.
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Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
invariants, indexed by d-colored graphs (d-bubble):

S(�,�) =
�

b�B

tbIb(�,�) .

d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.
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GFT non-perturbative renormalisation
the GFT proposal: Z =

Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

controlling the continuum limit ~ evaluating GFT path integral (in some non-perturbative approximation) 

Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Douarte, ….

Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve, …..

(computing full SF sum)
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D'D' ei S�(',') =
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controlling the continuum limit ~ evaluating GFT path integral (in some non-perturbative approximation) 

two directions: 

• GFT non-perturbative renormalization and “IR” fixed points (e.g. FRG analysis - e.g. a la Wetterich

• GFT constructive analysis

non-perturbative resummation of perturbative (SF) series
variety of techniques: • intermediate field method

• loop-vertex expansion
• Borel summability
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FIG. 4. The flow diagram at small N . The blue dot is the GFP, while the red one is the NGFP at {m̄⇤, �̄⇤}. Ordinary
trajectories are in blue, while the eigen-perturbations for the GFP are in green and those for the NGFP are in brown. Arrows
point towards the UV, i.e. growing N .

However, we should stress that such NGFPs were obtained from di↵erent rescaling of �, and going back to the
original coupling via (38), we notice that for N ! 0 the NGFP (41) corresponds to �⇤ = 0, while the one in (28) was
at �⇤ 6= 0.

This observation could also explain the integer critical exponents. Even though m̄N and �̄N have a nontrivial fixed
point, the scaling (24) and (38) implies that at such fixed point the renormalised mass and the renormalised coupling
(i.e. their value in the limit N ! 0) are zero. Once again, modulo an exchange in the scaling dimensions of mass
and coupling, the same conclusion can be reached for the standard Wilson-Fisher fixed point in three dimensions.
However, in such a case we can easily study higher-order truncations, and find that also the coupling g

6

of the �6

interaction reaches a fixed point, and being g
6

dimensionless in d = 3, it remains finite also as we remove the IR
cuto↵. That the Wilson-Fisher fixed point theory is truly an interacting one, can also be inferred more reliably from
the local potential approximation or the next orders in the derivative expansion [38]. In the Tensorial GFT case, on
the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �2

0

)2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �2

0

, and it lies at �2

0

< 0, meaning that actually there is always symmetry restoration in
the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was Sd,
while here is (S1)d ' T d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

generically (so far):
two FPs (Gaussian-UV, Wilson-Fisher-IR) 
asymptotic freedom
one symmetric phase
one broken or condensate phase

• Polchinski formulation based on SD equations
• general set-up for Wetterich formulation based on effective action

• analysis of TGFT on compact U(1)^d
• RG flow and phase diagram established

• analysis of TGFT on non-compact R^d
• RG flow and phase diagram established

• analysis of TGFT on non-compact R^d with gauge invariance
• RG flow and phase diagram established

• analysis of TGFT on SU(2)^3     Carrozza, Lahoche, ‘16

Benedetti, Ben Geloun, DO, ’14 ; Ben Geloun, Martini, DO, ’15, ’16, 
Benedetti, Lahoche, ’15; Douarte, DO, ‘16

Krajewski, Toriumi, ‘14
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regularised path integral:

5
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FIG. 1. Three examples of Feynman graphs for a rank 3 TGFT’s. The trace invariants used to build the interactions are:
figure (a) Tr(��), figure (b) an example of Tr(����), figure (c) an example of Tr(������).

B. FRG formulation for TGFTs

The generalisation of the FRG formalism [50–54] to TGFTs is straightforward and was first provided in [34]. Given
a partition function of the type (6), we choose a UV cut-o↵ M and a IR cut-o↵ N

1. Adding to the action a regulator
term of the form:

�S

N

[�,�] = Tr(� ·R
N

· �) =
X

P,P0

�P R

N

(P;P0)�P0
, (7)

we can perform the usual splitting in high and low modes. In particular, given an action with a generic kernel
depending on the derivative of the fields K(r�) and a generalised Fourier transform F , if we choose R

N

to be of the
specific form

R

N

(P;P0) = N�P,P0
R

✓

F(KP)

N

◆

, (8)

we need to impose on the profile function R(z) the following conditions:
- positivity R(z) � 0, to indeed suppress and not enhance modes outside of the domain of the regulator function;
- monotonicity d

dz

R(z)  0, so that high modes will not be suppressed more that low modes;
- R(0) > 0 and lim

z!+1 R(z) = 0 to exclude functions with constant profile.
The last requirement, together with the form (8), guarantees that the regulator is removed for Z ! 0. In accordance

with the usual FRG procedure, we define the scale dependent partition function as:

Z
N
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Z

d�d� e
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and the generating functional of 1PI correlation functions after Legendre transform are given in terms of the average
field ' = h�i as
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Given the above definitions, the Wetterich equation takes the form:
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where t = logN , so that @

t

= N@

N

, and the “super”-trace symbol Tr means that we are summing over all mode
labels. More explicitly, the functional trace reads:
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The presence of the @

t

R

N

in the Wetterich equation for TGFT’s, enforces the trace to be UV-finite if the profile
function and its derivative go fast enough to 0, as z ! +1. In this way, we can basically forget about the UV cut-o↵
M . In any case, as in any resolution of di↵erential equation, we need an initial condition of the type

�
N=M

[','] = S[','] , (13)

1
We adopt a standard QFT terminology for field modes, even if no spacetime interpretation should be attached to them, at this stage.

k k k

...for Tensorial Group Field Theories.

In a work from Benedetti et al. (2014) the formalism of Functional Renormalization
Group was generalized to the framework of TGFTs and applied to a rank 3, �4 model
over G = U(1).

The Wetterich equation for Tensorial Group Field Theories reads [Benedetti et al, 2014]
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where t = log k.
Equation (9) is a one-loop exact equation, but in order to deal with it and to perform

real computations we will need to introduce a truncation scheme.

A standard choice for the kernel of the regulator mass-like term is of the Litim form:
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a partition function of the type (6), we choose a UV cut-o↵ M and a IR cut-o↵ N
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we need to impose on the profile function R(z) the following conditions:
- positivity R(z) � 0, to indeed suppress and not enhance modes outside of the domain of the regulator function;
- monotonicity d

dz

R(z)  0, so that high modes will not be suppressed more that low modes;
- R(0) > 0 and lim

z!+1 R(z) = 0 to exclude functions with constant profile.
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The presence of the @
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in the Wetterich equation for TGFT’s, enforces the trace to be UV-finite if the profile
function and its derivative go fast enough to 0, as z ! +1. In this way, we can basically forget about the UV cut-o↵
M . In any case, as in any resolution of di↵erential equation, we need an initial condition of the type
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1
We adopt a standard QFT terminology for field modes, even if no spacetime interpretation should be attached to them, at this stage.
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we need to impose on the profile function R(z) the following conditions:
- positivity R(z) � 0, to indeed suppress and not enhance modes outside of the domain of the regulator function;
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R(z)  0, so that high modes will not be suppressed more that low modes;
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in the Wetterich equation for TGFT’s, enforces the trace to be UV-finite if the profile
function and its derivative go fast enough to 0, as z ! +1. In this way, we can basically forget about the UV cut-o↵
M . In any case, as in any resolution of di↵erential equation, we need an initial condition of the type
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N=M
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We adopt a standard QFT terminology for field modes, even if no spacetime interpretation should be attached to them, at this stage.
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In the FRG approach we construct an e↵ective theory for the subset of modes which is
most relevant at a certain scale by introducing an IR cut-o↵ k, a UV cut-o↵ ⇤ and a
regulator mass-like kernel R
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which decouples slow modes from the e↵ective theory
[Wilson, 1971].

We rephrase the renormalization problem in terms of a di↵erential equation (Wetterich
equation) for the e↵ective average action �
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, parametrized by the parameter k [Wetterich,
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Wetterich equation:

...for Tensorial Group Field Theories.

In a work from Benedetti et al. (2014) the formalism of Functional Renormalization
Group was generalized to the framework of TGFTs and applied to a rank 3, �4 model
over G = U(1).

The Wetterich equation for Tensorial Group Field Theories reads [Benedetti et al, 2014]
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where t = log k.
Equation (9) is a one-loop exact equation, but in order to deal with it and to perform
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FIG. 1. Three examples of Feynman graphs for a rank 3 TGFT’s. The trace invariants used to build the interactions are:
figure (a) Tr(��), figure (b) an example of Tr(����), figure (c) an example of Tr(������).

B. FRG formulation for TGFTs

The generalisation of the FRG formalism [50–54] to TGFTs is straightforward and was first provided in [34]. Given
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In the FRG approach we construct an e↵ective theory for the subset of modes which is
most relevant at a certain scale by introducing an IR cut-o↵ k, a UV cut-o↵ ⇤ and a
regulator mass-like kernel R

k

which decouples slow modes from the e↵ective theory
[Wilson, 1971].

We rephrase the renormalization problem in terms of a di↵erential equation (Wetterich
equation) for the e↵ective average action �
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, parametrized by the parameter k [Wetterich,
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The boundary conditions for the flow are:
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Wetterich equation:

...for Tensorial Group Field Theories.

In a work from Benedetti et al. (2014) the formalism of Functional Renormalization
Group was generalized to the framework of TGFTs and applied to a rank 3, �4 model
over G = U(1).

The Wetterich equation for Tensorial Group Field Theories reads [Benedetti et al, 2014]
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we need to impose on the profile function R(z) the following conditions:
- positivity R(z) � 0, to indeed suppress and not enhance modes outside of the domain of the regulator function;
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R(z)  0, so that high modes will not be suppressed more that low modes;
- R(0) > 0 and lim
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we need to impose on the profile function R(z) the following conditions:
- positivity R(z) � 0, to indeed suppress and not enhance modes outside of the domain of the regulator function;
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R(z)  0, so that high modes will not be suppressed more that low modes;
- R(0) > 0 and lim

z!+1 R(z) = 0 to exclude functions with constant profile.
The last requirement, together with the form (8), guarantees that the regulator is removed for Z ! 0. In accordance
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computing the effective action solving the Wetterich equation amounts to solving the GFT path integral



FRG analysis of GFT models

boundary conditions:

Functional Renormalization Group...

In the FRG approach we construct an e↵ective theory for the subset of modes which is
most relevant at a certain scale by introducing an IR cut-o↵ k, a UV cut-o↵ ⇤ and a
regulator mass-like kernel R

k

which decouples slow modes from the e↵ective theory
[Wilson, 1971].

We rephrase the renormalization problem in terms of a di↵erential equation (Wetterich
equation) for the e↵ective average action �

k

, parametrized by the parameter k [Wetterich,

1993].

The boundary conditions for the flow are:

�
k=0[','] = �[','] , �

k=⇤[','] = S [','] , (8)

where ' = h�i.

Riccardo Martini (UNIBO) FRG for TGFT March 14, 2016 13 / 32

Functional Renormalization Group...

In the FRG approach we construct an e↵ective theory for the subset of modes which is
most relevant at a certain scale by introducing an IR cut-o↵ k, a UV cut-o↵ ⇤ and a
regulator mass-like kernel R

k

which decouples slow modes from the e↵ective theory
[Wilson, 1971].

We rephrase the renormalization problem in terms of a di↵erential equation (Wetterich
equation) for the e↵ective average action �

k

, parametrized by the parameter k [Wetterich,

1993].

The boundary conditions for the flow are:

�
k=0[','] = �[','] , �

k=⇤[','] = S [','] , (8)

where ' = h�i.

Riccardo Martini (UNIBO) FRG for TGFT March 14, 2016 13 / 32

Wetterich equation:

...for Tensorial Group Field Theories.

In a work from Benedetti et al. (2014) the formalism of Functional Renormalization
Group was generalized to the framework of TGFTs and applied to a rank 3, �4 model
over G = U(1).

The Wetterich equation for Tensorial Group Field Theories reads [Benedetti et al, 2014]
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where t = log k.
Equation (9) is a one-loop exact equation, but in order to deal with it and to perform

real computations we will need to introduce a truncation scheme.

A standard choice for the kernel of the regulator mass-like term is of the Litim form:
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Wetterich equation expanded in field powers, with all possible contractions; truncation matching classical action

system of flow equations is generically non-homogeneous, because of combinatorial patterns of contractions

for compact groups, it is also non-autonomous, due to hidden scale (size of group)

regularised path integral:
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FIG. 1. Three examples of Feynman graphs for a rank 3 TGFT’s. The trace invariants used to build the interactions are:
figure (a) Tr(��), figure (b) an example of Tr(����), figure (c) an example of Tr(������).

B. FRG formulation for TGFTs

The generalisation of the FRG formalism [50–54] to TGFTs is straightforward and was first provided in [34]. Given
a partition function of the type (6), we choose a UV cut-o↵ M and a IR cut-o↵ N
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�S

N

[�,�] = Tr(� ·R
N

· �) =
X

P,P0

�P R

N

(P;P0)�P0
, (7)

we can perform the usual splitting in high and low modes. In particular, given an action with a generic kernel
depending on the derivative of the fields K(r�) and a generalised Fourier transform F , if we choose R
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we need to impose on the profile function R(z) the following conditions:
- positivity R(z) � 0, to indeed suppress and not enhance modes outside of the domain of the regulator function;
- monotonicity d

dz

R(z)  0, so that high modes will not be suppressed more that low modes;
- R(0) > 0 and lim

z!+1 R(z) = 0 to exclude functions with constant profile.
The last requirement, together with the form (8), guarantees that the regulator is removed for Z ! 0. In accordance

with the usual FRG procedure, we define the scale dependent partition function as:
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where t = logN , so that @

t

= N@

N
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labels. More explicitly, the functional trace reads:

X

P,P0

@

t

R

N

(P;P0)[�(2)

N

+R

N

]�1(P0;P) . (12)

The presence of the @
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in the Wetterich equation for TGFT’s, enforces the trace to be UV-finite if the profile
function and its derivative go fast enough to 0, as z ! +1. In this way, we can basically forget about the UV cut-o↵
M . In any case, as in any resolution of di↵erential equation, we need an initial condition of the type
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N=M

[','] = S[','] , (13)
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We adopt a standard QFT terminology for field modes, even if no spacetime interpretation should be attached to them, at this stage.
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the model:

6

for some scale M . The problem of solving the full quantum theory is now phrased in the one of pushing the initial
condition to infinity, which usually requires the existence of a UV fixed point, and solving the Wetterich equation
with such initial condition. The full quantum field theory will then be defined by the corresponding solution, i.e. by
the full RG trajectory.

The Wetterich equation has a 1-loop structure, and since no (perturbative) approximation is required to obtain it,
it is an exact functional equation. However, although we have expressed the problem of extracting the flow of the
theory in terms of a partial di↵erential equation in one single variable, we still have the issue that all possible (i.e.
compatible with symmetry requirements and field content) couplings are allowed in �

k

, which is thus expressible as an
infinite sum of monomials in the field (and its conjugate). If we want to perform practical computations, we need some
approximation scheme for the form of the free energy. Usually, this is obtained by truncating �

k

to a maximal power
in the fields and in their derivative. It is then a truncation in theory space, which maintains the non-perturbative
character of the RG equation.

What is peculiar, and interesting, about the application of FRG to TGFTs, is that �(2)

N

carries inside the Wetterich
equation information about the combinatorial non-locality of the theory, i.e. the intricate combinatorics of TGFT
interactions. In the case we consider here, that of a non-compact group manifold, this will also back-react at the
level of the �-functions, in the fact that, depending on the combinatorics of the interaction, the volume contributions
appearing in (11) will be not homogeneous and, in general, a natural definition of an e↵ective local potential does not
exist. Let us explain this key point, which we will deal with in detail in the following.

In its usual form, namely when applied to a standard, local quantum field theory (see for instance, in [52]), the
Wetterich equation shows pathological IR divergences due to the presence of �(0) arising from the two-point Green’s

function computed at a single point G

(2)

k

(q, q). In the local field theory case, these divergent delta functions are
homogeneous and proportional to the total volume of the system, namely, the domain manifold of the fields. A
particular approximation procedure allows to cure this problem and it is called the local potential approximation
(LPA) [52]. This procedure cannot be applied, at least not in the same straightforward way, to combinatorially
non-local theories as TGFTs. One reason is that, in such non-local theories, the same type of IR divergence arise,
in general, in a non-homogeneous combination of �(0) which are strictly dependent on the combinatorics of the
interaction. We will discuss this and several other issues characterising TGFTs as QFTs of an interesting new kind.

III. RANK-d TENSORIAL GROUP FIELD THEORY ON R

As discussed in the introduction, the first model studied within the FRG framework for TGFTs, already in [34], was
a rank-3 model with compact group manifold U(1), and subsequently, we have studied a non-compact counterpart
of the same model, i.e. a rank-3 TGFT on R [39]. New issues concerning the thermodynamic limit but also more
compelling hints for the existence of UV and IR fixed points, and of a condensation phase transitions, were found.

We now extend the analysis and results of the latter work to arbitrary rank (as well as analysing in more detail in
the rank-3 model), showing how those intriguing hints are actually confirmed in a more general case. In the following
section, we will analyse a modification of the same type of TGFT models which includes a gauge invariance property
of fields and amplitudes, thus moving closer to full-fledged TGFT models for quantum geometry and discrete quantum
gravity, and related to loop quantum gravity.

We start by introducing the class of TGFT models we will analyse.

A. The model

The TGFTs we work with have “melonic” interactions (in correspondence with d-colored graphs called “melons”)
[55–57]. Such melons are dual to special triangulations of the d-ball [47] and of course correspond also to trace
invariants of the type introduced in section IIA.

We consider a rank-d model with complex field, � : Rd ! C, defined by the following action:
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We now extend the analysis and results of the latter work to arbitrary rank (as well as analysing in more detail in
the rank-3 model), showing how those intriguing hints are actually confirmed in a more general case. In the following
section, we will analyse a modification of the same type of TGFT models which includes a gauge invariance property
of fields and amplitudes, thus moving closer to full-fledged TGFT models for quantum geometry and discrete quantum
gravity, and related to loop quantum gravity.

We start by introducing the class of TGFT models we will analyse.

A. The model

The TGFTs we work with have “melonic” interactions (in correspondence with d-colored graphs called “melons”)
[55–57]. Such melons are dual to special triangulations of the d-ball [47] and of course correspond also to trace
invariants of the type introduced in section IIA.

We consider a rank-d model with complex field, � : Rd ! C, defined by the following action:
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+ symG = R 8

B. E↵ective action and Wetterich equation

In order to proceed with the Functional Renormalisation Group analysis, following the general template described
in the previous section, we introduce an IR cut-o↵ k and a UV cut-o↵ ⇤. We need to perform a truncation on the
form of the e↵ective action. A natural choice, compatible with the condition (13), is to truncate the e↵ective action
to be of the same form of the action itself for any value of the cut-o↵s, that is:
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where ' = h�i. As we have already stressed, this is a non-perturbative truncation of the theory, and any of the
ensuing results should then be tested by extending this truncation, including more invariants (including other types
of Tr(�4) invariants, i.e. with di↵erent combinatorics, as well as higher order terms Tr(�2n), n � 3; in general, one
should include also disconnected invariants such as multi-traces, Tr(�2n)Tr(�2m) . . . ) and checking for (qualitative)
convergence. Enlarging the theory space is postponed for future investigations, but it should be obvious that, even
in the truncation given by (20), the calculations and the outcome of the present analysis remain highly non-trivial.

From the dimensional analysis of the previous section and from the fact that [�
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] = 0 and ['] = [�], one infers
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We introduce a regulator kernel of the following form [58, 59]
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where ✓ stands for the Heaviside step function. This form of the regulator is convenient because it allows to solve
analytically many spectral sums. It is easy to show that R
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satisfies the minimal requirements for a regulator kernel:
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• at the scale k = ⇤, the regulator takes the form:
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which at the first order gives: R
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The derivative of the regulator kernel with respect to the logarithmic scale t = log k, entering in the Wetterich
equation, evaluates as:
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One notes that R
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and @
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are both symmetric kernels, which is important in evaluating the convolutions induced
by the Wetterich equation.

Computing the 1PI 2-point function yields:
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the model:

6

for some scale M . The problem of solving the full quantum theory is now phrased in the one of pushing the initial
condition to infinity, which usually requires the existence of a UV fixed point, and solving the Wetterich equation
with such initial condition. The full quantum field theory will then be defined by the corresponding solution, i.e. by
the full RG trajectory.

The Wetterich equation has a 1-loop structure, and since no (perturbative) approximation is required to obtain it,
it is an exact functional equation. However, although we have expressed the problem of extracting the flow of the
theory in terms of a partial di↵erential equation in one single variable, we still have the issue that all possible (i.e.
compatible with symmetry requirements and field content) couplings are allowed in �

k

, which is thus expressible as an
infinite sum of monomials in the field (and its conjugate). If we want to perform practical computations, we need some
approximation scheme for the form of the free energy. Usually, this is obtained by truncating �

k

to a maximal power
in the fields and in their derivative. It is then a truncation in theory space, which maintains the non-perturbative
character of the RG equation.

What is peculiar, and interesting, about the application of FRG to TGFTs, is that �(2)

N

carries inside the Wetterich
equation information about the combinatorial non-locality of the theory, i.e. the intricate combinatorics of TGFT
interactions. In the case we consider here, that of a non-compact group manifold, this will also back-react at the
level of the �-functions, in the fact that, depending on the combinatorics of the interaction, the volume contributions
appearing in (11) will be not homogeneous and, in general, a natural definition of an e↵ective local potential does not
exist. Let us explain this key point, which we will deal with in detail in the following.

In its usual form, namely when applied to a standard, local quantum field theory (see for instance, in [52]), the
Wetterich equation shows pathological IR divergences due to the presence of �(0) arising from the two-point Green’s

function computed at a single point G
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k

(q, q). In the local field theory case, these divergent delta functions are
homogeneous and proportional to the total volume of the system, namely, the domain manifold of the fields. A
particular approximation procedure allows to cure this problem and it is called the local potential approximation
(LPA) [52]. This procedure cannot be applied, at least not in the same straightforward way, to combinatorially
non-local theories as TGFTs. One reason is that, in such non-local theories, the same type of IR divergence arise,
in general, in a non-homogeneous combination of �(0) which are strictly dependent on the combinatorics of the
interaction. We will discuss this and several other issues characterising TGFTs as QFTs of an interesting new kind.

III. RANK-d TENSORIAL GROUP FIELD THEORY ON R

As discussed in the introduction, the first model studied within the FRG framework for TGFTs, already in [34], was
a rank-3 model with compact group manifold U(1), and subsequently, we have studied a non-compact counterpart
of the same model, i.e. a rank-3 TGFT on R [39]. New issues concerning the thermodynamic limit but also more
compelling hints for the existence of UV and IR fixed points, and of a condensation phase transitions, were found.

We now extend the analysis and results of the latter work to arbitrary rank (as well as analysing in more detail in
the rank-3 model), showing how those intriguing hints are actually confirmed in a more general case. In the following
section, we will analyse a modification of the same type of TGFT models which includes a gauge invariance property
of fields and amplitudes, thus moving closer to full-fledged TGFT models for quantum geometry and discrete quantum
gravity, and related to loop quantum gravity.

We start by introducing the class of TGFT models we will analyse.

A. The model

The TGFTs we work with have “melonic” interactions (in correspondence with d-colored graphs called “melons”)
[55–57]. Such melons are dual to special triangulations of the d-ball [47] and of course correspond also to trace
invariants of the type introduced in section IIA.

We consider a rank-d model with complex field, � : Rd ! C, defined by the following action:
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+ symG = R

• divergences in Wetterich equation due to non-compactness of group manifold
• non-locality of interactions prevents from using standard methods, e.g. local potential approx.
• thermodynamic limit must be taken carefully
step 1: compactly configuration space to U(1)^d, with 
step 2: determine (non-standard) scaling of coupling constants
step 3: take non-compact limit so to regularise the most divergent contributions to the RG flow 

Infrared divergences

The Wetterich equation presents volume divergences but, because of the non-locality
of the interaction, the most obvious methods to avoid them (for example Local Potential
Approximation) cannot be used.

We look for a procedure that makes explicit the dependence on the volume of the
direct space

thermodynamic limit

We compactify the direct space obtaining a lattice in the momentum space:

Z
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d
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p

�(p� p0)  ! 1
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d

�p,p0

�(0)  ! 1
l

d

The parameter l is connected to the direct space through the formula V =
⇣

2⇡
l

⌘

d

and

represents the lattice spacing of the momentum space. The non-compact system is
recovered in the limit l ! 0
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B. E↵ective action and Wetterich equation

In order to proceed with the Functional Renormalisation Group analysis, following the general template described
in the previous section, we introduce an IR cut-o↵ k and a UV cut-o↵ ⇤. We need to perform a truncation on the
form of the e↵ective action. A natural choice, compatible with the condition (13), is to truncate the e↵ective action
to be of the same form of the action itself for any value of the cut-o↵s, that is:
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where ' = h�i. As we have already stressed, this is a non-perturbative truncation of the theory, and any of the
ensuing results should then be tested by extending this truncation, including more invariants (including other types
of Tr(�4) invariants, i.e. with di↵erent combinatorics, as well as higher order terms Tr(�2n), n � 3; in general, one
should include also disconnected invariants such as multi-traces, Tr(�2n)Tr(�2m) . . . ) and checking for (qualitative)
convergence. Enlarging the theory space is postponed for future investigations, but it should be obvious that, even
in the truncation given by (20), the calculations and the outcome of the present analysis remain highly non-trivial.

From the dimensional analysis of the previous section and from the fact that [�
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] = 0 and ['] = [�], one infers
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We introduce a regulator kernel of the following form [58, 59]
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where ✓ stands for the Heaviside step function. This form of the regulator is convenient because it allows to solve
analytically many spectral sums. It is easy to show that R
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satisfies the minimal requirements for a regulator kernel:
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• at the scale k = ⇤, the regulator takes the form:

R

k=⇤

(p,p0) = �(p� p

0)Z
⇤

(⇤2 �
X

s

p

2

s

)✓(⇤2 �
X

s

p

2

s

) , (23)

which at the first order gives: R
k=⇤

' Z

⇤

⇤2;

• for k 2 [0,⇤], we have also:

R

k

(p,p0) = 0 , 8p,p0
, such that |p|, |p0| > k , (24)

R

k

(p,p0) ' Z

k

k

2

, 8p,p0
, such that |p|, |p0| < k . (25)

The derivative of the regulator kernel with respect to the logarithmic scale t = log k, entering in the Wetterich
equation, evaluates as:
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One notes that R
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and @
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are both symmetric kernels, which is important in evaluating the convolutions induced
by the Wetterich equation.

Computing the 1PI 2-point function yields:
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scaling of couplings:

We first apply the above procedure to a simple model of rank d of TGFT without
gauge projection and defined over R:
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The regularization goes through the compactification of R in U(1), where the
parameter l becomes the radius of the ring.

The key point in order to obtain a properly defined theory in the non-compact limit is
the correct definition of the scaling dimension for the couplings. We will tune this scaling
by extracting their canonical dimensions with both the parameters l and k and
performing the following ansatz:
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The parameters � and ⇠ will allow us to find out if this model may represent a well
scaling theory.
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(regularized) flow equations:

non-autonomous, non-homogeneous; matches TGFT on U(1)^d

12

�(µ
k

) =
1

Z

k

l

�

k

2��

�(µ
k

)� ⌘

k

µ

k

� (2� �)µ
k

,

�(�
k

) =
1

l

⇠

k

�

Z

2

k

�(�
k

)� 2⌘
k

�

k

� ��

k

, (48)

and inserts this in (46) to reach the following expressions:
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In order to make the non-compact limit regular, we must solve the system in the variables ⇠ and � by requiring that
the highest degree of divergence (highest negative power of l) is regularised and all the sub-leading infinities sent to
zero. This is achieved by solving, for any d � 3,

⇠ � 2�� (d� 1) = 0 . (50)

We make a natural choice � = 0 (thus implying that Z
k

is dimensionless), and obtain

(� = 0, ⇠ = d� 1) ) � = 5� d . (51)

The resulting system of equations for the theory is:
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which defines an autonomous system of coupled di↵erential equations describing the flow of dimensionless couplings
constants.

These equations hold for generic rank d. They could be solved at the same level of generality, in principle, but we
find more useful to specialise the analysis for various interesting choices of rank, so that the results can be reported
in more explicit terms. Specifically, we study the above system of equations when restricted to the first non-trivial
rank situations at d = 3, 4, 5. We will analyse the rank d = 3 in all details, and, will simply report the key results in
higher ranks d = 4, 5.



FRG analysis of a quartic abelian rank-d TGFT model
scaling of couplings:

We first apply the above procedure to a simple model of rank d of TGFT without
gauge projection and defined over R:
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The regularization goes through the compactification of R in U(1), where the
parameter l becomes the radius of the ring.

The key point in order to obtain a properly defined theory in the non-compact limit is
the correct definition of the scaling dimension for the couplings. We will tune this scaling
by extracting their canonical dimensions with both the parameters l and k and
performing the following ansatz:
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The parameters � and ⇠ will allow us to find out if this model may represent a well
scaling theory.
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most divergent contributions finite for:

. . . and dimensionless

The highest degree of singularity in the limit l ! 0 of the above system is regularized
when:
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In the non-compact limit the system becomes autonomous.

This allows an identification of fixed points as real IR and UV fixed points with respect
to the cut-o↵.
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In the non-compact limit the system becomes autonomous.

This allows an identification of fixed points as real IR and UV fixed points with respect
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D. �-functions and RG flows

We introduce a regularisation as outlined in section III C, and write the regularised e↵ective action as:

�
k

[','] =

Z

D

⇤
[dp

i

]d
i=1

'

12...d

(Z
k

X

s

p

2

s

+ µ

k

)'
12...d

(45)

+
�

k

2

Z

D

⇤⇥2

[dp
i

]d
i=1

[dp0
j

]d
j=1



'

12...d

'

1

0
2...d

'

1

0
2

0
...d

0
'

12

0
...d

0 + sym
n

1, 2, . . . , d
o

�

.

We can study the Wetterich equation corresponding to the action (45), incorporating a dependence on the volume in
the coupling constants, and perform a thermodynamic limit at the end of the computation to extract the coe�cients
valid in the non-compact case.

The set of �-functions that we obtain from the discretised model is4:
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It must be stressed that the coe�cients appearing in (46) are computed with integrals like in the continuous setup.
This is however not an issue, once the volume dependence has been factored out, the order of taking the limit and
performing the integral does not matter.

Some interesting features of the system (46) must be stressed. At this intermediate step (the limit lim
l!0

still
has to be taken), this is a non-autonomous system and it involves terms of di↵erent powers in the cut-o↵ k (we
refer to this feature as “non-homogeneity” in k). Non-autonomous systems are known to occur in other contexts, for
example quantum field theory at finite temperature [54], or on a curved [61] and non-commutative spacetime [62]. The
non-homogeneity in k of the system signals the presence of an external scale, for the system; here, the radius of the
compactified configuration space. The specific form of the terms appearing in this case is an e↵ect of the particular
combinatorics of the vertices of the theory which, after di↵erentiation, yields 1PI 2-point function with terms with
di↵erent volume contributions. If the l parameter is kept finite, we see two di↵erent system arising in the UV and
IR limits, coming from di↵erent leading terms. Such a feature has been found in previous work [34] and both the
two limits and the intermediate regime investigated. In the two limits one can compute the analogue of fixed points,
which however cannot be straightforwardly interpreted as such.

On the other hand, if one tries to proceed in the usual way, extracting the dimensions of the coupling constants
using one parameter (k or l), one obtains a set of �-functions which are either trivial or still divergent in the limit.
Hence, in the end the non-local combinatorics of the TGFT interactions requires a drastic revision of conventional
procedures of local QFTs. As we now show the correct way of proceeding in the TGFT case requires taking advantage
of the presence of both the two parameters (k, l), when defining the scaling of the couplings.

To make sense of the above system, consider the following ansatz:
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] = 0, ['] = �d+2

2

and ⇠+ � = 4. We look for the scaling of dimensionless coupling constants,
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Important steps of the calculation are detailed in appendix A

(regularized) flow equations:
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and inserts this in (46) to reach the following expressions:
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In order to make the non-compact limit regular, we must solve the system in the variables ⇠ and � by requiring that
the highest degree of divergence (highest negative power of l) is regularised and all the sub-leading infinities sent to
zero. This is achieved by solving, for any d � 3,

⇠ � 2�� (d� 1) = 0 . (50)

We make a natural choice � = 0 (thus implying that Z
k

is dimensionless), and obtain

(� = 0, ⇠ = d� 1) ) � = 5� d . (51)

The resulting system of equations for the theory is:
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which defines an autonomous system of coupled di↵erential equations describing the flow of dimensionless couplings
constants.

These equations hold for generic rank d. They could be solved at the same level of generality, in principle, but we
find more useful to specialise the analysis for various interesting choices of rank, so that the results can be reported
in more explicit terms. Specifically, we study the above system of equations when restricted to the first non-trivial
rank situations at d = 3, 4, 5. We will analyse the rank d = 3 in all details, and, will simply report the key results in
higher ranks d = 4, 5.



FRG analysis of a quartic abelian rank-d TGFT model
scaling of couplings:

We first apply the above procedure to a simple model of rank d of TGFT without
gauge projection and defined over R:
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The regularization goes through the compactification of R in U(1), where the
parameter l becomes the radius of the ring.

The key point in order to obtain a properly defined theory in the non-compact limit is
the correct definition of the scaling dimension for the couplings. We will tune this scaling
by extracting their canonical dimensions with both the parameters l and k and
performing the following ansatz:
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The parameters � and ⇠ will allow us to find out if this model may represent a well
scaling theory.
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most divergent contributions finite for:

. . . and dimensionless

The highest degree of singularity in the limit l ! 0 of the above system is regularized
when:
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Defining the anomalous dimension as ⌘
k

= @
t

logZ
k

one sees that the parameter �
can be absorbed in a redefinition of ⌘

k

. Defining ⌘0
k

= ⌘
k

� �:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

⌘
k

=
2⇡

d�1
2

�
E

⇣

d�1
2

⌘

�
k

(1 + µ
k

)2

h ⌘
k

d � 1
+ 1

i

�(µ
k

) =
�2d ⇡

d�1
2

�
E

⇣

d+1
2

⌘

�
k

(1 + µ
k

)2

h ⌘
k

d + 1
+ 1

i

� ⌘
k

µ
k

� 2µ
k

�(�
k

) =
4⇡

d�1
2

�
E

⇣

d+1
2

⌘

�
2
k

(1 + µ
k

)3

h ⌘
k

d + 1
+ 1

i

� 2⌘
k

�
k

� (5� d)�
k

(17)

In the non-compact limit the system becomes autonomous.

This allows an identification of fixed points as real IR and UV fixed points with respect
to the cut-o↵.
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We can study the Wetterich equation corresponding to the action (45), incorporating a dependence on the volume in
the coupling constants, and perform a thermodynamic limit at the end of the computation to extract the coe�cients
valid in the non-compact case.
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It must be stressed that the coe�cients appearing in (46) are computed with integrals like in the continuous setup.
This is however not an issue, once the volume dependence has been factored out, the order of taking the limit and
performing the integral does not matter.

Some interesting features of the system (46) must be stressed. At this intermediate step (the limit lim
l!0

still
has to be taken), this is a non-autonomous system and it involves terms of di↵erent powers in the cut-o↵ k (we
refer to this feature as “non-homogeneity” in k). Non-autonomous systems are known to occur in other contexts, for
example quantum field theory at finite temperature [54], or on a curved [61] and non-commutative spacetime [62]. The
non-homogeneity in k of the system signals the presence of an external scale, for the system; here, the radius of the
compactified configuration space. The specific form of the terms appearing in this case is an e↵ect of the particular
combinatorics of the vertices of the theory which, after di↵erentiation, yields 1PI 2-point function with terms with
di↵erent volume contributions. If the l parameter is kept finite, we see two di↵erent system arising in the UV and
IR limits, coming from di↵erent leading terms. Such a feature has been found in previous work [34] and both the
two limits and the intermediate regime investigated. In the two limits one can compute the analogue of fixed points,
which however cannot be straightforwardly interpreted as such.

On the other hand, if one tries to proceed in the usual way, extracting the dimensions of the coupling constants
using one parameter (k or l), one obtains a set of �-functions which are either trivial or still divergent in the limit.
Hence, in the end the non-local combinatorics of the TGFT interactions requires a drastic revision of conventional
procedures of local QFTs. As we now show the correct way of proceeding in the TGFT case requires taking advantage
of the presence of both the two parameters (k, l), when defining the scaling of the couplings.

To make sense of the above system, consider the following ansatz:

Z

k

= Z

k

l

�

k

��

, µ
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k

l

�

k

2��

, �
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= �
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⇠
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�

, (47)

where [Z
k

] = [µ
k

] = [�
k

] = 0, ['] = �d+2

2

and ⇠+ � = 4. We look for the scaling of dimensionless coupling constants,

i.e. for dimensionless �-functions. From (47), and using the convention ⌘

k

= @

t

lnZ
k

, one finds:

⌘

k

=
1

Z

k

�(Z
k

) =
1

Z

k

�(Z
k

) + � ,

4
Important steps of the calculation are detailed in appendix A

(regularized) flow equations:

non-autonomous, non-homogeneous; matches TGFT on U(1)^d
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, (48)

and inserts this in (46) to reach the following expressions:
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In order to make the non-compact limit regular, we must solve the system in the variables ⇠ and � by requiring that
the highest degree of divergence (highest negative power of l) is regularised and all the sub-leading infinities sent to
zero. This is achieved by solving, for any d � 3,

⇠ � 2�� (d� 1) = 0 . (50)

We make a natural choice � = 0 (thus implying that Z
k

is dimensionless), and obtain

(� = 0, ⇠ = d� 1) ) � = 5� d . (51)

The resulting system of equations for the theory is:
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which defines an autonomous system of coupled di↵erential equations describing the flow of dimensionless couplings
constants.

These equations hold for generic rank d. They could be solved at the same level of generality, in principle, but we
find more useful to specialise the analysis for various interesting choices of rank, so that the results can be reported
in more explicit terms. Specifically, we study the above system of equations when restricted to the first non-trivial
rank situations at d = 3, 4, 5. We will analyse the rank d = 3 in all details, and, will simply report the key results in
higher ranks d = 4, 5.

now can take thermodynamic limit



. . . and dimensionless

The highest degree of singularity in the limit l ! 0 of the above system is regularized
when:

⇠ = 2�+ (d � 1) . (16)

Defining the anomalous dimension as ⌘
k

= @
t

logZ
k

one sees that the parameter �
can be absorbed in a redefinition of ⌘

k

. Defining ⌘0
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= ⌘
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8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

⌘
k

=
2⇡

d�1
2

�
E

⇣

d�1
2

⌘

�
k

(1 + µ
k

)2

h ⌘
k

d � 1
+ 1

i

�(µ
k

) =
�2d ⇡

d�1
2

�
E

⇣

d+1
2

⌘

�
k

(1 + µ
k

)2

h ⌘
k

d + 1
+ 1

i

� ⌘
k

µ
k

� 2µ
k

�(�
k

) =
4⇡

d�1
2

�
E

⇣

d+1
2

⌘

�
2
k

(1 + µ
k

)3

h ⌘
k

d + 1
+ 1

i

� 2⌘
k

�
k

� (5� d)�
k

(17)

In the non-compact limit the system becomes autonomous.

This allows an identification of fixed points as real IR and UV fixed points with respect
to the cut-o↵.
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In the non-compact limit the system becomes autonomous.

This allows an identification of fixed points as real IR and UV fixed points with respect
to the cut-o↵.
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we find, in addition to the Gaussian fixed-point, the following NGFPs:

4

P

1

= 10�1(�6.402, 0.058) ,
4

P

2

= (1.612,�0.496482) ,
4

P

3

= 10�1(�8.452, 0.112) . (62)

As in the case d = 3, the fixed point
4

P

3

lies beyond the singularity. The eigenvalues and eigenvectors in the vicinity
of the GFP and of

4

P

1

and
4

P

2

are given in the following table

GFP
4 4

✓

+

0

= �2 for
4

v

+

0

= (1, 0) (63)

GFP
4 4

✓

�
0

= �1 for
4

v

�
0

= (�32⇡

3
, 1) (64)

4

P

1 4

✓

11

⇠ 7.899 for
4

v

11

⇠ 10�1(10,�0.106) (65)

4

P

1 4

✓

12

⇠ �1.570 for
4

v

12

⇠ 10�1(10, 0.279), (66)

4

P

2 4

✓

21

⇠ �3.082 for
4

v

21

⇠ 10�1(�10, 0.521) (67)

4

P

2 4

✓

22

⇠ 0.439 for
4

v

22

⇠ 10�1(8.193,�5.733). (68)

Negative eigenvalues at the vicinity of the GFP shows that its eigendirections are all relevant. The NGFPs have a
relevant and an irrelevant direction.

0.000 0.005 0.010 0.015 0.020

-0.8

-0.6

-0.4

-0.2

0.0

λN

μN

FIG. 6. Flow at rank d = 4 (left) and 5 (right).

In rank d = 5, on the other hand, the system (52) specialises as
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Here, along with the GFP, we identify two NGFPs as

5

P

1

=
⇣�23 +

p
34

33
,

4(191� 4
p
34)

11979⇡2

⌘

= 10�1(�5.202, 0.056) ,
5

P

2

= 10�1(�8.736, 0.072) . (70)

Again, one of them,
5

P

2

, is beyond the singularity so we will skip its analysis. We list eigenvalues and eigenvectors in
the vicinity of the GFP and

5

P

1

as follows:

GFP
5 5

✓

+

0

= �2 for
5

v

+

0

= (1, 0) (71)

GFP
5 5

✓

�
0

= 0 for
5

v

�
0

= (�5⇡2

2
, 1) (72)

5

P

1 5

✓

1

⇠ 2.947 for
5

v

1

⇠ (�249.652, 1) (73)

5

P

1 5

✓

2

⇠ �0.843 for
5

v

2

⇠ (66.431, 1). (74)
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FIG. 5. Flow of the theory. The red and blue lines represent respectively the zeros of �(µk) and �(�k), the brown arrows are
the eigenperturbations of the non-Gaussian fixed points (represented in black), and the green ones those of the Gaussian fixed
point (in red). Arrows point in the UV direction. The thick black line is the singularity of the flow.

large river e↵ect [52]. This signifies that all the RG trajectories in a neighbourhood of these eigendirections get closer
and closer to them while pointing in the UV. This e↵ect shows a splitting of the space of coupling in two regions not
connected by any RG trajectory. Thus, the relevant directions for the Gaussian fixed point reflect the properties of a
critical surface and suggest the presence of phase transitions in the model. In the �

k

> 0 plane, the flow is similar to
the one of standard local scalar field theory in a neighbourhood of the Wilson-Fisher fixed point, but the presence of
a second non-Gaussian fixed point in the �

k

< 0 plane makes the theory quite di↵erent. Nevertheless, the properties
of this second NGFP are basically the same as the former one.

In this context, therefore, we do have strong hint of a phase transition with two phases: a symmetric and a
broken one. The spontaneous symmetry breaking would happen while crossing the critical surface, generating a
condensed state of the TGFT field (non-zero expectation value of the field operator). This is interesting from a
physical perspective, because, in more involved models defined in a simplicial gravity or LQG context, this kind
of phase transition has been suggested to relate to the emergence of a geometric spacetime from the theory [12],
and the corresponding condensate states have been shown to admit a cosmological interpretation [44]. To confirm
this condensate interpretation of the broken phase, one should change parametrisation for the e↵ective potential
and study the theory around the new (degenerate) ground state solving the equation of motion in the saddle point
approximation. This (complicated) analysis of our TGFT model is left for future work. Here we only notice that, in
the constant modes approximation, which forgets about the peculiar combinatorial non-locality of our interactions,
and whose results should therefore be taken with great care, we find and algebraic equation of Ginsburg-Landau type
for a �

4 scalar complex theory, which indeed describe this type of condensate phase transitions.

F. Rank d = 4, 5

We now give a streamlined analysis of the flow in the case of rank d = 4, which is very similar to the case d = 3,
and the rank d = 5 which share similarities but also a few di↵erences that we will list.

Writing the system in rank d = 4 as
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(61)

d=3 d=4

FRG analysis of a quartic abelian rank-d TGFT model
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The highest degree of singularity in the limit l ! 0 of the above system is regularized
when:

⇠ = 2�+ (d � 1) . (16)

Defining the anomalous dimension as ⌘
k

= @
t

logZ
k

one sees that the parameter �
can be absorbed in a redefinition of ⌘

k

. Defining ⌘0
k

= ⌘
k

� �:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

⌘
k

=
2⇡

d�1
2

�
E

⇣

d�1
2

⌘

�
k

(1 + µ
k

)2

h ⌘
k

d � 1
+ 1

i

�(µ
k

) =
�2d ⇡

d�1
2

�
E

⇣

d+1
2

⌘

�
k

(1 + µ
k

)2

h ⌘
k

d + 1
+ 1

i

� ⌘
k

µ
k

� 2µ
k

�(�
k

) =
4⇡

d�1
2

�
E

⇣

d+1
2

⌘

�
2
k

(1 + µ
k

)3

h ⌘
k

d + 1
+ 1

i

� 2⌘
k

�
k

� (5� d)�
k

(17)

In the non-compact limit the system becomes autonomous.

This allows an identification of fixed points as real IR and UV fixed points with respect
to the cut-o↵.

Riccardo Martini (UNIBO) FRG for TGFT March 14, 2016 23 / 32

flow equations for couplings:

autonomous, 

still non-homogeneous

general features independent of rank-d:

Gaussian-UV FP, Wilson-Fisher-IR FP 
asymptotic freedom
one symmetric phase
one broken or condensate phase
2nd non-G IR FP at negative coupling
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we find, in addition to the Gaussian fixed-point, the following NGFPs:
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= (1.612,�0.496482) ,
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As in the case d = 3, the fixed point
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lies beyond the singularity. The eigenvalues and eigenvectors in the vicinity
of the GFP and of
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and
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are given in the following table
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Negative eigenvalues at the vicinity of the GFP shows that its eigendirections are all relevant. The NGFPs have a
relevant and an irrelevant direction.
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FIG. 6. Flow at rank d = 4 (left) and 5 (right).

In rank d = 5, on the other hand, the system (52) specialises as
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Here, along with the GFP, we identify two NGFPs as
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= 10�1(�8.736, 0.072) . (70)

Again, one of them,
5

P

2

, is beyond the singularity so we will skip its analysis. We list eigenvalues and eigenvectors in
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FIG. 5. Flow of the theory. The red and blue lines represent respectively the zeros of �(µk) and �(�k), the brown arrows are
the eigenperturbations of the non-Gaussian fixed points (represented in black), and the green ones those of the Gaussian fixed
point (in red). Arrows point in the UV direction. The thick black line is the singularity of the flow.

large river e↵ect [52]. This signifies that all the RG trajectories in a neighbourhood of these eigendirections get closer
and closer to them while pointing in the UV. This e↵ect shows a splitting of the space of coupling in two regions not
connected by any RG trajectory. Thus, the relevant directions for the Gaussian fixed point reflect the properties of a
critical surface and suggest the presence of phase transitions in the model. In the �

k

> 0 plane, the flow is similar to
the one of standard local scalar field theory in a neighbourhood of the Wilson-Fisher fixed point, but the presence of
a second non-Gaussian fixed point in the �

k

< 0 plane makes the theory quite di↵erent. Nevertheless, the properties
of this second NGFP are basically the same as the former one.

In this context, therefore, we do have strong hint of a phase transition with two phases: a symmetric and a
broken one. The spontaneous symmetry breaking would happen while crossing the critical surface, generating a
condensed state of the TGFT field (non-zero expectation value of the field operator). This is interesting from a
physical perspective, because, in more involved models defined in a simplicial gravity or LQG context, this kind
of phase transition has been suggested to relate to the emergence of a geometric spacetime from the theory [12],
and the corresponding condensate states have been shown to admit a cosmological interpretation [44]. To confirm
this condensate interpretation of the broken phase, one should change parametrisation for the e↵ective potential
and study the theory around the new (degenerate) ground state solving the equation of motion in the saddle point
approximation. This (complicated) analysis of our TGFT model is left for future work. Here we only notice that, in
the constant modes approximation, which forgets about the peculiar combinatorial non-locality of our interactions,
and whose results should therefore be taken with great care, we find and algebraic equation of Ginsburg-Landau type
for a �

4 scalar complex theory, which indeed describe this type of condensate phase transitions.

F. Rank d = 4, 5

We now give a streamlined analysis of the flow in the case of rank d = 4, which is very similar to the case d = 3,
and the rank d = 5 which share similarities but also a few di↵erences that we will list.

Writing the system in rank d = 4 as

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

⌘

k

=
4⇡

3

�

k

(1 + µ

k

)2
(⌘

k

+ 2)

�(µ
k

) =
�32⇡

3

�

k

(1 + µ

k

)2

h

⌘

k

5
+ 1

i

� ⌘

k

µ

k

� 2µ
k

�(�
k

) =
16⇡

3

�

2

k

(1 + µ

k

)3

h

⌘

k

5
+ 1

i

� 2⌘
k

�

k

� �

k

(61)

d=3 d=4

FRG analysis of a quartic abelian rank-d TGFT model



similar model with gauge invariance (imposed in both kinetic and interaction terms):

Non-perturbative analysis and gauge projection

In order to get a link with many quantum gravity models we add a new symmetry. We
require the fields to be invariant under translations along the diagonal direction of the
group.

The exact feature of the analysis requires a projection on both the kinetic and
interaction kernels:
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In this setting we choose a regulator kernel that reflects the same constraints imposed
on the kinetic term:
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�-functions

applying the same regularization scheme used with the previous model, we need to shift
again the anomalous dimension of a quantity �. We find:
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As a first result we notice that the presence of the constraints changes the value of the
scaling dimensions of the coupling �, recovering what was found in a perturbative
framework.

Furthermore, the system (??) turns out to be consistent with the results obtained by
Benedetti and Lahoche [arXiv:1508.06384v1].
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As a first result we notice that the presence of the constraints changes the value of the
scaling dimensions of the coupling �, recovering what was found in a perturbative
framework.

Furthermore, the system (??) turns out to be consistent with the results obtained by
Benedetti and Lahoche [arXiv:1508.06384v1].
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similar RG flow equations, different scaling dimensions of couplings:
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Both NGFPs have one relevant and one irrelevant directions. The analysis of perturbations around the fixed points
leads to the phase diagram and RG flow presented in Fig6. From the numerical integration, we observe that the
second eigendirection of the GFP is marginally relevant. We represent the phase diagram in Fig.6.
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FIG. 8. Flow of the gauged model at rank d = 4.

We see once more RG trajectories indicating asymptotic freedom in the UV, and the presence of a phase transition
between a symmetric and a broken phase in the IR.

E. Rank d = 6

Another interesting case to look at in more detail is the one for d = 6. For this rank, the model has one marginal
direction around the GFP as the scaling dimension of the coupling � vanishes. In this case, in fact, we can compare
our results directly with the ones obtained in [40]. This comparison has two aspects. At the regularised level, with
the system restricted to (six copies of) the compact domain S

1, we expect our RG equations to match the ones found
in [40], up to normalisations. This can indeed be verified, but we do not report on it. On the other hand, by studying
the RG flow in the thermodynamic limit, we will then be able to check how the phase diagram we obtain compares
with the limiting cases studied for the compact model, expecting a qualitative agreement with the results found there
in the UV approximation.

In rank d = 6, we have the following fixed points alongside the Gaussian fixed point:
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The GFP has one relevant (mass) direction, and one marginally relevant direction for positive �, which signals
asymptotic freedom. Notice that for negative � we do not expect the theory to be non-perturbatively well-defined.
On the other hand, the NGFP has a relevant and irrelevant direction and share a similar structure as the Wilson-
Fisher FP. The analysis of perturbations around the fixed points in this case, then, leads to the phase diagram and
RG flow presented in Fig.9. Same conclusions discussed so far hold again in the present rank 6.

d=4
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As a first result we notice that the presence of the constraints changes the value of the
scaling dimensions of the coupling �, recovering what was found in a perturbative
framework.

Furthermore, the system (??) turns out to be consistent with the results obtained by
Benedetti and Lahoche [arXiv:1508.06384v1].
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Both NGFPs have one relevant and one irrelevant directions. The analysis of perturbations around the fixed points
leads to the phase diagram and RG flow presented in Fig6. From the numerical integration, we observe that the
second eigendirection of the GFP is marginally relevant. We represent the phase diagram in Fig.6.
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We see once more RG trajectories indicating asymptotic freedom in the UV, and the presence of a phase transition
between a symmetric and a broken phase in the IR.

E. Rank d = 6

Another interesting case to look at in more detail is the one for d = 6. For this rank, the model has one marginal
direction around the GFP as the scaling dimension of the coupling � vanishes. In this case, in fact, we can compare
our results directly with the ones obtained in [40]. This comparison has two aspects. At the regularised level, with
the system restricted to (six copies of) the compact domain S

1, we expect our RG equations to match the ones found
in [40], up to normalisations. This can indeed be verified, but we do not report on it. On the other hand, by studying
the RG flow in the thermodynamic limit, we will then be able to check how the phase diagram we obtain compares
with the limiting cases studied for the compact model, expecting a qualitative agreement with the results found there
in the UV approximation.

In rank d = 6, we have the following fixed points alongside the Gaussian fixed point:

6

P± =
⇣ 1

234
(�175±

p
1141),

p
5
�

43309⌥ 79
p
1141

�

1067742⇡2

⌘

(114)

The NGFP
6

P� is below the singularity. We focus on the Gaussian FP and
6

P

+

which gives

GFP
6 6

✓

0

= �2 for
6

v

+

0

= (1, 0), (115)

GFP
6 6

✓

0

= �2 for
6

v

�
0

= (�3⇡2

p
5
, 1), (116)

6

P

+ 6

✓

1

⇠ 4.859 for
6

v

1

⇠ (�185.549, 1), (117)

6

P

+ 6

✓

2

⇠ �0.9 for
6

v

2

⇠ 10�1(31.289, 1). (118)

The GFP has one relevant (mass) direction, and one marginally relevant direction for positive �, which signals
asymptotic freedom. Notice that for negative � we do not expect the theory to be non-perturbatively well-defined.
On the other hand, the NGFP has a relevant and irrelevant direction and share a similar structure as the Wilson-
Fisher FP. The analysis of perturbations around the fixed points in this case, then, leads to the phase diagram and
RG flow presented in Fig.9. Same conclusions discussed so far hold again in the present rank 6.

d=4

again, general features independent of rank-d:
Gaussian-UV FP (asymptotic freedom), Wilson-Fisher-IR FP 
symmetric phase + broken or condensate phase
2nd non-G IR FP at negative coupling
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Part IV: 
effective continuum physics from 

GFTs



Quantum spacetime:  
the difficult path from microstructure to cosmology

the issue:

identify relevant phase for effective continuum geometry
extract effective continuum dynamics and relate it to GR

is GR a good effective description of LQG/SF/GFT in some approximation (in one continuum phase)?
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derive effective (QG-inspired) models for fundamental (quantum) cosmology:
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also work by:

C. Rovelli, F. Vidotto (spin foam context); E. Alesci, F. Cianfrani (canonical LQG context); …..
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is GR a good effective description of LQG/SF/GFT in some approximation (in one continuum phase)?
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Cosmology as hydrodynamics of (quantum) spacetime
re-thinking the “Cosmological Principle”:

“every point is equivalent to any other” ~ homogeneity of space 

really means: a certain approximation is assumed valid:

universe is in state where inhomogeneities can be neglected, in relation to dynamics of homogeneous modes

~ universe is in state where effects on largest wavelengths of shorter wavelengths is negligible

~ can neglect wavelengths (much) shorter than scale factor 

very similar in spirit to hydrodynamic approximation:
dynamics of microscopic degrees of freedom can be neglected + effects of small wavelengths can be neglected

 
degrees of freedom of local region can describe whole of system (in a coarse grained, statistical sense)

i.e. whole universe (dynamics) well-approximated by local patch (dynamics)

cosmology is (non-linear) dynamics for such density and for geometric (global) observables computed from it

end result of (any) proper construction:

basic variable is “single-patch density” with arguments the geometric data of minisuperspace 



From Quantum Gravity to Cosmological hydrodynamics

key strategy:

coarse graining of QG configurations

coarse graining of QG (quantum) dynamics



From Quantum Gravity to Cosmological hydrodynamics

very difficult in general 
(see comparatively simpler problem of coarse graining classical GR)

(see also analogous problem in condensed matter theory)

key strategy:

coarse graining of QG configurations

coarse graining of QG (quantum) dynamics



From Quantum Gravity to Cosmological hydrodynamics

very difficult in general 
(see comparatively simpler problem of coarse graining classical GR)

(see also analogous problem in condensed matter theory)

key strategy:

coarse graining of QG configurations

coarse graining of QG (quantum) dynamics

one special case:

quantum condensates (BEC)

effective hydrodynamics directly read out of microscopic quantum dynamics (in simplest approximation)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3

e1

e2

• work with GFT with simplicial geometric interpretation   (A,B=0,1,2,3; i,j,k = 1,2,3)
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3

e1

e2

• work with GFT with simplicial geometric interpretation   (A,B=0,1,2,3; i,j,k = 1,2,3)
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:
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where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:
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By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]
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of N tetrahedra with bivectors BI(m) associated to the
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{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors
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to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
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gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•    from B’s of each GFT quantum, 
construct:

2

More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the
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(1)
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�
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This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):
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as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,
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In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-
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interpretation: spatial metric coefficients (and conjugate variables) “sampled” at N points

BI(m) $ gij(xm) $ ai(xm) gI(m) $ Kij(xm) $ pai(xm)



Homogeneous geometries & GFT condensates



Homogeneous geometries & GFT condensates

•     lift homogeneity criterion to quantum level (and include conjugate information):



Homogeneous geometries & GFT condensates

•     lift homogeneity criterion to quantum level (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

 
�
Bi(1), ...., Bi(N)

�
=

1
N !

NY

m=1

�(Bi(m))



Homogeneous geometries & GFT condensates

•     lift homogeneity criterion to quantum level (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

 
�
Bi(1), ...., Bi(N)

�
=

1
N !

NY

m=1

�(Bi(m))

•    in GFT: such states can be expressed in 2nd quantized language and 

one can consider superpositions of states of arbitrary N



Homogeneous geometries & GFT condensates

•     lift homogeneity criterion to quantum level (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

 
�
Bi(1), ...., Bi(N)

�
=

1
N !

NY

m=1

�(Bi(m))

•    in GFT: such states can be expressed in 2nd quantized language and 

one can consider superpositions of states of arbitrary N

•    sending N to infinity means improving arbitrarily the accuracy of the sampling



Homogeneous geometries & GFT condensates

•     lift homogeneity criterion to quantum level (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

 
�
Bi(1), ...., Bi(N)

�
=

1
N !

NY

m=1

�(Bi(m))

•    in GFT: such states can be expressed in 2nd quantized language and 

one can consider superpositions of states of arbitrary N

•    sending N to infinity means improving arbitrarily the accuracy of the sampling

quantum GFT condensates are continuum homogeneous (quantum) spaces



Homogeneous geometries & GFT condensates

•     lift homogeneity criterion to quantum level (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

 
�
Bi(1), ...., Bi(N)

�
=

1
N !

NY

m=1

�(Bi(m))

•    in GFT: such states can be expressed in 2nd quantized language and 

one can consider superpositions of states of arbitrary N

•    sending N to infinity means improving arbitrarily the accuracy of the sampling

quantum GFT condensates are continuum homogeneous (quantum) spaces

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=
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if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
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where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
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|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:
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Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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I
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
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�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

•  simplest
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
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⇥
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
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I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
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⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
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I) + ⇥

�V̂5

�⇧̂(gI)
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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•  simplest
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superposition of infinitely 
many SN dofs

no perturbative (spin foam) expansion -
 infinite superposition of SF amplitudes
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2
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d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:
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⇥
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leading to the quantum equation of motion
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d4g⇥ K̂(gI , g
⇥
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⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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Emergent bouncing cosmology from full QG

• coupling of free massless scalar field (+ truncation at lowest order ~ slowly varying field)

GFT with a Scalar Field

A matter field is needed for cosmology. A scalar field can be added to
GFTs via

'̂(g
v

) ! '̂(g
v

,�).

From a spin foam perspective, it is reasonable to discretize the scalar
field on chunks of 4D space-time, or at the vertices of the
two-complex dual to the discretization of the space-time.

This means that the interaction term in the GFT action must include
delta functions so all � have the same value at the vertex. Clearly,
the gradients of � will be encoded in the propagator of the GFT.

Furthermore, if we assume � is massless and minimally coupled to
gravity, the symmetries � ! �+ const and � ! �� require

K2(gv1 , gv2 ,�1,�2) = K2(gv1 , gv2 , (�1 � �2)
2),

V5(gv
a

,�
a

) = V5(gv
a

)
Y

�(�
a

� �1).
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• reduction to isotropic condensate configurations (depending on single spin variable j):

Condensate States

A simple family of condensate states are the Gross-Pitaevskii
condensate states, i.e., coherent states of the GFT field operator
which are, up to a numerical prefactor, [Gielen, Oriti, Sindoni]

|�i ⇠ exp

✓Z
dg

v

d� �(g
v

,�)�̂†(g
v

,�)

◆
|0i,

where �(g
v

,�) is the condensate wave function. Note that �(g
v

,�)
is not normalized; rather, its norm gives the number of fundamental
GFT quanta.

Importantly, the massless scalar field can be used as a relational
clock: �(g

v

,�
o

) can be understood as the condensate wave function
evaluated at the ‘time’ �

o

.

Thus, imposing the quantum equations of motion on |�i will give
relational dynamics with respect to �.

E. Wilson-Ewing (AEI) GFT Cosmology February 15, 2016 11 / 21

Relational Dynamics

We expect the condensate state to only be an approximate solution
to the quantum equations of motion. So, we will only impose the
first Schwinger-Dyson equation [Gielen, Oriti, Sindoni],

h�|
c�S
�'̄

|�i = 0.

Since we are neglecting connectivity, and only considering equilateral
spin network nodes, �(g

v

,�) ! �
j

(�) since for each j only one
equilateral spin network node exists.

Imposing the first Schwinger-Dyson equation on |�i gives the
non-linear equation (assuming a GFT action based on EPRL)

@2
��j

(�)�m

2
j

�
j

(�) + w

j

�̄
j

(�)4 = 0,

where the numerical values of the m

2
j

⇠ K

(0)
2 /K (2)

2 and w

j

⇠ V5/K
(2)
2

depend on the details of the GFT action.
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models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)

K =
X

j,m,◆

Z
d�1d�2


'̄
j

v1 ,◆1
m

v1
(�1) '

j

v2 ,◆2
m

v2
(�2)

⇥K
j

v1 ,jv2 ,◆1,◆2
m

v1 ,mv2
((�1 � �2)

2)

�
, (3)

while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
tive expansion in � in the field variable '

j

v2 ,◆2
m

v2
(�2) around

�2 = �1 = �, giving

K =
1X

n=0

X

j,m,◆

Z
d� '̄

j

v1 ,◆1
m

v1
(�)'

j

v2 ,◆2
m

v2
(�)(K(2n))j,◆

m

, (4)

where the notation on Kj,◆

m

has been compressed, and

(K(2n))j,◆
m

=

Z
du

u2n

(2n)!
Kj,◆

m

(u2). (5)

In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply

c�S
�'̄

| i = 0, (6)

together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states

|�i = e�k�k2
/2 exp

0

@
X

j,m,◆

�j

v

,◆

m

v

(�)('̂†)jv,◆
m

v

(�)

1

A |0i, (7)

where �j

v

,◆

m

v

(�) is the condensate wave function and
k�k2 =

R
d� k�(�)k2. An important point here is that

the condensate wave function is not normalized: rather
the norm of �j

v

,◆

m

v

(�),

k�(�)k2 =
X

j,m,◆

|�j

v

,◆

m

v

(�)|2, (8)

is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,

�j

v

,◆

m

v

(�) = Cj

v

,◆

m

v

· �
j

(�), (9)

where the Cj

v

,◆

m

v

are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �

j

(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:

h�|
c�S
�'̄

|�i = 0, (10)

which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
gives the equation of motion for the �

j

(�)

A
j

@2
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�
j

(�)�B
j

�
j

(�) + w
j

�̄
j

(�)4 = 0. (11)

It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A

j

2

functions A, B, w define the details of the EPRL model

• effective condensate hydrodynamics (non-linear quantum cosmology):
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gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states
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is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,
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are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �
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(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:
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which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
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It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A
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Finally, using (70), the remaining equation of motion (68) can be rewritten as
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and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
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quanta are the same.
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quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
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to play a less important role since the only relevant geometric observables are the spatial
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term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply
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As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.
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model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states
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logical dynamics from this condensate state. Here A
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consistent with simple approximation of vacuum state)

• two (approximately) conserved quantities (per mode):

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A
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. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
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(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �
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0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w
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(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
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In addition, in the regime in which the interaction term is small (which is necessary for
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Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂
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(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.

33

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A

j

, B
j

and w
j

. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
j

(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �

j,j

0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w

j

�
j

(�)4 rather
than ⇠ w

jklmn

�
k

(�)�
l

(�)�
m

(�)�
n

(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of S

j

, it is obvious that there is a conserved quantity for every j, the
‘energy’ E

j

of the condensate wave function �
j

(�) with respect to the relational time �,

E
j

= A
j

|@
�

�
j

(�)|2 � B
j

|�
j

(�)|2 + 2

5
Re

�
w

j

�
j

(�)5
�
. (63)

In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Q

j

related to the symmetry
�
j

(�) ! ei↵�
j

(�) emerges as another conserved quantity

Q
j

= � i

2

h
�̄
j

(�)@
�

�
j

(�)� �
j

(�)@
�

�̄
j

(�)
i
. (64)

Note that, following from the definition of the momentum of the massless scalar field, it is
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non-zero at all times (for non-zero Q
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). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
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clock here and can be interpreted as ‘time’. This will
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interaction terms sub-dominant (dilute-gas approx., 
consistent with simple approximation of vacuum state)

• two (approximately) conserved quantities (per mode):

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A
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their form by requiring that the Friedmann equation be recovered in an appropriate semi-
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five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w
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motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
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In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Q
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Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂
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(�)|�i = ~
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and therefore ⇡
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= h�|⇡̂
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(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.
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At this point, it is convenient to separate �
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(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
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f(�). Then, in terms of ⇢
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and ✓
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, the equation of motion (66) splits into a real
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The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2
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is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),
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Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,

E
j

⇡ (⇢0
j

)2 + ⇢2
j

(✓0
j

)2 �m2
j

⇢2. (71)

Finally, using (70), the remaining equation of motion (68) can be rewritten as
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⇡ 0, (72)

and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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The equation
@⇡

�

@�
= 0 (65)

is exactly the continuity equation in cosmology, for the case of a massless scalar field. This
is a particularly simple example of how the large-scale, coarse-grained e↵ective dynamics
can be extracted from the GFT quantum equations of motion for condensate states. This
result is also a first confirmation of the consistency of the identification of the GFT
condensate state and an emergent FLRW space-time geometry.

Note that the condition that the interactions be subdominant is required in order to
recover the continuity equation for the isotropic condensate state and, as we will show, the
Friedmann equations. While this is to some extent only a technical restriction to a regime
where simple condensate states can be trusted, it is not unreasonable from a physical point
of view. One expects that generic interactions would generate correlations between GFT
quanta, and there is no reason to expect these to respect any homogeneity condition, but
rather to produce inhomogeneities both the microscopic and macroscopic level. And when
inhomogeneities are included in cosmology (even at linear order) the continuity equation
is modified. Note that the heuristic arguments above do not necessarily imply that GFT
non-linearities at the level of the hydrodynamic equation encode inhomogeneities (as
has been suggested in [86]), but this is an interesting hypothesis to explore, especially
considering how similar equations (again inspired by BEC theory) have been obtained as
an e↵ective description of inhomogeneities in a non-linear extension of (loop) quantum
cosmology [85].

For the remainder of this paper, we will only consider the limit where the interaction
term is much smaller than the linear terms. This is not because the non-linear case is
di�cult to solve (in fact, for the simple condensate equations of motion considered here,
it is relatively straightforward to study the dynamics of the condensate wave function
even in the presence of the non-linear term) but rather because in that limit the Gross-
Pitaevskii approximation is expected to fail, in the sense that it cannot be justified from a
microscopic point of view since the simple condensate state we use here cannot be expected
to be a good approximation to a realistic vacuum of the theory, and it is necessary to
consider more complex condensate states than (39).

Therefore, we will study the regime where |�
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(�)| is su�ciently small so that the
interaction term is subdominant, but at the same time not so small that the hydrodynamic
approximation ceases to make sense: after all,
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• key relational observables (expectation values in condensate state) with scalar field as clock:

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)
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while the potential V [', '̄] encodes the vertex amplitude,
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In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply
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together with the conjugate of this equation.
As with any interacting field theory, it is not possible
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particular formulation given by GFT, however, allows us
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least for a restricted set of observables. The restriction to
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which the wave functions associated to the each of the
quanta are the same.
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model such cosmological states, including an arbitrary
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is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,
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are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �
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(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:
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which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
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developed one for 4D Lorentzian quantum gravity), (10)
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It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A

j
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interaction terms sub-dominant (dilute-gas approx., 
consistent with simple approximation of vacuum state)

• two (approximately) conserved quantities (per mode):

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A
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, B
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and w
j

. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
j

(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �

j,j

0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w
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(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of S
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, it is obvious that there is a conserved quantity for every j, the
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of the condensate wave function �
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In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Q
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related to the symmetry
�
j

(�) ! ei↵�
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(�) emerges as another conserved quantity
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Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂

�

(�)|�i = ~
P

j

Q
j

and therefore ⇡
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= h�|⇡̂
�

(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.
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At this point, it is convenient to separate �
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(�) into its modulus and phase,
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with ⇢
j

(�) and ✓
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(�) both assumed to be real, and ⇢
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(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @
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f(�). Then, in terms of ⇢
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and ✓
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, the equation of motion (66) splits into a real
and an imaginary part, which are respectively
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The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2

j

✓0
j

is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),
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Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,
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Finally, using (70), the remaining equation of motion (68) can be rewritten as
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j

⇡ 0, (72)

and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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is exactly the continuity equation in cosmology, for the case of a massless scalar field. This
is a particularly simple example of how the large-scale, coarse-grained e↵ective dynamics
can be extracted from the GFT quantum equations of motion for condensate states. This
result is also a first confirmation of the consistency of the identification of the GFT
condensate state and an emergent FLRW space-time geometry.

Note that the condition that the interactions be subdominant is required in order to
recover the continuity equation for the isotropic condensate state and, as we will show, the
Friedmann equations. While this is to some extent only a technical restriction to a regime
where simple condensate states can be trusted, it is not unreasonable from a physical point
of view. One expects that generic interactions would generate correlations between GFT
quanta, and there is no reason to expect these to respect any homogeneity condition, but
rather to produce inhomogeneities both the microscopic and macroscopic level. And when
inhomogeneities are included in cosmology (even at linear order) the continuity equation
is modified. Note that the heuristic arguments above do not necessarily imply that GFT
non-linearities at the level of the hydrodynamic equation encode inhomogeneities (as
has been suggested in [86]), but this is an interesting hypothesis to explore, especially
considering how similar equations (again inspired by BEC theory) have been obtained as
an e↵ective description of inhomogeneities in a non-linear extension of (loop) quantum
cosmology [85].

For the remainder of this paper, we will only consider the limit where the interaction
term is much smaller than the linear terms. This is not because the non-linear case is
di�cult to solve (in fact, for the simple condensate equations of motion considered here,
it is relatively straightforward to study the dynamics of the condensate wave function
even in the presence of the non-linear term) but rather because in that limit the Gross-
Pitaevskii approximation is expected to fail, in the sense that it cannot be justified from a
microscopic point of view since the simple condensate state we use here cannot be expected
to be a good approximation to a realistic vacuum of the theory, and it is necessary to
consider more complex condensate states than (39).

Therefore, we will study the regime where |�
j

(�)| is su�ciently small so that the
interaction term is subdominant, but at the same time not so small that the hydrodynamic
approximation ceases to make sense: after all,

P
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j

(�)|2 corresponds to the average
number of GFT quanta at the relational time �, and a large number of quanta is necessary
for the hydrodynamic approximation to be valid. In this regime, the equation of motion
for �
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(�) reduces to
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• key relational observables (expectation values in condensate state) with scalar field as clock:

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)
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while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
tive expansion in � in the field variable '
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In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply
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together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states
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is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,
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are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �

j

(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:
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which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
gives the equation of motion for the �

j

(�)

A
j

@2
�

�
j

(�)�B
j

�
j

(�) + w
j

�̄
j

(�)4 = 0. (11)

It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A

j

2

interaction terms sub-dominant (dilute-gas approx., 
consistent with simple approximation of vacuum state)

• two (approximately) conserved quantities (per mode):

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A
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, B
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and w
j

. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
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(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �

j,j

0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w
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(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of S
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, it is obvious that there is a conserved quantity for every j, the
‘energy’ E
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of the condensate wave function �
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In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Q
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related to the symmetry
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(�) emerges as another conserved quantity
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Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂

�

(�)|�i = ~
P

j

Q
j

and therefore ⇡
�

= h�|⇡̂
�

(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.

33

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A

j

, B
j

and w
j

. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
j

(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �

j,j

0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w

j

�
j

(�)4 rather
than ⇠ w

jklmn

�
k

(�)�
l

(�)�
m

(�)�
n

(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of S

j

, it is obvious that there is a conserved quantity for every j, the
‘energy’ E

j

of the condensate wave function �
j

(�) with respect to the relational time �,

E
j

= A
j

|@
�

�
j

(�)|2 � B
j

|�
j

(�)|2 + 2

5
Re

�
w

j

�
j

(�)5
�
. (63)

In addition, in the regime in which the interaction term is small (which is necessary for
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At this point, it is convenient to separate �
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(�) into its modulus and phase,
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(�)ei✓j(�), (67)

with ⇢
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(�) and ✓
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(�) both assumed to be real, and ⇢
j

(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @
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f(�). Then, in terms of ⇢
j

and ✓
j

, the equation of motion (66) splits into a real
and an imaginary part, which are respectively
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The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2
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is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),
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Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,
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Finally, using (70), the remaining equation of motion (68) can be rewritten as
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and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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the condensate be isotropic, and we are working in the limit where the scalar field � is
assumed to evolve slowly. Finally, we are considering the regime where the interaction
term in (58) is subdominant, and hence where the ⇢

j

are su�ciently small.
On the other hand, for there to exist a continuum interpretation of the condensate

state as a space-time, there must be a large number of quanta of geometry in the conden-
sate state, which requires the ⇢

j

to be large. (Also, in order for a consistent continuum
geometric interpretation to be valid at least for large total spatial volumes of the universe,
a few more conditions are needed, namely that there be a small curvature and a small vol-
ume associated to each individual GFT quantum. These last conditions are not necessary
for the mathematical consistency of the condensate approximation, but are necessary to
have a clear space-time interpretation for the condensate state.)

A delicate interplay between the values of ⇢
j

and the coupling constants (and kernels)
of the theory is required for the condensate approximation to be valid while at the same
time neglecting the interactions. It is only when all of these assumptions hold that a
reliable cosmological interpretation of the condensate state exists and that the e↵ective
dynamics extracted here from the full theory can be trusted.

B. Condensate Friedmann Equations

The e↵ective dynamics of the GFT condensates is (part of) the hydrodynamics of the
GFT model we are studying, and is encoded in an equation for the mean field � (and its
complex conjugate) or, in more conventional hydrodynamic form, for a density ⇢ and a
phase ✓, which in turn can be decomposed in terms of modes associated to representations
j. This type of equation has the form of a non-linear extension of a quantum cosmology
dynamics, even though the physical interpretation is di↵erent. From this type of equation,
just as in (loop) quantum cosmology, it is possible to extract the gravitational dynamics
in the form of equations for geometric quantities. In particular, for homogeneous and
isotropic configurations, a natural choice is to derive an e↵ective equation that governs
the dynamics of the volume of the universe, coupled to the scalar field.

This can be done in a straightforward fashion in this case starting from the equations
of motion for ⇢

j

obtained in the previous section and relating the spatial volume to the
⇢
j

. By using the massless scalar field � as a relational clock, the resulting equations of
motion for V (�) can be compared to the Friedmann equations of cosmology, which are
presented in the Appendix A.

The quantity of interest here is the total volume of the universe in the condensate
state, at a given moment of the relational time �,
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universe volume (at fixed “time”) where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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and

V 00 = 2
X

j

V
j

h
⇢00
j

⇢
j

+ (⇢0
j

)2
i
= 2

X

j

V
j

h
E

j

+ 2m2
j

⇢2
j

i
. (75)

Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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At this point, it is convenient to separate �
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we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
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, the equation of motion (66) splits into a real
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The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2
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is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),
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Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,

E
j

⇡ (⇢0
j

)2 + ⇢2
j

(✓0
j

)2 �m2
j

⇢2. (71)

Finally, using (70), the remaining equation of motion (68) can be rewritten as
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and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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The equation
@⇡

�

@�
= 0 (65)

is exactly the continuity equation in cosmology, for the case of a massless scalar field. This
is a particularly simple example of how the large-scale, coarse-grained e↵ective dynamics
can be extracted from the GFT quantum equations of motion for condensate states. This
result is also a first confirmation of the consistency of the identification of the GFT
condensate state and an emergent FLRW space-time geometry.

Note that the condition that the interactions be subdominant is required in order to
recover the continuity equation for the isotropic condensate state and, as we will show, the
Friedmann equations. While this is to some extent only a technical restriction to a regime
where simple condensate states can be trusted, it is not unreasonable from a physical point
of view. One expects that generic interactions would generate correlations between GFT
quanta, and there is no reason to expect these to respect any homogeneity condition, but
rather to produce inhomogeneities both the microscopic and macroscopic level. And when
inhomogeneities are included in cosmology (even at linear order) the continuity equation
is modified. Note that the heuristic arguments above do not necessarily imply that GFT
non-linearities at the level of the hydrodynamic equation encode inhomogeneities (as
has been suggested in [86]), but this is an interesting hypothesis to explore, especially
considering how similar equations (again inspired by BEC theory) have been obtained as
an e↵ective description of inhomogeneities in a non-linear extension of (loop) quantum
cosmology [85].

For the remainder of this paper, we will only consider the limit where the interaction
term is much smaller than the linear terms. This is not because the non-linear case is
di�cult to solve (in fact, for the simple condensate equations of motion considered here,
it is relatively straightforward to study the dynamics of the condensate wave function
even in the presence of the non-linear term) but rather because in that limit the Gross-
Pitaevskii approximation is expected to fail, in the sense that it cannot be justified from a
microscopic point of view since the simple condensate state we use here cannot be expected
to be a good approximation to a realistic vacuum of the theory, and it is necessary to
consider more complex condensate states than (39).

Therefore, we will study the regime where |�
j

(�)| is su�ciently small so that the
interaction term is subdominant, but at the same time not so small that the hydrodynamic
approximation ceases to make sense: after all,
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number of GFT quanta at the relational time �, and a large number of quanta is necessary
for the hydrodynamic approximation to be valid. In this regime, the equation of motion
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.
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• key relational observables (expectation values in condensate state) with scalar field as clock:

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)
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while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
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In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply
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together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states
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is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,
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are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �

j

(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:
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which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
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It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A

j

2

interaction terms sub-dominant (dilute-gas approx., 
consistent with simple approximation of vacuum state)

• two (approximately) conserved quantities (per mode):

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A
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, B
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and w
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. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
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(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �

j,j

0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w
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(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
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In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Q
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(�) emerges as another conserved quantity
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Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂
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(�)|�i = ~
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and therefore ⇡
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= h�|⇡̂
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(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.
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momentum of scalar field (at fixed “time”)

constant of motion ~ continuity equation

At this point, it is convenient to separate �
j

(�) into its modulus and phase,
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(�)ei✓j(�), (67)

with ⇢
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(�) and ✓
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(�) both assumed to be real, and ⇢
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(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @
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f(�). Then, in terms of ⇢
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and ✓
j

, the equation of motion (66) splits into a real
and an imaginary part, which are respectively
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The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2
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j

is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),
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Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,
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Finally, using (70), the remaining equation of motion (68) can be rewritten as
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and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in

35

the condensate be isotropic, and we are working in the limit where the scalar field � is
assumed to evolve slowly. Finally, we are considering the regime where the interaction
term in (58) is subdominant, and hence where the ⇢

j

are su�ciently small.
On the other hand, for there to exist a continuum interpretation of the condensate

state as a space-time, there must be a large number of quanta of geometry in the conden-
sate state, which requires the ⇢

j

to be large. (Also, in order for a consistent continuum
geometric interpretation to be valid at least for large total spatial volumes of the universe,
a few more conditions are needed, namely that there be a small curvature and a small vol-
ume associated to each individual GFT quantum. These last conditions are not necessary
for the mathematical consistency of the condensate approximation, but are necessary to
have a clear space-time interpretation for the condensate state.)

A delicate interplay between the values of ⇢
j

and the coupling constants (and kernels)
of the theory is required for the condensate approximation to be valid while at the same
time neglecting the interactions. It is only when all of these assumptions hold that a
reliable cosmological interpretation of the condensate state exists and that the e↵ective
dynamics extracted here from the full theory can be trusted.

B. Condensate Friedmann Equations

The e↵ective dynamics of the GFT condensates is (part of) the hydrodynamics of the
GFT model we are studying, and is encoded in an equation for the mean field � (and its
complex conjugate) or, in more conventional hydrodynamic form, for a density ⇢ and a
phase ✓, which in turn can be decomposed in terms of modes associated to representations
j. This type of equation has the form of a non-linear extension of a quantum cosmology
dynamics, even though the physical interpretation is di↵erent. From this type of equation,
just as in (loop) quantum cosmology, it is possible to extract the gravitational dynamics
in the form of equations for geometric quantities. In particular, for homogeneous and
isotropic configurations, a natural choice is to derive an e↵ective equation that governs
the dynamics of the volume of the universe, coupled to the scalar field.

This can be done in a straightforward fashion in this case starting from the equations
of motion for ⇢

j

obtained in the previous section and relating the spatial volume to the
⇢
j

. By using the massless scalar field � as a relational clock, the resulting equations of
motion for V (�) can be compared to the Friedmann equations of cosmology, which are
presented in the Appendix A.

The quantity of interest here is the total volume of the universe in the condensate
state, at a given moment of the relational time �,
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V
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j

(�)�
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(�) =
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j

V
j

⇢
j

(�)2, (73)
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universe volume (at fixed “time”) where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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At this point, it is convenient to separate �
j

(�) into its modulus and phase,

�
j

(�) = ⇢
j

(�)ei✓j(�), (67)

with ⇢
j

(�) and ✓
j

(�) both assumed to be real, and ⇢
j

(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @

�

f(�). Then, in terms of ⇢
j

and ✓
j

, the equation of motion (66) splits into a real
and an imaginary part, which are respectively
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⇡ 0, (68)
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⇡ 0. (69)

The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2

j

✓0
j

is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),

Q
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j

✓0
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. (70)

Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,
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Finally, using (70), the remaining equation of motion (68) can be rewritten as
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⇡ 0, (72)

and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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The equation
@⇡

�

@�
= 0 (65)

is exactly the continuity equation in cosmology, for the case of a massless scalar field. This
is a particularly simple example of how the large-scale, coarse-grained e↵ective dynamics
can be extracted from the GFT quantum equations of motion for condensate states. This
result is also a first confirmation of the consistency of the identification of the GFT
condensate state and an emergent FLRW space-time geometry.

Note that the condition that the interactions be subdominant is required in order to
recover the continuity equation for the isotropic condensate state and, as we will show, the
Friedmann equations. While this is to some extent only a technical restriction to a regime
where simple condensate states can be trusted, it is not unreasonable from a physical point
of view. One expects that generic interactions would generate correlations between GFT
quanta, and there is no reason to expect these to respect any homogeneity condition, but
rather to produce inhomogeneities both the microscopic and macroscopic level. And when
inhomogeneities are included in cosmology (even at linear order) the continuity equation
is modified. Note that the heuristic arguments above do not necessarily imply that GFT
non-linearities at the level of the hydrodynamic equation encode inhomogeneities (as
has been suggested in [86]), but this is an interesting hypothesis to explore, especially
considering how similar equations (again inspired by BEC theory) have been obtained as
an e↵ective description of inhomogeneities in a non-linear extension of (loop) quantum
cosmology [85].

For the remainder of this paper, we will only consider the limit where the interaction
term is much smaller than the linear terms. This is not because the non-linear case is
di�cult to solve (in fact, for the simple condensate equations of motion considered here,
it is relatively straightforward to study the dynamics of the condensate wave function
even in the presence of the non-linear term) but rather because in that limit the Gross-
Pitaevskii approximation is expected to fail, in the sense that it cannot be justified from a
microscopic point of view since the simple condensate state we use here cannot be expected
to be a good approximation to a realistic vacuum of the theory, and it is necessary to
consider more complex condensate states than (39).

Therefore, we will study the regime where |�
j

(�)| is su�ciently small so that the
interaction term is subdominant, but at the same time not so small that the hydrodynamic
approximation ceases to make sense: after all,

P
j

|�
j

(�)|2 corresponds to the average
number of GFT quanta at the relational time �, and a large number of quanta is necessary
for the hydrodynamic approximation to be valid. In this regime, the equation of motion
for �

j

(�) reduces to
@2
�

�
j

(�)�m2
j

�
j

(�) ⇡ 0, (66)

with m2
j

= B
j

/A
j

.
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• key relational observables (expectation values in condensate state) with scalar field as clock:

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)

K =
X
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�
, (3)

while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
tive expansion in � in the field variable '

j

v2 ,◆2
m

v2
(�2) around

�2 = �1 = �, giving
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where the notation on Kj,◆

m

has been compressed, and

(K(2n))j,◆
m

=

Z
du

u2n

(2n)!
Kj,◆

m

(u2). (5)

In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply

c�S
�'̄

| i = 0, (6)

together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states
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where �j
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(�) is the condensate wave function and
k�k2 =

R
d� k�(�)k2. An important point here is that

the condensate wave function is not normalized: rather
the norm of �j
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is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,
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v

(�) = Cj
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v
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j

(�), (9)

where the Cj

v

,◆

m

v

are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �

j

(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:

h�|
c�S
�'̄

|�i = 0, (10)

which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
gives the equation of motion for the �
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j
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It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here A

j

2

interaction terms sub-dominant (dilute-gas approx., 
consistent with simple approximation of vacuum state)

• two (approximately) conserved quantities (per mode):

obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A

j

, B
j

and w
j

. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
j

(�) with di↵erent j. This is due to
the combination of the isotropic restriction and the form of the EPRL vertex amplitude
which contain Kronecker deltas �

j,j

0 for all edges that meet in the four-simplex. Thus, if
five equilateral tetrahedra are combined in a four-simplex, and the vertex amplitude is
the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
the interaction term is ‘local’ in the spin label since it has the form ⇠ w

j
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j

(�)4 rather
than ⇠ w
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(�). Clearly, this significantly simplifies the equations of
motion.

As true in general for GFT condensates, we have thus obtained a quantum cosmology-
like equation for a cosmological wave function on the space of (isotropic) homogeneous
geometries. This equation is however non-linear, as to be expected in a hydrodynamic
context, with the non-linearities e↵ectively encoding the microscopic interactions between
the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).

Before we start analyzing the e↵ective dynamical equations, we point out that, from
the symmetries of S
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, it is obvious that there is a conserved quantity for every j, the
‘energy’ E
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of the condensate wave function �
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In addition, in the regime in which the interaction term is small (which is necessary for
the Gross-Pitaevskii approximation to hold), the U(1) charge Q

j

related to the symmetry
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(�) ! ei↵�
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(�) emerges as another conserved quantity
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Note that, following from the definition of the momentum of the massless scalar field, it is
easy to check that h�|⇡̂

�

(�)|�i = ~
P

j

Q
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and therefore ⇡
�

= h�|⇡̂
�

(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.
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the fundamental ‘atoms of space’, which are also ultimately responsible for the generation
of inhomogeneities at both microscopic and macroscopic scales (see also [85] for a similar
construction).
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In addition, in the regime in which the interaction term is small (which is necessary for
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Note that, following from the definition of the momentum of the massless scalar field, it is
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and therefore ⇡
�
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(�)|�i is a conserved
quantity also in the limit where the Gross-Pitaevskii approximation holds.
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obtained by replacing the GFT field in the GFT action by the condensate wave function.
Here it is clear that the scalar field � plays the role of a relational time variable.

The condensate equations of motion depend directly on the details of the GFT action,
since these determine in part the coe�cients A
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and w
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. It will be possible to constrain
their form by requiring that the Friedmann equation be recovered in an appropriate semi-
classical limit.

Crucially, the interaction term does not couple �
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the EPRL one (or one with an analogous property) then it immediately follows that all
of the five equilateral tetrahedra must have the same j. This decoupling does not occur
generically, even in the isotropic restriction, for other spin foam models, e.g., those like
the Baratin–Oriti model [70] involving more elaborate fusion coe�cients. For this reason,
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momentum of scalar field (at fixed “time”)

constant of motion ~ continuity equation

At this point, it is convenient to separate �
j

(�) into its modulus and phase,

�
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(�)ei✓j(�), (67)

with ⇢
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(�) both assumed to be real, and ⇢
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(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
f 0 := @
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f(�). Then, in terms of ⇢
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and ✓
j

, the equation of motion (66) splits into a real
and an imaginary part, which are respectively
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The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2
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is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),
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Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,
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Finally, using (70), the remaining equation of motion (68) can be rewritten as
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and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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the condensate be isotropic, and we are working in the limit where the scalar field � is
assumed to evolve slowly. Finally, we are considering the regime where the interaction
term in (58) is subdominant, and hence where the ⇢

j

are su�ciently small.
On the other hand, for there to exist a continuum interpretation of the condensate

state as a space-time, there must be a large number of quanta of geometry in the conden-
sate state, which requires the ⇢

j

to be large. (Also, in order for a consistent continuum
geometric interpretation to be valid at least for large total spatial volumes of the universe,
a few more conditions are needed, namely that there be a small curvature and a small vol-
ume associated to each individual GFT quantum. These last conditions are not necessary
for the mathematical consistency of the condensate approximation, but are necessary to
have a clear space-time interpretation for the condensate state.)

A delicate interplay between the values of ⇢
j

and the coupling constants (and kernels)
of the theory is required for the condensate approximation to be valid while at the same
time neglecting the interactions. It is only when all of these assumptions hold that a
reliable cosmological interpretation of the condensate state exists and that the e↵ective
dynamics extracted here from the full theory can be trusted.

B. Condensate Friedmann Equations

The e↵ective dynamics of the GFT condensates is (part of) the hydrodynamics of the
GFT model we are studying, and is encoded in an equation for the mean field � (and its
complex conjugate) or, in more conventional hydrodynamic form, for a density ⇢ and a
phase ✓, which in turn can be decomposed in terms of modes associated to representations
j. This type of equation has the form of a non-linear extension of a quantum cosmology
dynamics, even though the physical interpretation is di↵erent. From this type of equation,
just as in (loop) quantum cosmology, it is possible to extract the gravitational dynamics
in the form of equations for geometric quantities. In particular, for homogeneous and
isotropic configurations, a natural choice is to derive an e↵ective equation that governs
the dynamics of the volume of the universe, coupled to the scalar field.

This can be done in a straightforward fashion in this case starting from the equations
of motion for ⇢

j

obtained in the previous section and relating the spatial volume to the
⇢
j

. By using the massless scalar field � as a relational clock, the resulting equations of
motion for V (�) can be compared to the Friedmann equations of cosmology, which are
presented in the Appendix A.

The quantity of interest here is the total volume of the universe in the condensate
state, at a given moment of the relational time �,
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(�)2, (73)
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universe volume (at fixed “time”) where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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and
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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At this point, it is convenient to separate �
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(�) into its modulus and phase,
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(�) to be positive. From now on,
we will drop the argument �, and denote derivatives with respect to � with primes, e.g.,
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f(�). Then, in terms of ⇢
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and ✓
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, the equation of motion (66) splits into a real
and an imaginary part, which are respectively
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The last equation, coming from the imaginary part of (66), can easily be solved and
shows that the combination ⇢2

j
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j

is a constant of the motion, and in fact is precisely the
conserved U(1) charge (64),
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Note that the other conserved charge, the ‘GFT energy’ for each j, also has a simple form,

E
j

⇡ (⇢0
j

)2 + ⇢2
j

(✓0
j

)2 �m2
j

⇢2. (71)

Finally, using (70), the remaining equation of motion (68) can be rewritten as
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and this has the form of the equation of motion of a particle in a central potential. In
particular, note that the e↵ective potential diverges as ⇢

j

! 0; this implies that ⇢
j

remains
non-zero at all times (for non-zero Q

j

). This is what will lead to the resolution of the
big-bang and big-crunch singularities in the cosmological space-time, as is explained in
detail in the next section, so long as the cosmological dynamics are captured by the above
equation.

However, before studying the dynamics in more detail and extracting the equations
of motion for geometric quantities, it is important to recall the assumptions that were
necessary in order to derive (72). First, we have assumed that a cosmological state in
quantum gravity is well-approximated by a simple condensate that in particular ignores
connectivity information, which is in general a very important set of dynamical degrees of
freedom. However, in the case of isotropic cosmology we expect these degrees of freedom
to play a less important role since the only relevant geometric observables are the spatial
volume and its conjugate. Second, we further imposed that the quanta of geometry in
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The equation
@⇡

�

@�
= 0 (65)

is exactly the continuity equation in cosmology, for the case of a massless scalar field. This
is a particularly simple example of how the large-scale, coarse-grained e↵ective dynamics
can be extracted from the GFT quantum equations of motion for condensate states. This
result is also a first confirmation of the consistency of the identification of the GFT
condensate state and an emergent FLRW space-time geometry.

Note that the condition that the interactions be subdominant is required in order to
recover the continuity equation for the isotropic condensate state and, as we will show, the
Friedmann equations. While this is to some extent only a technical restriction to a regime
where simple condensate states can be trusted, it is not unreasonable from a physical point
of view. One expects that generic interactions would generate correlations between GFT
quanta, and there is no reason to expect these to respect any homogeneity condition, but
rather to produce inhomogeneities both the microscopic and macroscopic level. And when
inhomogeneities are included in cosmology (even at linear order) the continuity equation
is modified. Note that the heuristic arguments above do not necessarily imply that GFT
non-linearities at the level of the hydrodynamic equation encode inhomogeneities (as
has been suggested in [86]), but this is an interesting hypothesis to explore, especially
considering how similar equations (again inspired by BEC theory) have been obtained as
an e↵ective description of inhomogeneities in a non-linear extension of (loop) quantum
cosmology [85].

For the remainder of this paper, we will only consider the limit where the interaction
term is much smaller than the linear terms. This is not because the non-linear case is
di�cult to solve (in fact, for the simple condensate equations of motion considered here,
it is relatively straightforward to study the dynamics of the condensate wave function
even in the presence of the non-linear term) but rather because in that limit the Gross-
Pitaevskii approximation is expected to fail, in the sense that it cannot be justified from a
microscopic point of view since the simple condensate state we use here cannot be expected
to be a good approximation to a realistic vacuum of the theory, and it is necessary to
consider more complex condensate states than (39).

Therefore, we will study the regime where |�
j

(�)| is su�ciently small so that the
interaction term is subdominant, but at the same time not so small that the hydrodynamic
approximation ceases to make sense: after all,

P
j

|�
j

(�)|2 corresponds to the average
number of GFT quanta at the relational time �, and a large number of quanta is necessary
for the hydrodynamic approximation to be valid. In this regime, the equation of motion
for �

j

(�) reduces to
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�
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(�)�m2
j
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j

(�) ⇡ 0, (66)

with m2
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= B
j

/A
j

.
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energy density of scalar field (at fixed “time”)

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �
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(�
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) at
an initial time �
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.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as
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to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function
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effective dynamics for volume - generalised Friedmann equations:

where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V
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is the largest eigenvalue of the LQG volume operator possible for a node
with all j
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= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V
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for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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term but instead we are considering the case where the contribution of the interaction
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
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effective dynamics for volume - generalised Friedmann equations:

where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V
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is the largest eigenvalue of the LQG volume operator possible for a node
with all j
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= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �

j

(�
o

) at
an initial time �

o

.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as
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to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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effective dynamics for volume - generalised Friedmann equations:

where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by

✓
V 0

3V

◆2

=

0

BB@
2
P

j

V
j

⇢
j

r
E

j

� Q

2
j

⇢

2
j

+m2
j

⇢2
j

3
P

j

V
j

⇢2
j

1

CCA

2

, (76)

and

V 00

V
=

2
P

j

V
j

h
E

j

+ 2m2
j

⇢2
j

i

P
j

V
j

⇢2
j

. (77)

37

9j / ⇢j(�) 6= 0 8�

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �

j

(�
o

) at
an initial time �

o

.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as
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to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function
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effective dynamics for volume - generalised Friedmann equations:

where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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where V
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⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
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These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �

j

(�
o

) at
an initial time �

o

.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as
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to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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remains positive at all times

generic quantum bounce!

• classical approx.

In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢

j

(72) clearly shows that the individual ⇢
j

will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢

j

has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
provide an exact solution to these equations of motion for generic initial conditions, but
there are two special cases when an explicit solution can be found.

C. Classical Limit

As already mentioned, the momentum of the scalar field, defined as the expectation
value of the operator (23) in the condensate state, is given by ⇡

�

= ~
P

j

Q
j

and therefore
⇡
�

is a conserved quantity: this is exactly the continuity equation for a massless scalar
field in an FLRW space-time. Therefore, the only other requirement in order to verify
that the correct semi-classical limit is obtained is to ensure that the correct Friedmann
equation is recovered.

The classical limit of the generalised Friedmann equations is obtained when the Hubble
rate is small compared to the inverse Planck time, and this will occur at su�ciently large
volumes, i.e., when ⇢2

j

� |E
j

|/m2
j

and ⇢4
j

� Q2
j

/m2
j

(note that the semi-classical limit is
not the limit of large volume, but of small space-time curvature; nonetheless, the space-
time curvature decreases as the space-time expands and therefore the dominant term in
the Friedmann equation at large volumes is also the dominant term when the space-time
curvature is small). As shall be seen in the next section, the terms containing E

j

and
Q

j

/⇢2
j

can be understood as quantum corrections.
In this limit, the generalised Friedmann equations become
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We immediately see from these equations that, in order to recover the classical Friedmann
equations of general relativity in terms of the relational time �, which are given in Ap-
pendix A 1, (in this specific context where the FLRW space-time emerges as a condensate
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effective dynamics for volume - generalised Friedmann equations:

where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V
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is the largest eigenvalue of the LQG volume operator possible for a node
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be necessary here.
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the contribution from the interaction term is assumed to be subdominant in the Gross-
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These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �

j

(�
o

) at
an initial time �

o

.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as
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to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
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remains positive at all times

generic quantum bounce!

• classical approx.

In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢

j

(72) clearly shows that the individual ⇢
j

will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢

j

has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
provide an exact solution to these equations of motion for generic initial conditions, but
there are two special cases when an explicit solution can be found.

C. Classical Limit

As already mentioned, the momentum of the scalar field, defined as the expectation
value of the operator (23) in the condensate state, is given by ⇡

�

= ~
P

j

Q
j

and therefore
⇡
�

is a conserved quantity: this is exactly the continuity equation for a massless scalar
field in an FLRW space-time. Therefore, the only other requirement in order to verify
that the correct semi-classical limit is obtained is to ensure that the correct Friedmann
equation is recovered.

The classical limit of the generalised Friedmann equations is obtained when the Hubble
rate is small compared to the inverse Planck time, and this will occur at su�ciently large
volumes, i.e., when ⇢2

j

� |E
j

|/m2
j

and ⇢4
j

� Q2
j

/m2
j

(note that the semi-classical limit is
not the limit of large volume, but of small space-time curvature; nonetheless, the space-
time curvature decreases as the space-time expands and therefore the dominant term in
the Friedmann equation at large volumes is also the dominant term when the space-time
curvature is small). As shall be seen in the next section, the terms containing E

j

and
Q

j

/⇢2
j

can be understood as quantum corrections.
In this limit, the generalised Friedmann equations become
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We immediately see from these equations that, in order to recover the classical Friedmann
equations of general relativity in terms of the relational time �, which are given in Ap-
pendix A 1, (in this specific context where the FLRW space-time emerges as a condensate
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In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢

j

(72) clearly shows that the individual ⇢
j

will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢

j

has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
provide an exact solution to these equations of motion for generic initial conditions, but
there are two special cases when an explicit solution can be found.

C. Classical Limit

As already mentioned, the momentum of the scalar field, defined as the expectation
value of the operator (23) in the condensate state, is given by ⇡

�

= ~
P

j

Q
j

and therefore
⇡
�

is a conserved quantity: this is exactly the continuity equation for a massless scalar
field in an FLRW space-time. Therefore, the only other requirement in order to verify
that the correct semi-classical limit is obtained is to ensure that the correct Friedmann
equation is recovered.

The classical limit of the generalised Friedmann equations is obtained when the Hubble
rate is small compared to the inverse Planck time, and this will occur at su�ciently large
volumes, i.e., when ⇢2

j

� |E
j

|/m2
j

and ⇢4
j

� Q2
j

/m2
j

(note that the semi-classical limit is
not the limit of large volume, but of small space-time curvature; nonetheless, the space-
time curvature decreases as the space-time expands and therefore the dominant term in
the Friedmann equation at large volumes is also the dominant term when the space-time
curvature is small). As shall be seen in the next section, the terms containing E

j

and
Q

j

/⇢2
j

can be understood as quantum corrections.
In this limit, the generalised Friedmann equations become
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approx. classical Friedmann 
eqns if m2

j ⇡ 3GN

of isotropic GFT quanta) it is necessary to identify m2
j

= 3⇡G for all j. For these val-
ues of m

j

, the GFT condensate dynamics reproduce the classical Friedmann equations of
general relativity. (As an aside, note that while it may be possible, at a specific relational
instant �

o

, to choose a di↵erent set of values for m
j

that also gives the correct limit,
this identification will not be preserved by the dynamics and hence the correct classical
Friedmann equations would in this case only be recovered in a small neighbourhood of
relational time around �

o

.)
The condition that m2

j

= 3⇡G is a requirement on the form of the terms A
j

and B
j

that
are determined by the GFT action: if B

j

/A
j

6= 3⇡G for some j, then it follows that the
correct Friedmann equations are not recovered in the classical limit. Note also that this
should be understood as a definition of G which arises as a hydrodynamic parameter and it
is thus a function of the microscopic GFT parameters, and not as an interpretation of the
microscopic parameters. This is an important conceptual point since this identification
has no reason to be valid in a generic regime of the dynamics (e.g., for non-condensate
GFT states) and may be di↵erent in other settings.

So, if all m2
j

= 3⇡G, then the generalised Friedmann equations of the GFT condensate
become, in the classical limit,
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which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = V
o

e±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and V

o

depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢

j

is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�
j

(�) = 0, for all j 6= j
o

. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.
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• simple condensate:

This assumption mirrors the situation that is thought to be relevant in LQC, where
there is also the extra assumption that the underlying LQG state consists of a graph
with a very large number of nodes and links, and that the spins on all of the links are
identical (often chosen to be j

o

= 1/2). It follows that in the LQC picture, a cosmological
space-time expands or contracts by modifications to the combinatorial structure of the
spin network that consist of adding or removing nodes, rather than by changing the spin
labels on the spin network; this is analogous to the volume dynamics extracted from the
underlying GFT model where changes in V correspond to changes in the number of GFT
quanta, rather than transitions between GFT quanta coloured by di↵erent spin represen-
tations. In the limiting case (83) considered here, the volume dynamics is entirely dictated
by the number of GFT quanta via V (�) = V

j

o

N
j

o

(�); this is essentially identical to the
heuristic interpretation suggested by the LQC ‘improved dynamics’ relating LQC to the
underlying LQG spin networks. Finally, note that the missing connectivity information
in the simple GFT condensates considered here does not play any role in LQC either.

Of course, if only one mode j = j
o

contributes to the e↵ective dynamics, then the cor-
rect classical limit requires a milder condition on the microscopic dynamics to reproduce
the classical Friedmann equation with respect to the more general case considered in the
previous subsection, namely that m2

j

o

= 3⇡G (and there are no requirements on the other
m

j

).
Therefore, we set m2

j

o

= 3⇡G in the following so that the correct classical limit is
ensured. Now, since ⇢

j

= 0 for all j 6= j
o

, only Q
j

o

is non-zero and

⇡
�

= ~Q
j

o

. (84)

Given (83), the total volume is simply given by

V = V
j

o

⇢2
j

o

, (85)

and the first modified Friedmann equation simplifies to
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which can be rewritten, using the relation for the energy density of a massless scalar field
⇢ = ⇡2
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/2V 2, as ✓
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with ⇢
c

= 6⇡G~2/V 2
j

o

⇠ (6⇡/j3
o

)⇢Pl. It is clear that the first term is the classical limit,
and that the second term is a quantum gravity correction. In addition, from scaling
arguments (the Friedmann equation must be invariant under V ! ↵V and ⇡

�

! ↵⇡
�

)
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effective dynamics for volume - generalised Friedmann equations:

where V
j

⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that V

j

is the largest eigenvalue of the LQG volume operator possible for a node
with all j

i

= j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate V

j

for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the w
j

interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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where V
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9j / ⇢j(�) 6= 0 8�

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �

j

(�
o

) at
an initial time �

o

.
An important point here is that, for the energy density of the massless scalar field,

which is defined in terms of the expectation values of scalar field momentum and volume
operators as

⇢ =
⇡2
�

2V 2
=

~2(
P

j

Q
j

)2

2(
P

j

V
j

⇢2
j

)2
, (78)

to be non-zero, at least one of the Q
j

must be non-zero6. The condition that at least one
of the Q

j

be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Q

j

be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Q
j

= 0 (but still having large ⇢
j

) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Q

j

must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢

j

will always remain greater than zero. In turn, since V =
P

j

V
j

⇢2
j

, it follows that
V will always remain non-zero. Therefore, we find that for all cosmological solutions, the

volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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remains positive at all times

generic quantum bounce!

• classical approx.

In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢

j

(72) clearly shows that the individual ⇢
j

will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢

j

has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
provide an exact solution to these equations of motion for generic initial conditions, but
there are two special cases when an explicit solution can be found.

C. Classical Limit

As already mentioned, the momentum of the scalar field, defined as the expectation
value of the operator (23) in the condensate state, is given by ⇡

�

= ~
P

j

Q
j

and therefore
⇡
�

is a conserved quantity: this is exactly the continuity equation for a massless scalar
field in an FLRW space-time. Therefore, the only other requirement in order to verify
that the correct semi-classical limit is obtained is to ensure that the correct Friedmann
equation is recovered.

The classical limit of the generalised Friedmann equations is obtained when the Hubble
rate is small compared to the inverse Planck time, and this will occur at su�ciently large
volumes, i.e., when ⇢2

j

� |E
j

|/m2
j

and ⇢4
j

� Q2
j

/m2
j

(note that the semi-classical limit is
not the limit of large volume, but of small space-time curvature; nonetheless, the space-
time curvature decreases as the space-time expands and therefore the dominant term in
the Friedmann equation at large volumes is also the dominant term when the space-time
curvature is small). As shall be seen in the next section, the terms containing E

j

and
Q

j

/⇢2
j

can be understood as quantum corrections.
In this limit, the generalised Friedmann equations become
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We immediately see from these equations that, in order to recover the classical Friedmann
equations of general relativity in terms of the relational time �, which are given in Ap-
pendix A 1, (in this specific context where the FLRW space-time emerges as a condensate
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We immediately see from these equations that, in order to recover the classical Friedmann
equations of general relativity in terms of the relational time �, which are given in Ap-
pendix A 1, (in this specific context where the FLRW space-time emerges as a condensate
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In this way, the big-bang and big-crunch singularities of classical FLRW space-times
that occur generically in general relativity are resolved in the GFT condensate states
studied here. The equation of motion for ⇢

j

(72) clearly shows that the individual ⇢
j

will
reach a minimal value at which point they will bounce (and it is clear that there is only a
single bounce since ⇢

j

has only one turning point), and thus the cosmological space-time
that emerges from the GFT condensate state is that of a bouncing FLRW space-time.

In order to see exactly how the singularity is resolved, and better understand the
nature of the quantum e↵ects causing this resolution, it is necessary to solve our modified
Friedmann equations for V (�) for some initial conditions. Unfortunately, it is di�cult to
provide an exact solution to these equations of motion for generic initial conditions, but
there are two special cases when an explicit solution can be found.

C. Classical Limit

As already mentioned, the momentum of the scalar field, defined as the expectation
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P

j

Q
j

and therefore
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is a conserved quantity: this is exactly the continuity equation for a massless scalar
field in an FLRW space-time. Therefore, the only other requirement in order to verify
that the correct semi-classical limit is obtained is to ensure that the correct Friedmann
equation is recovered.
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approx. classical Friedmann 
eqns if m2

j ⇡ 3GN

of isotropic GFT quanta) it is necessary to identify m2
j

= 3⇡G for all j. For these val-
ues of m

j

, the GFT condensate dynamics reproduce the classical Friedmann equations of
general relativity. (As an aside, note that while it may be possible, at a specific relational
instant �

o

, to choose a di↵erent set of values for m
j

that also gives the correct limit,
this identification will not be preserved by the dynamics and hence the correct classical
Friedmann equations would in this case only be recovered in a small neighbourhood of
relational time around �

o

.)
The condition that m2

j

= 3⇡G is a requirement on the form of the terms A
j

and B
j

that
are determined by the GFT action: if B

j

/A
j

6= 3⇡G for some j, then it follows that the
correct Friedmann equations are not recovered in the classical limit. Note also that this
should be understood as a definition of G which arises as a hydrodynamic parameter and it
is thus a function of the microscopic GFT parameters, and not as an interpretation of the
microscopic parameters. This is an important conceptual point since this identification
has no reason to be valid in a generic regime of the dynamics (e.g., for non-condensate
GFT states) and may be di↵erent in other settings.

So, if all m2
j

= 3⇡G, then the generalised Friedmann equations of the GFT condensate
become, in the classical limit,

✓
V 0

V

◆2

=
V 00

V
= 12⇡G, (81)

which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = V
o

e±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and V

o

depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢

j

is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�
j

(�) = 0, for all j 6= j
o

. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.
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• simple condensate:

This assumption mirrors the situation that is thought to be relevant in LQC, where
there is also the extra assumption that the underlying LQG state consists of a graph
with a very large number of nodes and links, and that the spins on all of the links are
identical (often chosen to be j

o

= 1/2). It follows that in the LQC picture, a cosmological
space-time expands or contracts by modifications to the combinatorial structure of the
spin network that consist of adding or removing nodes, rather than by changing the spin
labels on the spin network; this is analogous to the volume dynamics extracted from the
underlying GFT model where changes in V correspond to changes in the number of GFT
quanta, rather than transitions between GFT quanta coloured by di↵erent spin represen-
tations. In the limiting case (83) considered here, the volume dynamics is entirely dictated
by the number of GFT quanta via V (�) = V

j

o

N
j

o

(�); this is essentially identical to the
heuristic interpretation suggested by the LQC ‘improved dynamics’ relating LQC to the
underlying LQG spin networks. Finally, note that the missing connectivity information
in the simple GFT condensates considered here does not play any role in LQC either.

Of course, if only one mode j = j
o

contributes to the e↵ective dynamics, then the cor-
rect classical limit requires a milder condition on the microscopic dynamics to reproduce
the classical Friedmann equation with respect to the more general case considered in the
previous subsection, namely that m2

j

o

= 3⇡G (and there are no requirements on the other
m

j

).
Therefore, we set m2

j

o

= 3⇡G in the following so that the correct classical limit is
ensured. Now, since ⇢

j

= 0 for all j 6= j
o

, only Q
j

o

is non-zero and

⇡
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= ~Q
j

o

. (84)

Given (83), the total volume is simply given by

V = V
j

o
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o

, (85)

and the first modified Friedmann equation simplifies to
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which can be rewritten, using the relation for the energy density of a massless scalar field
⇢ = ⇡2
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/2V 2, as ✓
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with ⇢
c

= 6⇡G~2/V 2
j

o

⇠ (6⇡/j3
o

)⇢Pl. It is clear that the first term is the classical limit,
and that the second term is a quantum gravity correction. In addition, from scaling
arguments (the Friedmann equation must be invariant under V ! ↵V and ⇡

�

! ↵⇡
�

)
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LQC-like 
modified 
dynamics!

Emergent bouncing cosmology from full QG
DO, Sindoni, Wilson-Ewing, ‘16

+ primordial accelleration 
De Cesare, Sakellariadou, ‘16

Gielen, ‘16
can show that 
1) generic solutions approximate such simple condensates at late times
2) GFT interactions can make primordial acceleration last enough e-folds to avoid need for inflation

De Cesare, Pithis, Sakellariadou, ‘16
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