SEPARATING THE WHEAT FROM THE CHAFF

Tips on how to identify and characterize essential movements in frantically shaking proteins

Why do we do MD?

- Originally: to collect data for statistical mechanics
- Based on the ergodic hypothesis.
- Calculate energies, free energies, diffusion coefficients, etc.
- To see the movements of macromolecules
- The problem: "Imagine living in a world where a Ritcher 9 earthquake raged continuously... at the scale of proteins Bownian motions are even more furious than that."
(G. Oster and H. Wang, Molecular motors, Chapter 8. DOI: 10.1002/3527601503.ch8

Why is that a problem?

- Interesting movements, relevant for protein functioning, are mixed with the noisy irrelevant movements

Principal component analysis

- Procedure taken from multivariate statistical analysis.
- Introduced in MD by Karplus and Berendsen.
- Aims to identify a reduced set of coordinates able to describe the relevant movements.
- Does it (always) fulfil its aim?
- Can we improve it?

Outlook of the presentation

- PCA:
- Fundamentals.
- Utility / Limitations.
- Consistent PCA.
- Concatenated PCA.
- PCA of inter/intra subunit movements.
- P2X4 as example.
- Conclusions.

What does PCA do? (basically)

- Transform local coordinates to
 collective coordinates.
- Just a few collective coordinates explain most of protein fluctuations.
- Allows a reduction of the dimensionality.

How does it do that?

- Collect coordinates from a MD

$$
\mathbf{X}_{\substack{k}}^{\substack{\text { Indicates } \\ \text { time }}}\left\{\mathcal{X}_{1}^{k}, \mathcal{X}_{2}^{k}, \ldots, \mathcal{X}_{N}^{k}\right\}
$$

Number of samples

How does it do that

- Compute the correlation matrix
(covariance matrix too)

$$
\mathbf{C}=\left(\begin{array}{ccc}
C_{11} & \cdots & C_{1 N} \\
\vdots & \ddots & \vdots \\
C_{N 1} & \cdots & C_{N N}
\end{array}\right) \quad C_{i j}=\frac{1}{N} \sum_{k=1}^{N_{S}}\left(x_{i}^{k}-\bar{x}_{i}\right) \cdot\left(x_{j}^{k}-\bar{x}_{j}\right)
$$

$C_{i j}=-1 \quad-1 \leq C_{i j} \leq-0.7$
$\left|C_{i j}\right| \approx 0$
$0.7 \leq C_{i j} \leq 1$
$C_{i j}=1$

How does it do that?

- Diagonalize the correlation matrix

Eigenvectors of matrix \mathbf{C}

Orthonormal
Constitute a basis set

Example in 2D

$$
\begin{aligned}
& \mathbf{C}=\left(\begin{array}{cc}
\frac{1}{N_{s}} \sum_{k=1}^{N_{s}}\left(x^{k}-\bar{x}\right)^{2} & \frac{1}{N_{s}} \sum_{k=1}^{N_{s}}\left(x^{k}-\bar{x}\right)\left(y^{k}-\bar{y}\right) \\
\frac{1}{N_{s}} \sum_{k=1}^{N_{s}}\left(x^{k}-\bar{x}\right)\left(y^{k}-\bar{y}\right) & \frac{1}{N_{s}} \sum_{k=1}^{N_{s}}(y-\bar{y})^{2}
\end{array}\right) \\
& \mathbf{V}_{1}=\binom{R_{11}}{R_{21}} \\
& \mathbf{V}_{2}=\binom{R_{21}}{R_{22}} \\
& \hline
\end{aligned}
$$

Meaning of eigenvalues and eigenvectors

- The i-eigenvalue measures the squared displacement on the direction of eigenvector \mathbf{v}_{i}

$$
\begin{aligned}
& \Delta v_{i}\left(t_{k}\right)=\mathbf{v}_{i} \cdot \Delta \mathbf{X}\left(t_{k}\right) \\
& \lambda_{i}=\frac{1}{N_{s}} \sum_{k=1}^{N_{S}}\left(\Delta v_{i}\left(t_{k}\right)\right)^{2}
\end{aligned}
$$

The importance of the eigenvalues

$$
\begin{gathered}
\mathbf{C}=\left(\begin{array}{ccc}
C_{11} & \cdots & C_{1 N} \\
\vdots & \ddots & \vdots \\
C_{N 1} & \cdots & C_{N N}
\end{array}\right) \quad \Delta=\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{N}
\end{array}\right) \\
\operatorname{Tr}[\mathbf{C}]=\sum_{i=1}^{N} C_{i i}=\sum_{i=1}^{N}\left(\Delta x_{i}\right)^{2} \quad \operatorname{Tr}[\Delta]=\sum_{i=1}^{N} \lambda_{i}=\sum_{i=1}^{N}\left(\Delta v_{i}\right)^{2} \\
\text { Provides the sum of the squared fluctuations }
\end{gathered}
$$

Cartesian coordinates vs. Principal components

Individual squared fluctuations

Accumulated squared fluctuations

- Total fluctuations are concentrated in a few PC-modes (<20).
- Total fluctuations are equally distributed among all Cartesian coordinates (714).

Vectors of the essential space are able to describe important movements

- There are plenty of examples.

PCA vector 1 - hinge-bending mode

J. S. Hub and B. L de Groot,

Plos Comput. Biol. 5(8): e10004802009.

The essential space (subspace)

- Contains the most important eigenvectors
- How many are truly "essential"?
- The problem with defining a subspace.

$\left\{\Delta v_{1}, \Delta v_{2}\right\}$ and $\left\{\Delta v_{1}, \Delta v^{\prime}{ }_{2}\right\}$ span the same subspace

$\left\{\Delta v_{1}, \Delta v_{2}\right\}$ and $\left\{\Delta v^{\prime}{ }_{1}, \Delta v^{\prime}{ }_{2}\right\}$ do not span the same subspace

Are reproducible the main PC-modes?

- Run equivalent trajectories.
- Compute the PC-modes for each of them.
- Compute the scalar product for the PC-modes of 2 alternative runs.

$$
\left.\mathbf{V}_{i} \cdot \mathbf{V}_{j}^{\prime}=<{ }^{1} \begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right] \text { Ideally! }
$$

Are reproducible the essential spaces?

- Run equivalent trajectories.
- Compute the PC-modes.
- Compute the RMSIP for the ES of alternative runs.

$$
\text { RMSIP }=\frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{M} \mathbf{V}_{i} \cdot \mathbf{V}_{j}^{\prime}
$$ RMSIP $=\left\{\begin{array}{l}1 \text { if they span the } \\ \begin{array}{l}\text { same subspace } \\ 0 \text { if subspaces are } \\ \text { orthogonal }\end{array}\end{array}\right.$

Huge \# of trajectories System: BPTI

Increasing time does not solve the problem

Increasing time does not solve the problem

A simple way to improve the consistency of the PC-modes

- Concatenate equivalent trajectories!

Concatenated trajectory

How to check that it works?

- Estimate the RMSIP values that can be obtained using different number of concatenated trajectories

Results for BPTI

Set of 180 trajectories of $5 \mathrm{~ns} \quad$ Set of 80 trajectories of 50 ns

Results for lysozyme

Set of 180 trajectories of $5 \mathrm{~ns} \quad$ Set of 80 trajectories of 50 ns

RMSIP distributions

- Previous procedure affords statistically-independent RMSIP values.
- But for large n we obtain too few values.
- Too low variability.
- To get more variability
- Compute an even larger number of trajectories.
- Form alternative pairs of concatenated trajectories by selecting at random from this set.

RMSIP distributions

How to assess the convergence?

- If $n / 2$ trajectories provide good convergence, n trajectories provide good convergence, too.

Cumulative probabilities for RMSIPs obtained with n and $n / 2$ trajectories

Why does it work?

- We need to understand what can be expected from the PC-modes of a concatenated trajectory.
- "The essential dynamic analysis can be performed on a combined trajectory (constructed by concatenating the trajectories). This is a powerful tool to evaluate similarities and differences between the essential motions in different trajectories of the same protein. If the motions are similar, then the eigenvalues (and eigenvectors) coming from separate trajectories and from the combined trajectory should be similar."

Van Aalten et. al. Proteins: Structure, Function and Genetics, 22, 45-54, 1995.

The correlation matrix of concatenated trajectories

www.c-chem.org

$$
C^{A B C}=\frac{C^{A}+C^{B}+C^{C}}{3}+S^{A B C}
$$

CHEMISTRY \qquad
New Insights into the Meaning and Usefulness of Principal Component Analysis of Concatenated Trajectories
Gustavo Pierdominici-Sottile and Juliana Palma*

Itroduction

Principal component analysis (PCA) has been widely used to
characterize the dynamics of proteins since it allows to detect Characterize the dynamis of proteins since it allows to detect
imporanat tirections in their multidimensional configurational space. ${ }^{\text {[1] }}$ These directions are obtained from molecular dynam-
ics (MD) simulations by diagonalizing the corefation matrix ics (MD) simulations by diagonalizing the correlation matix
R2 Usually, few eigenvectors stand out for having eigenvalue for larger than the rest. Movements along these direction account for the largest structural variations of the peptidii
chain, describing the so-called essential dymamics (ED) of the protein. Motions along the remaining eigenvectors just corre.
spond to trivial, nearty Gaussian fluctuations. There have been spond to trivial, neary Gaussian fluctuations. There have bee
many discussions on the reliabilty, usefulness, and meaning
 been provided to assess their stability and convergence. ${ }^{111}$ The
main hypothesis of the apprach is that the E. main hypothesis of the approach is that the ED of a protein,
determined with PCA contains sthe motions relevant to its
function 1.2 This hypothesis has gained support form the build unction ${ }^{[2]}$ This hypothesis has gained support from the build up of MD studies that describe a close relationship between
the first eigenvectors of the correlation matrix and the funcional motions of several proteins. ${ }^{\text {P1 }}$. The PCA method is dosely related to quasiharmonic analysis, a method that pro-
des an affordable approach to compute configurational vides an afforabale approach to compute configurational correations between atomic fluctuations. More sophi cated procedures
beyond linearity.
II,
An extension of the PCA method consists of he correlation matrix obtained by concatenating two or more independent triectories each corresponding to an alternative mey Online Uibrar

位, the trajectores for the holo and apo forms of a protell he active and inactive forms of an enzyme, the open and tion states of a given protein subunit. It is known that the main eigenvectors of these combined correlation matrices
CCM) no longer describe the largest deformations of the con(CM) no longer describe the largest deformations of the con formations invoved Instead it has been asserted that they
highlight differences in the structure and dyyanics of the proeins under comparison. The occurrence of static moder
mong the eigenvectors of the cce cas freuently mong the eigenvectors of the CCM has frequently bee
teported (see for example Ref. (20-24). They are identified eigenvectors of the cCM for which the projections of the indr vidual trajectories differ significantly. To the best of our knowiedge, an analytical expression relat-
ng the CCM to the structures and correlation matrices of the ing the CCM to the structures and correlation matrices of the
ind widual trjectories involved has not been provided yet. his article, we present such formulas for the cases of twe three, and an arbitrary number of concatenated trajectories
We believe that they will be useful to enlighten the interpeta We believe that they will be useful to enighten the interpeet
tion of the results of combined-ED analysis and to guide its discussion. Among other things, these expressions allow to predict the number of static modes to be expected and afford
precise and clear meaning for the eigenvalues and directions f these eigenvectors.

G Perdaminci Sortile 1. Palma

Contract grant pposor con
O2014 Wieq Peridialis. Inc

Jourmal of Computational Chemisty 2014, Dol: 10.1002//cc 23811

The correlation matrix of concatenated trajectories

- Is the average of the individual correlation matrices plus the correlation matrix of the individual average structures.

Corr matrix of concat traj

Individual corr matrices

The correlation matrix of concatenated trajectories

$$
\mathbf{C}^{(2)}=\frac{\mathbf{C}^{A}+\mathbf{C}^{B}}{2}+\mathbf{S}^{(2)}
$$

Information about fluctuations observed in individual trajectories

Dynamic contribution

Information about differences in average structures.

Static contribution

If the static contribution dominates

For $n=2$ the \mathbf{S} matrix has a single eigenvector

If the static contribution dominates

$$
\mathbf{C}^{(3)}=\frac{\mathbf{C}^{A}+\mathbf{C}^{B}+\mathbf{C}^{C}}{3}+\mathbf{S}^{(3)}
$$

The $\mathbf{S}^{(3)}$ matrix has two eigenvectors.
They span the plane that contains the three average structures.

If the static contribution is negligible

$$
\begin{gathered}
\mathbf{C}^{(n)}=\frac{\sum_{i=1}^{n} \mathbf{C}^{(i)}}{n}+\mathbf{S}^{(n)} \\
\mathbf{C}^{(n)} \approx \frac{\sum_{i=1}^{n} \mathbf{C}^{(i)}}{n}
\end{gathered}
$$

The statistical error in the elements of $\mathbf{C}^{(n)}$ is that of the individual the $\mathbf{C}^{(i)}$ divided by $n^{1 / 2}$.

When is negligible $\mathbf{S}^{(n)}$?

- When the fluctuations of individual trajectories are much larger than differences between the average structures.

What happens if the trajectories are biased?

We can still have:
$\mathbf{C}^{(n)} \approx \frac{\sum_{i=1}^{n} \mathbf{C}^{(i)}}{n}$

How?

Why?

- Because correlation matrices are independent of the order of the samples
traj-A traj-B traj-C

Correlation matrices for concatenated trajectories

- For two o more separated free energy minima
- Are dominated by the static contributions.
- Little interest.
- For a single free energy minima
- Have reduced statistical uncertainty.
- Can be used to define consistent/reproducible PC-modes.
- For two or more connected free energy minima
- To be studied...

PC-MODES OF INTER / INTRA MOVEMENTS

Application to P2X4

$\mathrm{P} 2 \times 4$ is a membrane channel

- Activated by the union of three molecules of ATP
- It is a homotrimer §

Uncover inter-chain motions

Inter chain
M. D. Vesper and B. L de Groot, Plos Comput. Biol. 9(9): e1003232.

Uncover intra-chain deformations

Intra chain
deformations

Altogether account for all motions

Inter-chain motions

Intra-chain deformations

The opening of the pore

- Is mainly caused by inter-chain motions

	Measures narrowest part of the pore
$\mathbf{V}_{\mathrm{c} \rightarrow \mathrm{o}}$	$0.8 \rightarrow 3.60$
Intra-chain deformations	$0.8 \rightarrow 1.10$
Inter-chain movements	$0.8 \rightarrow 3.26$

- Does this movement occurs in the absence of ATP?

- The projection is large.
- Inter-chain motions are aligned with the $\mathbf{V}_{\mathrm{c} \rightarrow \mathrm{o}}$ vector.
- But...

The amplitude is not large enough

Possible role of ATP

The Dynamic Behavior of the $\mathrm{P}_{2} \mathrm{X}_{4}$ Ion Channel in the Closed Conformation

Gustavo Pierdominici-Sottile, ${ }^{1,{ }^{1+}}$ Luciano Moffatt, ${ }^{2}$ and Juliana Palma ${ }^{1}$
 Fiscica de bos
Afgentina
ABSTRACT We present the results of a detailed molecular dynamics study of the closed form of the P2X ${ }_{4}$ receptor. The fluctuations observed in the simulations were compared with the changes that occur in the transition from the closed to the open
structure. To get further insight on the opening mechanism, the actual displacements were decomposed into interchain motions and intrachain deformations. This analysis revealed that the iris-like expansion of the transmembrane helices mainly results from interchain motions that already take place in the closed conformation. However, these movements cannot reach the ampititude required tor the opening of the channel because they are impeded by interactions occurring around the ATP binding pocket. This
suggests that the union of ATP produces distortions in the chains that eliminate the restrictions on the interchain displacements, leading to the opening of the pore.

Conclusions

- We have established a clear meaning for concatenated PC-modes.
- We have shown that consistent / reproducible PC-modes can be obtained by concatenating equivalent trajectories.
- We have shown the usefulness of separating inter-chain from intra-chain displacements in analysing proteins with a quaternary structure.
- We have presented a hypothesis for the role of ATP in the activation of the P2X4 channel.

Acknowledgements

- Group

- Gustavo PierdominiciSottile.
- Rodrigo Cossio-Pérez.
- Vanesa Racigh.
- Agustín Ormazabal.

Acknowledgements

Thank you for your attention!

