

ARDIFF INIVERSITY Molecular Dynamics Studies H₂O₂ Permeation via Aquaporin-3

Darren Wragg

8th March 2017

Aquaporins

- Water movement is a crucial physiological process in all cells and is controlled by a set of transmembrane proteins called aquaporins (AQPs)
- In humans, the AQP family consists of thirteen isoforms (AQP0 – AQP12), split into two distinct groups:
 - orthodox aquaporins (AQP0, AQP1, AQP2, AQP4, AQP5, AQP6 and AQP8)
 - aquaglyceroporins (AQP3, AQP7, AQP9, AQP10 and AQP11)
- All have six membrane spanning helices connected by five loops

Aquaporins in health and disease: new molecular targets for drug discovery, G Soveral, S Nielsen and A Casini, eds. CRC Press, Taylor & Francis Group, 2016. A. S. Verkman, *Nat. Rev. Drug Discov.*, 2014, 13, 259–77. A. Kirscht, *PLoS Biol.*, 2016, **14**, e1002411.

Aquaporins, H_2O_2 and metastasis

- Aquaporins are found in all cell types of the body
- Within the cells:
 - Plasma membrane
 - Mitochondria (AQP8)
 - Cell nucleus
 - Example:
 - Spermatozoa contain AQP3 (tail), AQP7 (head), AQP8 (mitochondria) and AQP11 (intracellular)
- Also overexpressed in a number of cancer cell lines including:
 - Brest cancer
 - Lung cancer
 - Melanoma
 - Leukaemia

S. Verkman, *Nat. Rev. Drug Discov.*, 2014, **13**, 259–77. F. Vieceli Dalla Sega, *Biochim. Biophys. Acta - Mol. Cell Res.*, 2014, **1843**, 806–814. H. Satooka, *Mol. Cell. Biol.*, 2016, 36, 1206–1218

U. Laforenza, G. Pellavio, A. Marchetti, C. Omes, F. Todaro and G. Gastaldi, Int. J. Mol. Sci., 2016, 18, 66.

Glycerol – physiological function

- Glycerol has a roll in a number of physiological functions, including:
 - Skin hydration helps retain water within the stratum corneum to maintain hydration and elasticity
 - Cell growth (both healthy and tumour cells)
 - ATP generation
 - Lipid synthesis
- Tumour cell growth by reducing uptake of glycerol by tumour cells, cell proliferation can be retarded

A. S. Verkman, Nat. Rev. Drug Discov., 2014, 13, 259-77..

Aquaporin Inhibition

- So far no selective inhibitors have been described, except for the Au(III) complexes in our lab
- The development of selective inhibitors is important for their use as
 - therapeutic agents
 - chemical probes to study protein function

Au(III) and AQP3

- Au(III) complex Auphen
 - Highly selective for AQP3 via Au S bond (Cys40)
 - Water soluble
 - Inhibits glycerol transport but not water transport (via AQP1)
 - "The Cork Hypothesis"
 - Thought block the channel via steric hindrance by binding to Cys40 located neat the Ar/R selectivity filter

Auphen

A. P. Martins, *PLoS One*, 2012, **7**, e37435.
A. de Almeida, *Med.Chem.Commun*, 2014, **5**, 1444–1453.

Project Aims

- Elucidation of H₂O₂ and Glycerol transport via AQP's through Molecular Dynamic Simulations
- Increase out understanding of AQP inhibition by Au-coordination complexes through Molecular Dynamic Simulations

Water permeation

Single file water molecules

Water molecules passing though NPA SF

• The ar/R selectivity filter (ar/R SF) creates a steric hindrance, blocking larger molecules and creating the single file flow of water molecules.

 As the water molecules pass the second SF (NPA), each molecule is flipped due to a combination of electrostatic interactions and a partially hydrophobic internal pore surface, thus preventing backflow and permeation by charged species.

Water permeation

 H_2O_2 permeation through the AQP3 pore, from extracellular to intracellular side

- H₂O₂, although being more similar in size to water when compare to glycerol, also adopts a longitudinal orientation when passing through the Ar/R S/F.
- As for glycerol, the flipping motion observed in water permeation is not observed in the case of H₂O₂, while H-bond formation between the substrate and the NPA S/F is observed.

Calculating Potentials of Mean Force (PMF)

- Weighted Histogram Analysis Method (WHAM)
- Histograms for each window are combined, ensuring overlap, to produce an energy profile of the system

J. S. Hub and B. L. de Groot, *Proc. Natl. Acad. Sci. U. S. A.*, 2008, **105**, 1198–203. J. Kästner, *Wiley Interdiscip. Rev. Comput.* Mol. Sci., 2011, 1, 932–942.

Pore restriction

Pore restriction

Metadynamic simulations

• Example of input file

COM ATOMS=37317-37330 LABEL=com1 COM ATOMS=37331-37344 LABEL=com2 COM ATOMS=37345-37358 LABEL=com3 COM ATOMS=37359-37372 LABEL=com4 COM ATOMS=1-3768 LABEL=comA COM ATOMS=3769-7536 LABEL=comB COM ATOMS=7537-11304 LABEL=comCC OM ATOMS=11305-15072 LABEL=comD

DISTANCE ATOMS=com1,comA LABEL=pos1 SCALED_COMPONENTS DISTANCE ATOMS=com2,comB LABEL=pos2 SCALED_COMPONENTS DISTANCE ATOMS=com3,comC LABEL=pos3 SCALED_COMPONENTS DISTANCE ATOMS=com4,comD LABEL=pos4 SCALED_COMPONENTS COMBINE LABEL=pos ARG=pos1.c,pos2.c,pos3.c,pos4.c PERIODIC=-10,10

METAD ... LABEL=metad ARG=pos PACE=200 HEIGHT=2 (energy – kJ mol⁻¹) SIGMA=1 (width – nm) FILE=HILLS... METAD PRINT STRIDE=10 ARG=pos,metad.bias FILE=COLVARENDPLUMED

V. Van Speybroeck, Chem. Soc. Rev., 2014, 43, 7326-7357. (Fig. 11)

Conclusion

- Bound AuPbImME prevents both glycerol and water transport through the pore
- Complex causes a conformational change of the protein via electrostatic and hydrophobic interactions
- Small slowing effect on second pore diagonal to pore containing complex.
- Remaining monomers are unaffected in regards to both glycerol and water
- Metadynamics
 - Powerful and highly adaptable simulation tool
 - Provides high resolution free energy profiles

Future Studies

- Continue to investigate the effects of potential inhibitor molecules on glycerol and hydrogen peroxide transport
 - Inserting a selection of Au(III) coordination complexes into the system
- Multiple isoform tetramers
 - AQP3 and AQP7
- Metadynamic simulations of aquaporins, including a selection of Au(III) coordination complexes

A. de Almeida, Med.Chem.Commun, 2014, 5, 1444–1453.

Acknowledgments

Professor Angela Casini Dr Stefano Leoni Dr Andreia de Almeida Brech Aikman Sam Jobbins

Thank you for your time

