Introduction to long range interactions: a theoretical physicist's view.

J. Barré

¹Laboratoire J.A. Dieudonné, U. of Nice-Sophia Antipolis ²Mathematics Department, U. of Orléans ³Institut Universitaire de France

Trieste, 07-2016

Thanks: the very many people I have been working with on this subject!

La Promenade des Anglais, by Raoul Dufy

(日)

Why this title?

- A theoretical physicist's view on Long Range Interactions (LRI):
 - My main interest: LRI induces common features in very different physical systems
 - \rightarrow it suits the natural tendency of the theoretical physicist's to look for "universality"
 - ightarrow scope of this conference
 - Similarities between different LRI systems are typically expressed through common underlying mathematical structure → there will be some hints to mathematics
 - I will try to keep emphasis on various physical systems. However: I do not claim to be competent in all the fields with LRI!

I. INTRODUCTION

1. On the definition

2. A lot of examples

3. Some basic remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

On the definition of Long Range Interactions

One finds many definitions in the literature; usually criteria can be expressed through the 2-body interaction potential V(r):

- 1. $V(r) \propto 1/r^{\alpha}$, with $\alpha < d$ =dimension. Then energy is not additive (see later).
- 2. $V(r) \propto 1/r^{d+\sigma}$, $0 < \sigma < \sigma_c(d)$. The long-range character then modifies the critical exponents.
- 3. V(r) falls off slower than exponentially. Correlations are then qualitatively different. E.g. : Van der Waals interactions.
- One can propose the definition of long range on the nanoscale starting with "extending beyond a single bond". R.H. French et al., Long range interactions in nanoscale science (Rev. Mod. Phys. 2010).

One conclusion: "What constitutes a long range as opposed to short range interaction depends primarily on the specific problem under investigation." R.H. French et al.

I will concentrate on definition 1:

1. $V(r) \propto 1/r^{\alpha}$, with $\alpha < d$ =dimension. Energy not additive.

However some ideas are relevant beyond these strong LRI.

NB: I have used the potential in the definition; one could think of using the force...

Some important examples

Fundamental interactions

- Newtonian gravity V(r) ∝ -¹/_r: paradigmatic example.
 → galactic dynamics, globular clusters, cosmology...
 Clearly: controlled experiments difficult!
- Coulomb interaction $V(r) \propto \frac{1}{r}$. -Non neutral plasma, systems of trapped charged particles: different experimental realizations.

-Neutral plasmas: huge importance of course.

- Effective interactions
 - Vortex-vortex in 2D fluids: $H \propto \ln r$.
 - Wave-particles: the wave acts as a global degree of freedom interacting with all particles.

E.g.: single wave model in plasma and fluid dynamics; free electron laser; cold atoms in cavity...

• colloids at interface + capillarity (A. Dominguez et al.)

Colloids (size $\sim \mu m)$ trapped at a fluid interface, subjected to an external vertical force.

 \rightarrow an effective long range attraction (or repulsion, depending on the external force)

For $r \leq \lambda$ and not too small

$$V_{
m eff}(r) \propto \ln rac{r}{\lambda} ~:~ \sim ~2{
m D} {
m gravity}!$$

 λ =capillary length, \sim mm. NB: Overdamped dynamics

• Chemotaxis

 ρ = concentration of bacteria; c = concentration of a chemical substance (chemo-attractant). Bacterial dynamics:

 $\partial_t \rho = D_1 \Delta \rho + \nabla \left(-\sigma \rho \nabla c \right)$: drift up the gradient of c

Chemo-attractant dynamics:

 $\partial_t c = D_2 \Delta c - \lambda c + \alpha \rho$: bacteries = source for c

 \rightarrow again models similar to overdamped 2D gravity. Huge related activity in mathematical biology.

• Cold atoms in a magneto-optical trap: multiple diffusion of light

Multiple diffusion and effective force

$$ightarrow - \vec{F_i} \propto \sum_j rac{\vec{r_i} - \vec{r_j}}{|\vec{r_i} - \vec{r_j}|^3}$$

The $1/r^2$ dependence of the force comes from the solid angle in 3D.

This is an oversimplification; more or less a "standard model" (Sesko, Walker, Wieman 1990).

• Cold atoms in a magneto-optical trap: shadow effect

Laser intensities decrease while propagating into the cloud \rightarrow effective force towards the center Weak absorption approximation: $\nabla \cdot \mathbf{F}_{Shadow} \propto -\rho$ (Dalibard 1988) \rightarrow Just like gravitation... but it does not derive from a potential!

• Self-organization in optical cavities (G. Morigi et al.)

Laser = far from atomic resonance \rightarrow conservative system as a first approximation.

Integrate over cavity degrees of freedom \rightarrow effective long-range interaction, of mean-field type, between atoms.

• Dipolar interactions in a Bose-Einstein condensate (O'Dell et al., 2000). BEC irradiated with intense off-resonant lasers \rightarrow dipolar interactions between atoms

Size of the cloud $\ll \lambda$ (laser's wavelength) \rightarrow near field approximation.

Averaging over lasers \rightarrow the $1/r^3$ dominant term is suppressed. The remaining term is $\propto 1/r$, attractive (possibly anisotropic).

 \rightarrow gravity-like force

NB: quantum system; description by Gross-Pitaevskii equation. NB: extra oscillating terms due to interferences neglected here...

ヨト ▲ ヨト ヨ → の ۹ (~

• Active particles and thermophoresis (R. Golestanian 2012) Colloidal particles with (partial) metal coating

Thermophoretic effect \rightarrow move up (or down) the temperature gradient

Metal absorbs laser light \rightarrow particles are "temperature sources"

 \rightarrow Again, an overdamped "gravity-like" dynamics

• Eigenvalues of random matrices. Eg. complex Ginibre ensemble. Each entry of A (size $n \times n$) is $A_{kl} = X_{kl} + iY_{kl}$, Xs and Ys are independent, law $\mathcal{N}(0, 1/2)$. The eigenvalues z_k of A have joint probability density:

$$P(Z_1,\ldots,z_n) \propto \prod_{k=1}^n e^{-|z_k|^2} \prod_{1 \le k < l \le n} |z_k - z_l|^2$$
$$\propto \exp\left[-\left(\sum_k |z_k|^2 - 2\sum_{k,l} \ln |z_k - z_l|\right)\right]$$

 \rightarrow analogous to a 2D Coulomb gas confined in an harmonic trap!

• There are similar laws for other random matrix ensembles. Intense mathematical activity related to determinantal processes.

▶ Trapped free fermions, 1D harmonic trap Pauli exclusion principle \rightarrow

 $|\Psi_0(x_1,\ldots,x_n)|^2 \propto e^{-\alpha^2 \sum_k x_k^2} \prod_{k<l} |x_k-x_l|^2$

where $\Psi_0 =$ ground state wave function.

 Stellar dynamics around a massive black hole (Tremaine, Sridhar and Touma...)

-Short time scales = Keplerian dynamics of stars around the black hole

-Longer time scales : interaction between stars (+relativistic corrections+...)

Averaging over short time scales \rightarrow an effective system of "interacting orbits"

Toy models

- ► Underlying idea: long range interactions have similar effects in different systems, leading to some "universal" properties → it makes sense to use toy models to illustrate, or study in details these properties more easily...
- Indeed has been used for a long-time : see Thirring's models to illustrate peculiarities of equilibrium statistical mechanics.
- THE toy model: HMF (= mean-field XY model + kinetic term)

$$H = rac{1}{2} \sum_{i=1}^{N} p_i^2 + rac{K}{N} \sum_{i=1}^{N} [1 - \cos(heta_i - heta_j)]$$

Very useful; of course it goes with all the caveats regarding toy models... • I am of course ignorant in most of these fields!

 \rightarrow Please react if I am not as accurate as I should when I say a few words about some of them

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Concentrate on classical physics; apologies to quantum physicists.

Some concepts might still be relevant for quantum systems.

Some basic remarks

Specific difficulties of LRI: one particle interacts with many others...

- impossible to cut the system in almost independent pieces.
 Related difficulty: no distinction bulk/boundary
- \blacktriangleright numerical problem: with a naive algorithm, each type step costs $\propto \mathit{N}^2$

Also specific advantages:

One particle interacts with many others

 \rightarrow fluctuations suppressed; law of large numbers, Central Limit Theorem, large deviations...

Related idea: "mean-field" should be a very good approximation

II. EQUILIBRIUM STATISTICAL MECHANICS

1. On scaling, extensivity, (non) additivity

2. On the mean field approximation

3. Examples and discussions

Equilibrium statistical mechanics

N long-range interacting particles or N spins on a lattice:

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i \neq j} V(x_i - x_j) \text{ or } H = -J \sum_{i \neq j} \frac{S_i S_j}{|i - j|^{\alpha}}$$

Microcanonical equilibrium, fixed energy E:

$$d\mu_M\left(\{x_i, p_i\}_{i=1,\dots,N}\right) \propto \delta[E - H(\{x_i, p_i\})] \prod_i dx_i dp_i$$

Canonical equilibrium, fixed inverse temperature $\beta = 1/T$:

 $d\mu_{C}\left(\{x_{i},p_{i}\}_{i=1,\ldots,N}\right)\propto\exp\left[-\beta H(\{x_{i},p_{i}\})\right]\Pi_{i}dx_{i}dp_{i}$

Special features of LRI, scaling

• In the usual "Thermodynamic limit" $N \to \infty$, fixed density \to potential energy $\gg N$.

Whereas entropy $\propto N$.

 \rightarrow potential energy always wins, at any T > 0, the system is in the ground state (possibly singular) when $N \rightarrow \infty$!

• True, but not very interesting. Rather than looking for any large N limit, we should look for something independent of N in the large N limit.

Compare

$$\lim_{N\to\infty} u(N) = 0 \text{ and } \lim_{N\to\infty} Nu(N) = c.$$

Special features of LRI, scaling

• In the usual "Thermodynamic limit" $N \to \infty$, fixed density \to potential energy $\gg N$.

Whereas entropy $\propto N$.

 \rightarrow potential energy always wins, at any T>0, the system is in the ground state (possibly singular) when $N\rightarrow\infty!$

• True, but not very interesting. Rather than looking for any large N limit, we should look for something independent of N in the large N limit.

Other example:

$$u(a, N) = \frac{a}{N} + \frac{1}{N^2} \rightarrow \text{ scalings i})a \text{ fixed, or ii})\tilde{a} = Na \text{ fixed}$$

Special features of LRI, scaling

• In the usual "Thermodynamic limit" $N \to \infty$, fixed density \to potential energy $\gg N$.

Whereas entropy $\propto N$.

 \rightarrow potential energy always wins, at any T > 0, the system is in the ground state (possibly singular) when $N \rightarrow \infty$!

• True, but not very interesting. Rather than looking for any large N limit, we should look for something independent of N in the large N limit.

We will see several examples in the following.

Scaling, examples

• Example: scaling for spin systems (1D, $0 \le \alpha < 1$)

$$H = \frac{1}{2\tilde{N}_{\alpha}} \sum_{i \neq j} \frac{-S_i S_j}{|i-j|^{\alpha}} \text{ with } \tilde{N}_{\alpha} \propto N^{1-\alpha}$$

Or, equivalently, scale the temperature...

• **Example:** scaling for self gravitating systems. Microcanonical: $\frac{V^{1/3}E}{GM^2}$ fixed (V =volume, M = total mass); there are several ways to enforce this scaling

The short range singularity should be regularized...

• Example: neutral plasmas.

Same short-range singularity. Once it is regularized, there is a well-defined thermodynamic limit! (Lebowitz, Lieb, Narnhofer)

Extensivity: energy proportional to N, or to the volume V. Does not make much sense without a specified scaling. Choosing a scaling may restore extensivity (good to compare with entropy).

Non additivity:

 \rightarrow no phase separation possible in the usual sense

Extensivity: energy proportional to N, or to the volume V. Does not make much sense without a specified scaling. Choosing a scaling may restore extensivity (good to compare with entropy).

Non additivity:

$$S_1$$
 S_2
 $E_{tot} \neq E_1 + E_2$

 \rightarrow no phase separation possible in the usual sense And: phase separation \Rightarrow entropy concave

$$e = xe_1 + (1-x)e_2 \Rightarrow S(e) \ge xS(e_1) + (1-x)S(e_2)$$

Extensivity: energy proportional to N, or to the volume V. Does not make much sense without a specified scaling. Choosing a scaling may restore extensivity (good to compare with entropy).

Non additivity:

 \rightarrow no phase separation possible in the usual sense Furthermore: free energy = Legendre transform of entropy; this operation is invertible only if the entropy is concave...

Extensivity: energy proportional to N, or to the volume V. Does not make much sense without a specified scaling. Choosing a scaling may restore extensivity (good to compare with entropy).

Non additivity:

 \rightarrow no phase separation possible in the usual sense

 \rightarrow no reason for equivalence between canonical and microcanonical ensembles

cf Hugo Touchette's talk.

Special features of LRI: about mean field approximation

- One particle interacts with many others
- \rightarrow a mean field description should be very good, fluctuations small Correct intuition: in a well chosen scaling limit, a mean-field theory often becomes exact.
- \rightarrow for instance, always classical critical exponents
- A perfectly suited mathematical tool: large deviation theory.
- Caveats:

-strong fluctuations close to second order phase transitions -sometimes a short-range singularity together with the long-range character (eg: gravitation)

-short range interactions can bring additional correlations -more than one scaling may be relevant (see the non neutral plasma case).

Self gravitating systems, chief example. Regularities in the structures of galaxies → natural to think of a statistical physics argument (I am being naive here, see later!).
 Difficulties with both the absence of confinement and the short range singularity.

-Main features (microcanonical): beyond a certain central density, no equilibrium state any more, even metastable \rightarrow "gravothermal catastrophe".

-Beautiful theory, but seems difficult to find clear situations where it is applicable; I don't know everything here! Some explanations later.

 Self-gravitating systems: models of interacting orbits (Tremaine, Sridhar, Touma...); may be a nice application of equilibrium statistical mechanics?

• Vortices (first study by Onsager); $x_i \in \mathbb{R}^2$

$$H^{N} = -\frac{1}{2\pi} \sum_{i < j} \ln |x_i - x_j|$$

Qualitatively very useful predictions: it may be statistically favorable to form large scale structures!

- Another effective model: wave + particles description of a plasma (Escande, Elskens, Firpo...)
- -Plasma + Langmuir wave \sim non resonant bulk + resonant particles
- \rightarrow effective description: wave + resonant particles
- -Classical question: when does the wave damps completely?

-Elskens-Firpo: a statistical mechanics answer. Not sure it is quantitatively accurate...

• Non neutral plasmas (in Penning traps for instance). Simplified version:

$$H^{N} = \frac{1}{2} \sum_{i \neq j} \frac{1}{|x_{i} - x_{j}|} + \frac{1}{2} \sum_{i} x_{i}^{2}$$

Balance between trap and interaction \rightarrow typical size $R \propto N^{1/3}$. Ground state at mean-field level = uniformly charged sphere, radius R.

Absolute ground state = ordered configuration.

Next order: local correlations

• Non neutral plasmas (in Penning traps for instance). Simplified version:

$$H^{N} = \frac{1}{2} \sum_{i \neq j} \frac{1}{|x_{i} - x_{j}|} + \frac{1}{2} \sum_{i} x_{i}^{2}$$

Balance between trap and interaction \rightarrow typical size $R \propto N^{1/3}$. Ground state at mean-field level = uniformly charged sphere, radius R.

Absolute ground state = ordered configuration.

First scaling: $\beta N^2/L$ fixed

 \rightarrow Describes the cloud's shape, cross-over from gaussian to mean-field ground state; no phase transition.

• Non neutral plasmas (in Penning traps for instance). Simplified version:

$$H^{N} = \frac{1}{2} \sum_{i \neq j} \frac{1}{|x_{i} - x_{j}|} + \frac{1}{2} \sum_{i} x_{i}^{2}$$

Balance between trap and interaction \rightarrow typical size $R \propto N^{1/3}$. Ground state at mean-field level = uniformly charged sphere, radius R.

Absolute ground state = ordered configuration.

Second scaling: β fixed.

 \rightarrow The system is in its ground state at mean-field level; β controls the non trivial local correlations; phase transition possible.

• Non neutral plasmas (in Penning traps for instance). Simplified version:

$$H^{N} = \frac{1}{2} \sum_{i \neq j} \frac{1}{|x_{i} - x_{j}|} + \frac{1}{2} \sum_{i} x_{i}^{2}$$

Balance between trap and interaction \rightarrow typical size $R \propto N^{1/3}$. Ground state at mean-field level = uniformly charged sphere, radius R.

Absolute ground state = ordered configuration.

 \rightarrow Example where two different scalings are interesting!

Side note: understanding this type of "absolute ground state" -and the phase transition- is a long-standing mathematical problem.
Some conclusions

- ► Many universal features related to the long range character of the interactions (see also Hugo Touchette's talk): non additivity, inequivalence between statistical ensembles (→ peculiar phase transitions), negative specific heat,...
- Beautiful theory, but... (my opinion) there are not that many experimentally meaningful applications of equilibrium statistical mechanics with long-range interactions.
- There is a good reason for this: very slow relaxation times!
 → kinetic theory

III. KINETIC THEORY

- 1. Hamiltonian case
 - Collisionless equations and their properties
 - Secular evolution and collisional equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. Non Hamiltonian case

Kinetic theory, Hamiltonian case

• Boltzmann picture (short range interaction): rare collisions that have a strong impact f(x, y, t) = one point distribution function

f(x, v, t) = one-point distribution function

 $\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \mathcal{C}(f, f)$

This is again obtained in a specific scaling when $N \to \infty$: Boltzmann-Grad scaling.

• Long-range interactions: "collisions" not rare! Instead: law of large numbers \rightarrow a dynamical mean field equation, in a well chosen scaling limit.

Examples of collisionless kinetic equations

• Point charged particles \rightarrow Vlasov-Poisson equation

 $\partial_t f + \mathbf{v} \cdot \nabla_x f - \nabla_x \Phi \nabla_v f = 0$, with $\Delta \Phi = 1 - \rho$

▶ Point masses → Vlasov-Newton (collisionless Boltzmann)

 $\partial_t f + \mathbf{v} \cdot \nabla_x f - \nabla_x \Phi \nabla_\mathbf{v} f = 0$, with $\Delta \Phi = \rho$

• Point vortices \rightarrow 2D Euler equation

 $\partial_t \omega + (\vec{u} \cdot \nabla) \omega = 0$, with $\omega = -\Delta \Psi$, $\vec{u} = -\nabla^{\perp} \Psi$.

• Particles + wave \rightarrow Vlasov + wave

Examples of collisionless kinetic equations

• Point charged particles \rightarrow Vlasov-Poisson equation

 $\partial_t f + \mathbf{v} \cdot \nabla_x f - \nabla_x \Phi \nabla_v f = 0$, with $\Delta \Phi = 1 - \rho$

► Point masses → Vlasov-Newton (collisionless Boltzmann) $\partial_t f + \mathbf{v} \cdot \nabla_x f - \nabla_x \Phi \nabla_v f = 0$, with $\Delta \Phi = \rho$

• Point vortices \rightarrow 2D Euler equation $\partial_t \omega + (\vec{u} \cdot \nabla) \omega = 0$, with $\omega = -\Delta \Psi$, $\vec{u} = -\nabla^{\perp} \Psi$.

Other example: light propagation in a non linear non local medium → a Vlasov regime starting from Non Linear Schrödinger (Picozzi et al.)!

Conclusion: These different collisionless kinetic equations have similar properties

 \rightarrow another striking example of universality induced by LRI.

On the mathematical status of these equations, 1

• Formal derivation easy: "mean-field approximation"; + hints that mean-field should be "good", and in fact one would like to say something like "Vlasov equation becomes exact in the $N \to \infty$ limit". Is it true, and in which sense? Starting point:

Central quantity: empirical density \hat{f}^N

$$\hat{f}^N(x,v,t) = \frac{1}{N} \sum_i \delta(x-x_i(t)) \delta(v-v_i(t))$$

Can we say that $\hat{f}^N(x, v, t)$ is close to f(x, v, t), solution of the Vlasov equation with initial condition f(x, v, t = 0) close to $\hat{f}^N(x, v, t = 0)$?

On the mathematical status of these equations, 2

Key observations:

i) \hat{f}^N is itself a solution of Vlasov equation

ii) Take f_1 and f_2 two solutions of Vlasov equation, then for some constant C (C depends on the interaction force K), and some well chosen distance d

 $d(f_1(t), f_2(t)) \leq d(f_1(t=0), f_2(t=0))e^{Ct}$

 \rightarrow a theorem for regular interactions (Neunzert, Dobrushin, Braun and Hepp 70's)

A theorem

Main hypothesis: *K* and its derivative are assumed bounded. **Then:** Take a sequence of initial condition for the *N* particles that tends to f_0 when $N \to \infty$, any fixed time *T* and any $\varepsilon > 0$. Call f(t) the solution of Vlasov equation with initial condition f_0 . Then for any $N > N_c(T, \varepsilon)$, and any time $t \le T$

 $d(\hat{f}^N(t), f(t)) \leq \varepsilon$

Remarks:

i) No average needed: take any initial condition close to f_0 , the empirical density follows closely Vlasov equation, for any realization.

ii) Vlasov dynamics OK for large N for a fixed time horizon \rightarrow the asymptotic behavior of the particles' dynamics may not be given by making $t \rightarrow \infty$ in the Vlasov dynamics!

iii) From the proof, it appears that N_c may increase very fast with $T_{...}$

On singular interactions

Many interesting interactions are actually singular... \rightarrow a mathematical problem, and also a numerical one for people trying to approximate Vlasov equation with particles. Some contributions:

- From point vortices to 2D Euler (Goodman et al.): logarithmic singularity still "acceptable"
- Singular forces with K(x) ~ 1/|x|^α, α < 1 (averaging techniques, Hauray and Jabin); Coulomb not included!</p>
- Kiessling: a kind of "if theorem" for the Coulomb case. If some quantity is bounded uniformly in N, then...
- Pickl, Boers, Lazarovici (2015): up to the Coulomb case (with small N dependent cut-off), making use of "probabilistic" degrees of freedom.

Qualitative features

Transport \rightarrow phase space filamentation (phase mixing). Example with periodic boundary conditions:

Qualitative features

Example with a non trivial potential

・ロト ・個ト ・モト ・モト

æ

Qualitative features

Example of 2D Euler evolution (perturbation of a shear flow, simulation H. Morita).

Vlasov-Poisson equation is a world in itself; it is of course crucial for plasma physics. I will discuss some generic properties of Vlasov or related equations.

Some properties of Vlasov-like equations

$$\partial_t f + v \cdot \nabla_x f - \nabla_x \left(\iint V(x-y)f(y,v,t)dydv \right) \cdot \nabla_v f = 0$$

- Inherited from the particles: conservation of energy, momentum...
- Many more conserved quantities (Casimirs)

$$\frac{d}{dt}\int C(f)dxdv=0\ ,\ {\rm for\ any\ function\ }C.$$

Not directly inherited from conserved quantities for the particles.

► In particular, the volume of each level set of f is conserved → Vlasov dynamics = mixing of these level sets, involves finer and finer scales.

On stationary solutions

- Many stationary solutions; statistical equilibrium = only one of these. Ex.: f(v), homogeneous in space, constant potential → stationary for any f.
- \blacktriangleright Constructing stationary solutions from conserved quantities: critical points of conserved quantities are stationary! \rightarrow look for extrema of

$$\iint C(f) + \beta H[f] + \alpha \iint f$$

May be a useful point of view to investigate stability.

- Clearly: No approach to statistical equilibrium.
- ► → Important question: what is the asymptotic behavior of a Vlasov-like equation? Difficult problem...

Asymptotic behavior of Vlasov equation

• Linearize around stationary solution.

 λ eigenvalue $\to -\lambda, \lambda^{\star}, -\lambda^{\star}$ also eigenvalues... \to no asymptotic stability in the usual sense.

• Yet, for stable stationary states, a kind of exponential stability: Landau damping.

- discovered in plasma physics (1946)
- now a fundamental concept in galactic dynamics
- related to the inviscid damping in 2D fluids (known before Landau)
- + many other instances, including non Hamiltonian ones (synchronization models, bubbly fluids...)
- \rightarrow again, a universal concept.

Asymptotic behavior of Vlasov equation

Question: Take an initial condition f(t = 0); what can we say about $f(t \to \infty)$?

An old question in physics; recently a hot mathematical topic.

i) Dynamical system approach: perturbation theory, builds on linear theory. Ideas from non linear dynamical systems.

Drawback: validity a priori limited to neighborhoods of stationary states.

ii) Stat. mech. approach: an equilibrium statistical mechanics that would take into account the dynamical constraints of Vlasov equation (pioneered by Lynden-Bell in astrophyics).

iii) Other ideas: mix the previous ones; try to take into account as much dynamics as possible.

• Non linear stability (starting with Antonov): uses a variational approach, stationary states seen as critical points of a conserved functional.

Typical result: criteria for stability (if f(t = 0) is close to some f_{stat} , then f(t) remains close to f_{stat}) Example: take a stationary solution of Vlasov-Newton equation, of the form

$$f = F_0(E) = \varphi \frac{v^2}{2} + \phi(x)$$
, with $\Delta \Phi(x) = 4\pi G \int f dv$ and $F'_0 < 0$;

then f is stable.

NB: no precise information on the dynamics, filamentation process (and Landau damping) overlooked; mathematically: involves norms without derivative.

• Non linear Landau damping: Landau damping = comes from the linearized Vlasov equation. Example, close to a homogeneous stationary state $f_0(v)$, write $f = f_0 + \delta f$:

$$\partial_t \delta f + v \partial_x \delta f - \partial_x \left(\int V(x - y) \delta f(y, v') dv' \right) f'_0(v) = \\ \partial_x \left(\int V(x - y) \delta f(y, v') dv' \right) \partial_v \delta f$$

Linearized Vlasov equation: should be OK for "small" δf . The non linear term becomes larger and larger because of filamentation \rightarrow ?? Important remark: the mathematical meaning of "close" and "small" is crucial!

- Mouhot-Villani theorem (2010): if the perturbation is small enough (in a very strong manner), the perturbed potential tends to 0 exponentially, with Landau rate. NB: δf does not tend to 0.
- Lin-Zheng (2011): if one measures the smallness of δf in a less demanding way, there are undamped solutions arbitrarily close to f₀ (there is a precise regularity threshold).

 Stable stationary state, beyond Landau damping: when the perturbation exceeds a certain threshold, damping is incomplete; excitation of non linear solutions known as Bernstein-Greene-Kruskal modes (Manfredi, Lancellotti-Dorning).

Simulations by G. Manfredi (1997).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Stable stationary state, beyond Landau damping: when the perturbation exceeds a certain threshold, damping is incomplete; excitation of non linear solutions known as Bernstein-Greene-Kruskal modes (Manfredi, Lancellotti-Dorning).
- Weakly unstable stationary state: does the instability saturate, and how? An old question, which is actually a complicated bifurcation problem. For homogeneous stationary state, many contributions (O'Neil, Crawford, Del-Castillo-Negrete...)
 One conclusion: a universal weakly non linear dynamics, governed by the "Single Wave Model".

Side remark: Yet, the "Single Wave Model" is less universal than Landau damping... (eg: Kuramoto model).

 \rightarrow Question: could one classify more precisely these bifurcations with continuous spectrum?

- Stable stationary state, beyond Landau damping: when the perturbation exceeds a certain threshold, damping is incomplete; excitation of non linear solutions known as Bernstein-Greene-Kruskal modes (Manfredi, Lancellotti-Dorning).
- Weakly unstable stationary state: does the instability saturate, and how? An old question, which is actually a complicated bifurcation problem. For homogeneous stationary state, many contributions (O'Neil, Crawford, Del-Castillo-Negrete...)
 One conclusion: a universal weakly non linear dynamics, governed by the "Single Wave Model".
- Non homogeneous stationary state: different physics, technical difficulties (PhD thesis of David Métivier, with Y. Yamaguchi).
- Response theories (Ogawa-Yamaguchi, Patelli et al.)
- \rightarrow a very rich problem, with still plenty to explore. The vert a_{a} and a_{a} and a

Statistical mechanics approach

Far from linear regime: out of reach for dynamical systems techniques.

Another approach: statistical mechanics.

Rationale: regularities in the structure of galaxies; it is natural to think of a statistical mechanics argument. Yet, we know that the equilibrium stat. mech. of the N particles is irrelevant...

Idea (Lynden-Bell, 68): could one define an equilibrium for Vlasov dynamics?

Basic ingredient: Vlasov dynamics preserves all level volumes of f. Basic assumption: we have to look for the "most disordered" state compatible with all constraints.

 \rightarrow describe the state by a probability distribution on the levels at each point (*x*, *v*), and maximize the entropy of this "field of pdf", under constraints.

Statistical mechanics approach

Far from linear regime: out of reach for dynamical systems techniques.

Another approach: statistical mechanics.

Rationale: regularities in the structure of galaxies; it is natural to think of a statistical mechanics argument. Yet, we know that the equilibrium stat. mech. of the N particles is irrelevant...

Idea (Lynden-Bell, 68): could one define an equilibrium for Vlasov dynamics?

Some comments:

-A beautiful idea, which sometimes gives qualitatively useful predictions.

-The assumption of a maximum mixing is far from verified in general.

-A similar approach has been developed in 2D fluid dynamics

Statistical mechanics approach

Far from linear regime: out of reach for dynamical systems techniques.

Another approach: statistical mechanics.

Rationale: regularities in the structure of galaxies; it is natural to think of a statistical mechanics argument. Yet, we know that the equilibrium stat. mech. of the N particles is irrelevant...

Idea (Lynden-Bell, 68): could one define an equilibrium for Vlasov dynamics?

Mixed approaches: try to take into account as much dynamics as possible...

Relate initial conditions and final state by assuming a "not too violent" transient (Ex: De Buyl et al., Pakter-Levin).

A parametric resonance during the transient dynamics (Levin, Pakter et al.) \rightarrow a succesful theory of core-halo structures (if not "universal" feature, commonly observed...)

Beyond Vlasov equation

Particles: should approach statistical equilibrium when $N \rightarrow \infty$. **Questions:** How to describe this approach to equilibrium? On which timescale?

Vlasov equation = mean field dynamics; particles dynamics = mean-field + fluctuations Formal analysis of these fluctuations \rightarrow Balescu-Lenard equation (plasma physics)

$$\partial_t f = \frac{C}{N} \int d^3 \mathbf{k} \, \mathbf{k} \cdot \nabla_{\mathbf{v}} \int d\mathbf{v}' \frac{\tilde{V}^2(\mathbf{k})}{|\epsilon(\mathbf{k}, \mathbf{k} \cdot \mathbf{v})|^2} \delta(\mathbf{k} \cdot \mathbf{v} - \mathbf{k} \cdot \mathbf{v}') \mathbf{k} \cdot (f(\mathbf{v}') \nabla_{\mathbf{v}} f - f(\mathbf{v}) \nabla_{\mathbf{v}'} f)$$

"Collisions" \rightarrow approach to equilibrium on a long time scale No mathematical proof: much more difficult than Vlasov, because it encodes the passage time reversible/ irreversible!

About Balescu-Lenard equation

► Timescale: ~ N\(\tau_{dyn}\); ~ (N/ \ln N)\(\tau_{dyn}\) for 3D Coulomb or Newton cases.

 \rightarrow a very important piece of information, to decide whether to describe a system with Vlasov equation, or equilibrium statistical mechanics.

- ► Basic physical mechanism: resonances → fluxes in velocity (or actions) space.
- For a homogeneous background: Balescu-Lenard equation well established.

Non homogeneous backgrounds (crucial in astrophysics!): technical difficulties; subject of current research (Luciani-Pellat 1987, Heyvaerts, Pichon, Fouvry, Chavanis, Tremaine, Bennetti, Marcos...)

Question: standard techniques rely on the integrability of the background potential; what can we say when it is not integrable?

Dynamical evolution, summary

- 1. Initial conditions (out of equilibrium)
- 2. Fast evolution, on Vlasov timescale \rightarrow "Quasi-stationary state"

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 3. Slow "collisionnal" relaxation (Balescu-Lenard)
- 4. Statistical equilibrium

Kinetic theory - Non Hamiltonian systems

With a friction $-\gamma v$ and a noise $\eta(t)$:

$$\dot{x}_i = v_i \dot{v}_i = \frac{1}{N} \sum_{j \neq i} K(x_i - x_j) - \gamma v_i + \sqrt{2D} \eta_i(t)$$

"Kinetic" equation: Vlasov-Fokker-Planck

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f - (\mathbf{K} \star \int f d\mathbf{v}) \cdot \nabla_{\mathbf{v}} f = \nabla_{\mathbf{v}} \cdot (\gamma \mathbf{v} f + D \nabla_{\mathbf{v}} f)$$

• Side remark: what is really f? -Limit of the empirical density $\frac{1}{N}\sum_i \delta(x - x_i)\delta(v - v_i)$? -Limit of the one-particle distribution function? Same thing if the particles distribution is "chaotic", ie $f^{(2)}(z_1, z_2) \rightarrow f(z_1)f(z_2)$

Kinetic theory - Non Hamiltonian systems

With a friction $-\gamma v$ and a noise $\eta(t)$:

$$\dot{x}_i = v_i \dot{v}_i = \frac{1}{N} \sum_{j \neq i} K(x_i - x_j) - \gamma v_i + \sqrt{2D} \eta_i(t)$$

"Kinetic" equation: Vlasov-Fokker-Planck

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f - (\mathbf{K} \star \int f d\mathbf{v}) \cdot \nabla_{\mathbf{v}} f = \nabla_{\mathbf{v}} \cdot (\gamma \mathbf{v} f + D \nabla_{\mathbf{v}} f)$$

• Mathematical status of VFP equation: Empirical density \hat{f}^N not a solution of VFP... but not far \rightarrow convergence to a solution of VFP when $N \rightarrow \infty$, under regularity hypotheses for the force again. Dynamical evolution, summary (2)

Friction \rightarrow new time scale.

 \rightarrow competition between dynamical $\tau_{dyn},$ relaxation $\tau_{rel} \gg \tau dyn$ and friction τ_{fric} time scales.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Dynamical evolution, summary (2)

Friction \rightarrow new time scale.

 \rightarrow competition between dynamical τ_{dyn} , relaxation $\tau_{rel} \gg \tau dyn$ and friction τ_{fric} time scales.

i) $\tau_{fric} \gg \tau_{rel}$: no change to the Hamiltonian phenomenology, until $t \sim \tau_{fric}$.

Possible physical example: some globular clusters

ii) $\tau_{dyn} \ll \tau_{fric} \ll \tau_{rel}$ Quasi-stationary state driven towards equilibrium (or other) by Fokker-Planck operator.

Possible physical example: galactic evolution? (external actions are much more complicated than friction + noise though!))

iii) $\tau_{fric} \ll \tau_{dyn}$ Fokker-Planck operator hides Vlasov dynamics.

Possible physical example: a dynamical regime of Magneto-optical traps.

Beyond Vlasov-Fokker-Planck, 1

- \bullet Vlasov-Fokker-Planck equation \simeq law of large numbers.
- \rightarrow finite *N* fluctuations?
- For simplicity, I will consider the Mac-Kean-Vlasov (overdamped) setting

$$\dot{x}_i = \frac{1}{N} \sum_{i=1}^{N} K(x_i - x_j) + \sqrt{2D} \eta_i(t)$$

Central object: empirical density

$$\hat{\rho}_N = \frac{1}{N} \sum_i \delta(x - x_i(t))$$

Law of large numbers: with high probability, $\hat{\rho}_N(t)$ is close to $\rho(t, x)$, solution of Mac-Kean-Vlasov equation

$$\partial_t \rho = \nabla \cdot \left(-(K \star \rho)\rho + D \nabla \rho \right)$$

Beyond Vlasov-Fokker-Planck, 2

Large deviations: what is the probability that $\hat{\rho}_N(t)$ is close to some ρ that is **not** solution of Mac-Kean-Vlasov equation?

 $\mathbb{P}(\hat{\rho}_{N} \approx \rho) \asymp e^{-NI_{[0,T]}[\rho]}$, with

$$I_{[0,T]}[\rho] = \frac{1}{4D} \int_0^T \left[\inf_{j, \ \partial_t \ \rho + \nabla \cdot j = 0} \int \frac{[j - (K \star \rho)\rho + D\nabla \rho]^2}{\rho} dx \right] dt$$

Formal noisy PDE version:

$$\partial_t \hat{\rho}_N + \nabla \left(-D\nabla \hat{\rho}_N + (K \star \hat{\rho}_N) \hat{\rho}_N \right) = \nabla \left(\sqrt{\frac{\hat{\rho}_N}{N}} \eta(x, t) \right)$$

 \rightarrow we are ready for "macroscopic fluctuation theory" (Bertini et al.)

Conclusions

- This was a personal view on long-range interactions. There are probably many others.
- Guiding idea: common features due to long-range interactions Of course, there are many caveats when comparing systems as different as galaxies, colloids and cold atoms...
- Nevertheless: we all have a lot to share and to learn by mixing people from different fields with long range interactions, such as in this conference!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Perturbing a non homogeneous stationary state of the Vlasov equation

Co-authors: David Métivier (U. of Nice, France) and Yoshiyuki Yamaguchi (U. of Kyoto, Japan)

Question: Start close to a stationary state, stable, or weakly unstable. What can we say about the dynamics, using dynamical systems methods?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Context

Vlasov equation:

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f - \nabla_{\mathbf{x}} \Phi \cdot \nabla_{\mathbf{v}} f = 0 , \ \Phi = \int V(x-y) f(y,v) dy \ dv.$$

Long-range interacting systems described by Vlasov equation over time scales that diverge with N

 \rightarrow the asymptotic dynamics of Vlasov equation may be relevant for some particles systems

- Approach followed here: "dynamical systems"; ie: study stationary state, linear and non linear stability, weakly non linear dynamics...
- ► Weakly non linear dynamics close to a homogeneous stationary state F₀(v): a long story, now relatively well understood.

This work: non homogeneous $F_0(x, v)$.

An astrophysical motivation

Radial Orbit Instability: take a family of spherically symmetric stationary state of the gravitational Vlasov-Poisson equation, depending on a parameter α .

Few low angular momentum stars (large α) \rightarrow stable Many low angular momentum stars (small α) \rightarrow unstable, real eigenvalue

What happens when the instability develops? Supposed to play an important role in determining the shape of some galaxies.

Palmer et al. (1990): detailed numerics and approximate computations. Ex:

 $f(E,L) \propto \frac{1}{L^2 + \alpha^2}$

An astrophysical motivation, 2

Scenario according to Palmer et al.:

How general is it? Can we quantify this (what does "nearby" means)?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An astrophysical motivation, 2

Scenario according to Palmer et al.:

Strategy: Use of asymptotic expansions (backed by numerical simulations), trying to control the errors \rightarrow results currently limited to 1D

Bifurcations, standard case

• A family of stationary states.

Varying a parameter, stable \rightarrow unstable.

• **General strategy:** look at the linearized equation, identify the "slow modes", and taking advantage of the time-scale separation, find a reduced dynamics

 \rightarrow a finite dimensional reduced dynamics

Bifurcations with continuous spectrum

A typical bifurcation for a Vlasov equation:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 \rightarrow no slow manifold!

Bifurcations with continuous spectrum (2)

Continuous spectrum \leftrightarrow resonances between the growing perturbation and some particles

Reference state: free flowing particles

With a perturbation at zero frequency

Homogeneous background: old problem in plasma physics,

extensive literature (Baldwin, O'Neil 60's ... Crawford, Del Castillo Negrete 90's).

Messages: strong non linear effects, divergences in standard expansions; yet: there is an universal reduced dynamics.

Continuous spectrum, inhomogeneous case

Reference state: particles in a stationary potential.

- \rightarrow weak or no resonance for frequency $\omega = 0$.
- \rightarrow differences with the plasma case expected.
- 3D gravitational Vlasov-Poisson: technical difficulties, even at linear level.
- \rightarrow use simpler 1D models, for which explicit computations can be carried out, and numerics is easy.

Hope: the weakly non linear dynamics may be "universal"

Outline of the computations: unstable manifold expansion JD Crawford's idea (plasma): construct the *unstable manifold*

Expansion around the reference stationary state $f_0(x, v)$:

 $f(x, v, t) = f_0(x, v) + A(t)\mathbf{u}(x, v) + R[A](x, v, t)$

Reduced dynamics (ε = instability rate):

 $\dot{A} = \varepsilon A + C(\varepsilon)A^2 + \dots$

with $C(\varepsilon) \sim c/\varepsilon$ (lengthy computations here).

 $\rightarrow 1/\varepsilon$ singularities appear! Origin = the double eigenvalue at the instability threshold; different from homogeneous case.

Result of the computations

 $\dot{A} = \varepsilon A + C(\varepsilon)A^2 + \dots$

Conclusions:

- There is an attractive (on the unstable manifold) stationary state $A^* \propto \varepsilon^2$
- Asymmetry between the two directions on the unstable manifold: one direction goes to a "nearby stationary state", the other one goes far away, out of range for the present theory
- All this can be directly checked numerically. On a 1D model with a cosine potential (HMF model), it works nicely!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Numerics

• Standard semi-lagrangian method; uses GPU (cf Rocha Filho 2013)

 \bullet Simple cosine potential, periodic box (so called HMF model) $+ \ 1$ spatial dimension

 \rightarrow possible to reach good resolution (at least 1024×1024)

• Order of magnitude of the unstable eigenvalue $\varepsilon \simeq 0.05$ \rightarrow confirms predictions, including the scaling $A(t \rightarrow \infty) \propto \varepsilon^2$

perturbation $+\varepsilon$

perturbation $-\varepsilon$

Back to Radial Orbit Instability

NB: Radial Orbit Instability associated with a real eigenvalue \rightarrow consistent with the present theory

Some of the findings in Palmer et al. 1990 are recovered; new information gained; some of their predictions are inaccessible with our method.

Back to Radial Orbit Instability

NB: Radial Orbit Instability associated with a real eigenvalue \rightarrow consistent with the present theory

Some of the findings in Palmer et al. 1990 are recovered; new information gained; some of their predictions are inaccessible with our method.

- Existence of a nearby stationary state, attractive at least for a restricted dynamics
- We have a prediction for the *distance* of this state from the reference stationary state

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The system can go far away from the original reference stationary state

Conclusions

- The truncated reduced dynamics on the unstable manifold provides a good qualitative description, even for initial conditions that are not on the unstable manifold. More numerical investigations are needed
- ► Higher dimensions: the structure of resonances is more complicated. → Universality of this scenario?
- Exploring the case of complex eigenvalues... Again resonances appear.