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La Promenade des Anglais, by Raoul Dufy



Why this title?

A theoretical physicist’s view on Long Range Interactions (LRI):

I My main interest: LRI induces common features in very
different physical systems
→ it suits the natural tendency of the theoretical physicist’s
to look for ”universality”
→ scope of this conference

I Similarities between different LRI systems are typically
expressed through common underlying mathematical structure
→ there will be some hints to mathematics

I I will try to keep emphasis on various physical systems.
However: I do not claim to be competent in all the fields with
LRI!



I. INTRODUCTION

1. On the definition

2. A lot of examples

3. Some basic remarks



On the definition of Long Range Interactions

One finds many definitions in the literature; usually criteria can be
expressed through the 2-body interaction potential V (r):

1. V (r) ∝ 1/rα, with α < d =dimension. Then energy is not
additive (see later).

2. V (r) ∝ 1/rd+σ, 0 < σ < σc(d). The long-range character
then modifies the critical exponents.

3. V (r) falls off slower than exponentially. Correlations are then
qualitatively different. E.g. : Van der Waals interactions.

4. One can propose the definition of long range on the nanoscale
starting with ”extending beyond a single bond”. R.H. French
et al. , Long range interactions in nanoscale science (Rev.
Mod. Phys. 2010).



On the definition of Long Range Interactions, 2

One conclusion: ”What constitutes a long range as opposed to
short range interaction depends primarily on the specific problem
under investigation.” R.H. French et al.

I will concentrate on definition 1:

1. V (r) ∝ 1/rα, with α < d =dimension. Energy not additive.

However some ideas are relevant beyond these strong LRI.

NB: I have used the potential in the definition; one could think of
using the force...



Some important examples

I Fundamental interactions
I Newtonian gravity V (r) ∝ − 1

r : paradigmatic example.
→ galactic dynamics, globular clusters, cosmology...
Clearly: controlled experiments difficult!

I Coulomb interaction V (r) ∝ 1
r .

-Non neutral plasma, systems of trapped charged particles:
different experimental realizations.
-Neutral plasmas: huge importance of course.

I Effective interactions
I Vortex-vortex in 2D fluids: H ∝ ln r .
I Wave-particles: the wave acts as a global degree of freedom

interacting with all particles.
E.g.: single wave model in plasma and fluid dynamics; free
electron laser; cold atoms in cavity...



More examples
• colloids at interface + capillarity (A. Dominguez et al.)

Colloids (size ∼ µm) trapped at a fluid interface, subjected to an
external vertical force.
→ an effective long range attraction (or repulsion, depending on
the external force)
For r ≤ λ and not too small

Veff(r) ∝ ln
r

λ
: ∼ 2D gravity!

λ=capillary length, ∼ mm.
NB: Overdamped dynamics



More examples

• Chemotaxis
ρ = concentration of bacteria; c = concentration of a chemical
substance (chemo-attractant).
Bacterial dynamics:

∂tρ = D1∆ρ+∇ (−σρ∇c) : drift up the gradient of c

Chemo-attractant dynamics:

∂tc = D2∆c − λc + αρ : bacteries = source for c

→ again models similar to overdamped 2D gravity.
Huge related activity in mathematical biology.



More examples
• Cold atoms in a magneto-optical trap: multiple diffusion of light

Photons

Laser Laser

Multiple diffusion and effective force

atomic cloud

"Coulombian" effective force

→ ~Fi ∝
∑
j

~ri − ~rj
|~ri − ~rj |3

The 1/r2 dependence of the force comes from the solid angle in
3D.

This is an oversimplification; more or less a ”standard model”
(Sesko, Walker, Wieman 1990).



More examples

• Cold atoms in a magneto-optical trap: shadow effect

Laser Laser

Laser intensities decrease while propagating into the cloud
→ effective force towards the center
Weak absorption approximation: ∇ · Fshadow ∝ −ρ (Dalibard 1988)

→ Just like gravitation. . . but it does not derive from a potential!



More examples

• Self-organization in optical cavities (G. Morigi et al.)

pumping
laser

cavity lossescold atomic cloud

Laser = far from atomic resonance → conservative system as a
first approximation.

Integrate over cavity degrees of freedom → effective long-range
interaction, of mean-field type, between atoms.



More examples

• Dipolar interactions in a Bose-Einstein condensate (O’Dell et al.,
2000). BEC irradiated with intense off-resonant lasers → dipolar
interactions between atoms

Size of the cloud � λ (laser’s wavelength) → near field
approximation.
Averaging over lasers → the 1/r3 dominant term is suppressed.
The remaining term is ∝ 1/r , attractive (possibly anisotropic).
→ gravity-like force
NB: quantum system; description by Gross-Pitaevskii equation.
NB: extra oscillating terms due to interferences neglected here...



More examples

• Active particles and thermophoresis (R. Golestanian 2012)
Colloidal particles with (partial) metal coating

Thermophoretic effect → move up (or down) the temperature
gradient
Metal absorbs laser light → particles are ”temperature sources”
→ Again, an overdamped ”gravity-like” dynamics



More examples

• Eigenvalues of random matrices. Eg. complex Ginibre ensemble.
Each entry of A (size n × n) is Akl = Xkl + iYkl , X s and Y s are
independent, law N (0, 1/2). The eigenvalues zk of A have joint
probability density:

P(Z1, . . . , zn) ∝ Πn
k=1e

−|zk |2Π1≤k<l≤n|zk − zl |2

∝ exp

−
∑

k

|zk |2 − 2
∑
k,l

ln |zk − zl |


→ analogous to a 2D Coulomb gas confined in an harmonic trap!
• There are similar laws for other random matrix ensembles.
Intense mathematical activity related to determinantal processes.



More examples

I Trapped free fermions, 1D harmonic trap
Pauli exclusion principle →

|Ψ0(x1, . . . , xn)|2 ∝ e−α
2
∑

k x
2
k Πk<l |xk − xl |2

where Ψ0 = ground state wave function.

I Stellar dynamics around a massive black hole (Tremaine,
Sridhar and Touma...)
-Short time scales = Keplerian dynamics of stars around the
black hole
-Longer time scales : interaction between stars (+relativistic
corrections+. . .)
Averaging over short time scales → an effective system of
”interacting orbits”



Toy models

I Underlying idea: long range interactions have similar effects in
different systems, leading to some ”universal” properties
→ it makes sense to use toy models to illustrate, or study in
details these properties more easily...

I Indeed has been used for a long-time : see Thirring’s models
to illustrate peculiarities of equilibrium statistical mechanics.

I THE toy model: HMF (= mean-field XY model + kinetic
term)

H =
1

2

N∑
i=1

p2
i +

K

N

N∑
i=1

[1− cos(θi − θj)]

I Very useful; of course it goes with all the caveats regarding
toy models...



Some caveats

• I am of course ignorant in most of these fields!
→ Please react if I am not as accurate as I should when I say a few
words about some of them
• Concentrate on classical physics; apologies to quantum
physicists.
Some concepts might still be relevant for quantum systems.



Some basic remarks

Specific difficulties of LRI: one particle interacts with many
others...

I impossible to cut the system in almost independent pieces.
Related difficulty: no distinction bulk/boundary

I numerical problem: with a naive algorithm, each type step
costs ∝ N2

Also specific advantages:
One particle interacts with many others
→ fluctuations suppressed; law of large numbers, Central Limit
Theorem, large deviations...
Related idea: ”mean-field” should be a very good approximation



II. EQUILIBRIUM STATISTICAL MECHANICS

1. On scaling, extensivity, (non) additivity

2. On the mean field approximation

3. Examples and discussions



Equilibrium statistical mechanics

N long-range interacting particles or N spins on a lattice:

H =
N∑
i=1

p2
i

2m
+
∑
i 6=j

V (xi − xj) or H = −J
∑
i 6=j

SiSj
|i − j |α

Microcanonical equilibrium, fixed energy E :

dµM

(
{xi , pi}i=1,...,N

)
∝ δ[E − H({xi , pi})]Πidxidpi

Canonical equilibrium, fixed inverse temperature β = 1/T :

dµC

(
{xi , pi}i=1,...,N

)
∝ exp [−βH({xi , pi})] Πidxidpi



Special features of LRI, scaling

• In the usual ”Thermodynamic limit” N →∞, fixed density →
potential energy � N.
Whereas entropy ∝ N.
→ potential energy always wins, at any T > 0, the system is in the
ground state (possibly singular) when N →∞!
• True, but not very interesting. Rather than looking for any large
N limit, we should look for something independent of N in the
large N limit.
Compare

lim
N→∞

u(N) = 0 and lim
N→∞

Nu(N) = c .



Special features of LRI, scaling

• In the usual ”Thermodynamic limit” N →∞, fixed density →
potential energy � N.
Whereas entropy ∝ N.
→ potential energy always wins, at any T > 0, the system is in the
ground state (possibly singular) when N →∞!
• True, but not very interesting. Rather than looking for any large
N limit, we should look for something independent of N in the
large N limit.
Other example:

u(a,N) =
a

N
+

1

N2
→ scalings i)a fixed, or ii)ã = Na fixed



Special features of LRI, scaling

• In the usual ”Thermodynamic limit” N →∞, fixed density →
potential energy � N.
Whereas entropy ∝ N.
→ potential energy always wins, at any T > 0, the system is in the
ground state (possibly singular) when N →∞!
• True, but not very interesting. Rather than looking for any large
N limit, we should look for something independent of N in the
large N limit.
We will see several examples in the folllowing.



Scaling, examples

• Example: scaling for spin systems (1D, 0 ≤ α < 1)

H =
1

2Ñα

∑
i 6=j

−SiSj
|i − j |α

with Ñα ∝ N1−α

Or, equivalently, scale the temperature...
• Example: scaling for self gravitating systems.

Microcanonical: V 1/3E
GM2 fixed (V =volume, M = total mass); there

are several ways to enforce this scaling
The short range singularity should be regularized...
• Example: neutral plasmas.
Same short-range singularity. Once it is regularized, there is a
well-defined thermodynamic limit! (Lebowitz, Lieb, Narnhofer)



Special features of LRI: about extensivity, additivity

Extensivity: energy proportional to N, or to the volume V . Does
not make much sense without a specified scaling. Choosing a
scaling may restore extensivity (good to compare with entropy).

Non additivity:

S
1

S2

E
1 E

2
E
tot +

→ no phase separation possible in the usual sense



Special features of LRI: about extensivity, additivity
Extensivity: energy proportional to N, or to the volume V . Does
not make much sense without a specified scaling. Choosing a
scaling may restore extensivity (good to compare with entropy).

Non additivity:

S
1

S2

E
1 E

2
E
tot +

→ no phase separation possible in the usual sense
And: phase separation ⇒ entropy concave

e = xe1 + (1− x)e2 ⇒ S(e) ≥ xS(e1) + (1− x)S(e2)



Special features of LRI: about extensivity, additivity

Extensivity: energy proportional to N, or to the volume V . Does
not make much sense without a specified scaling. Choosing a
scaling may restore extensivity (good to compare with entropy).

Non additivity:

S
1

S2

E
1 E

2
E
tot +

→ no phase separation possible in the usual sense
Furthermore: free energy = Legendre transform of entropy; this
operation is invertible only if the entropy is concave...



Special features of LRI: about extensivity, additivity

Extensivity: energy proportional to N, or to the volume V . Does
not make much sense without a specified scaling. Choosing a
scaling may restore extensivity (good to compare with entropy).

Non additivity:

S
1

S2

E
1 E

2
E
tot +

→ no phase separation possible in the usual sense
→ no reason for equivalence between canonical and microcanonical
ensembles
cf Hugo Touchette’s talk.



Special features of LRI: about mean field approximation

• One particle interacts with many others
→ a mean field description should be very good, fluctuations small
Correct intuition: in a well chosen scaling limit, a mean-field theory
often becomes exact.
→ for instance, always classical critical exponents

• A perfectly suited mathematical tool: large deviation theory.

• Caveats:
-strong fluctuations close to second order phase transitions
-sometimes a short-range singularity together with the long-range
character (eg: gravitation)
-short range interactions can bring additional correlations
-more than one scaling may be relevant (see the non neutral
plasma case).



Equilibrium statistical mechanics, examples (1)

I Self gravitating systems, chief example. Regularities in the
structures of galaxies → natural to think of a statistical
physics argument (I am being naive here, see later!).
-Difficulties with both the absence of confinement and the
short range singularity.
-Main features (microcanonical): beyond a certain central
density, no equilibrium state any more, even metastable →
”gravothermal catastrophe”.
-Beautiful theory, but seems difficult to find clear situations
where it is applicable; I don’t know everything here! Some
explanations later.

I Self-gravitating systems: models of interacting orbits
(Tremaine, Sridhar, Touma...); may be a nice application of
equilibrium statistical mechanics?



Equilibrium statistical mechanics, examples (2)

• Vortices (first study by Onsager); xi ∈ R2

HN = − 1

2π

∑
i<j

ln |xi − xj |

Qualitatively very useful predictions: it may be statistically
favorable to form large scale structures!
• Another effective model: wave + particles description of a
plasma (Escande, Elskens, Firpo...)
-Plasma + Langmuir wave ∼ non resonant bulk + resonant
particles
→ effective description: wave + resonant particles
-Classical question: when does the wave damps completely?
-Elskens-Firpo: a statistical mechanics answer. Not sure it is
quantitatively accurate...



Equilibrium statistical mechanics, examples (3)
• Non neutral plasmas (in Penning traps for instance). Simplified
version:

HN =
1

2

∑
i 6=j

1

|xi − xj |
+

1

2

∑
i

x2
i

Balance between trap and interaction → typical size R ∝ N1/3.
Ground state at mean-field level = uniformly charged sphere,
radius R.
Absolute ground state = ordered configuration.

Leading order: 
mean density

Next order:
local correlations



Equilibrium statistical mechanics, examples (3)

• Non neutral plasmas (in Penning traps for instance). Simplified
version:

HN =
1

2

∑
i 6=j

1

|xi − xj |
+

1

2

∑
i

x2
i

Balance between trap and interaction → typical size R ∝ N1/3.
Ground state at mean-field level = uniformly charged sphere,
radius R.
Absolute ground state = ordered configuration.
First scaling: βN2/L fixed
→ Describes the cloud’s shape, cross-over from gaussian to
mean-field ground state; no phase transition.



Equilibrium statistical mechanics, examples (3)

• Non neutral plasmas (in Penning traps for instance). Simplified
version:

HN =
1

2

∑
i 6=j

1

|xi − xj |
+

1

2

∑
i

x2
i

Balance between trap and interaction → typical size R ∝ N1/3.
Ground state at mean-field level = uniformly charged sphere,
radius R.
Absolute ground state = ordered configuration.
Second scaling: β fixed.
→ The system is in its ground state at mean-field level; β controls
the non trivial local correlations; phase transition possible.



Equilibrium statistical mechanics, examples (3)

• Non neutral plasmas (in Penning traps for instance). Simplified
version:

HN =
1

2

∑
i 6=j

1

|xi − xj |
+

1

2

∑
i

x2
i

Balance between trap and interaction → typical size R ∝ N1/3.
Ground state at mean-field level = uniformly charged sphere,
radius R.
Absolute ground state = ordered configuration.
→ Example where two different scalings are interesting!
Side note: understanding this type of ”absolute ground state” -and
the phase transition- is a long-standing mathematical problem.



Some conclusions

I Many universal features related to the long range character of
the interactions (see also Hugo Touchette’s talk): non
additivity, inequivalence between statistical ensembles (→
peculiar phase transitions), negative specific heat,...

I Beautiful theory, but... (my opinion) there are not that many
experimentally meaningful applications of equilibrium
statistical mechanics with long-range interactions.

I There is a good reason for this: very slow relaxation times!
→ kinetic theory



III. KINETIC THEORY

1. Hamiltonian case

I Collisionless equations and their properties

I Secular evolution and collisional equations

2. Non Hamiltonian case



Kinetic theory, Hamiltonian case

• Boltzmann picture (short range interaction): rare collisions that
have a strong impact
f (x , v , t) = one-point distribution function

∂t f + v · ∇x f = C(f , f )

This is again obtained in a specific scaling when N →∞:
Boltzmann-Grad scaling.
• Long-range interactions: ”collisions” not rare! Instead: law of
large numbers → a dynamical mean field equation, in a well
chosen scaling limit.



Examples of collisionless kinetic equations

I Point charged particles → Vlasov-Poisson equation

∂t f + v · ∇x f −∇xΦ∇v f = 0 , with ∆Φ = 1− ρ

I Point masses → Vlasov-Newton (collisionless Boltzmann)

∂t f + v · ∇x f −∇xΦ∇v f = 0 , with ∆Φ = ρ

I Point vortices → 2D Euler equation

∂tω + (~u · ∇)ω = 0 ,with ω = −∆Ψ , ~u = −∇⊥Ψ.

I Particles + wave → Vlasov + wave



Examples of collisionless kinetic equations
I Point charged particles → Vlasov-Poisson equation

∂t f + v · ∇x f −∇xΦ∇v f = 0 , with ∆Φ = 1− ρ

I Point masses → Vlasov-Newton (collisionless Boltzmann)

∂t f + v · ∇x f −∇xΦ∇v f = 0 , with ∆Φ = ρ

I Point vortices → 2D Euler equation

∂tω + (~u · ∇)ω = 0 ,with ω = −∆Ψ , ~u = −∇⊥Ψ.

I Other example: light propagation in a non linear non local
medium → a Vlasov regime starting from Non Linear
Schrödinger (Picozzi et al.)!

Conclusion: These different collisionless kinetic equations have
similar properties
→ another striking example of universality induced by LRI.



On the mathematical status of these equations, 1

• Formal derivation easy: ”mean-field approximation”; + hints
that mean-field should be ”good”, and in fact one would like to
say something like ”Vlasov equation becomes exact in the N →∞
limit”. Is it true, and in which sense? Starting point:

ẋi = vi

v̇i =
1

N

∑
j 6=i

K (xi − xj) (1)

Central quantity: empirical density f̂ N

f̂ N(x , v , t) =
1

N

∑
i

δ(x − xi (t))δ(v − vi (t))

Can we say that f̂ N(x , v , t) is close to f (x , v , t), solution of the
Vlasov equation with initial condition f (x , v , t = 0) close to
f̂ N(x , v , t = 0)?



On the mathematical status of these equations, 2

Key observations:
i) f̂ N is itself a solution of Vlasov equation
ii) Take f1 and f2 two solutions of Vlasov equation, then for some
constant C (C depends on the interaction force K ), and some well
chosen distance d

d(f1(t), f2(t)) ≤ d(f1(t = 0), f2(t = 0))eCt

→ a theorem for regular interactions (Neunzert, Dobrushin, Braun
and Hepp 70’s)



A theorem
Main hypothesis: K and its derivative are assumed bounded.
Then: Take a sequence of initial condition for the N particles that
tends to f0 when N →∞, any fixed time T and any ε > 0. Call
f (t) the solution of Vlasov equation with initial condition f0. Then
for any N > Nc(T , ε), and any time t ≤ T

d(f̂ N(t), f (t)) ≤ ε

Remarks:
i) No average needed: take any initial condition close to f0, the
empirical density follows closely Vlasov equation, for any
realization.
ii) Vlasov dynamics OK for large N for a fixed time horizon → the
asymptotic behavior of the particles’ dynamics may not be given by
making t →∞ in the Vlasov dynamics!
iii) From the proof, it appears that Nc may increase very fast
with T ...



On singular interactions

Many interesting interactions are actually singular... → a
mathematical problem, and also a numerical one for people trying
to approximate Vlasov equation with particles. Some
contributions:

I From point vortices to 2D Euler (Goodman et al.):
logarithmic singularity still ”acceptable”

I Singular forces with K (x) ∼ 1/|x |α, α < 1 (averaging
techniques, Hauray and Jabin); Coulomb not included!

I Kiessling: a kind of ”if theorem” for the Coulomb case. If
some quantity is bounded uniformly in N, then...

I Pickl, Boers, Lazarovici (2015): up to the Coulomb case (with
small N dependent cut-off), making use of ”probabilistic”
degrees of freedom.



Qualitative features
Transport → phase space filamentation (phase mixing). Example
with periodic boundary conditions:



Qualitative features
Example with a non trivial potential



Qualitative features

Example of 2D Euler evolution (perturbation of a shear flow,
simulation H. Morita).

Vlasov-Poisson equation is a world in itself; it is of course crucial
for plasma physics. I will discuss some generic properties of Vlasov
or related equations.



Some properties of Vlasov-like equations

∂t f + v · ∇x f −∇x

(∫∫
V (x − y)f (y , v , t)dydv

)
· ∇v f = 0

I Inherited from the particles: conservation of energy,
momentum...

I Many more conserved quantities (Casimirs)

d

dt

∫
C (f )dxdv = 0 , for any function C .

Not directly inherited from conserved quantities for the
particles.

I In particular, the volume of each level set of f is conserved
→ Vlasov dynamics = mixing of these level sets, involves finer
and finer scales.



On stationary solutions

I Many stationary solutions; statistical equilibrium = only one
of these. Ex.: f (v), homogeneous in space, constant potential
→ stationary for any f .

I Constructing stationary solutions from conserved quantities:
critical points of conserved quantities are stationary! → look
for extrema of ∫∫

C (f ) + βH[f ] + α

∫∫
f

May be a useful point of view to investigate stability.

I Clearly: No approach to statistical equilibrium.

I → Important question: what is the asymptotic behavior of a
Vlasov-like equation? Difficult problem...



Asymptotic behavior of Vlasov equation

• Linearize around stationary solution.
λ eigenvalue → −λ, λ?,−λ? also eigenvalues... → no asymptotic
stability in the usual sense.
• Yet, for stable stationary states, a kind of exponential stability:
Landau damping.

I discovered in plasma physics (1946)

I now a fundamental concept in galactic dynamics

I related to the inviscid damping in 2D fluids (known before
Landau)

I + many other instances, including non Hamiltonian ones
(synchronization models, bubbly fluids...)

→ again, a universal concept.



Asymptotic behavior of Vlasov equation

Question: Take an initial condition f (t = 0); what can we say
about f (t →∞)?
An old question in physics; recently a hot mathematical topic.
i) Dynamical system approach: perturbation theory, builds on
linear theory. Ideas from non linear dynamical systems.
Drawback: validity a priori limited to neighborhoods of stationary
states.
ii) Stat. mech. approach: an equilibrium statistical mechanics
that would take into account the dynamical constraints of Vlasov
equation (pioneered by Lynden-Bell in astrophyics).
iii) Other ideas: mix the previous ones; try to take into account
as much dynamics as possible.



Dynamical system approach,1

• Non linear stability (starting with Antonov): uses a variational
approach, stationary states seen as critical points of a conserved
functional.
Typical result: criteria for stability (if f (t = 0) is close to some
fstat, then f (t) remains close to fstat)
Example: take a stationary solution of Vlasov-Newton equation, of
the form

f = F0(E ) = ϕ
v2

2
+ φ(x) , with ∆Φ(x) = 4πG

∫
fdv and F ′0 < 0 ;

then f is stable.
NB: no precise information on the dynamics, filamentation process
(and Landau damping) overlooked; mathematically: involves norms
without derivative.



Dynamical system approach, 2

• Non linear Landau damping: Landau damping = comes from the
linearized Vlasov equation. Example, close to a homogeneous
stationary state f0(v), write f = f0 + δf :

∂tδf + v∂xδf − ∂x
(∫

V (x − y)δf (y , v ′)dv ′
)
f ′0(v) =

∂x

(∫
V (x − y)δf (y , v ′)dv ′

)
∂vδf

Linearized Vlasov equation: should be OK for ”small” δf .
The non linear term becomes larger and larger because of
filamentation → ??
Important remark: the mathematical meaning of ”close” and
”small” is crucial!



Dynamical system approach, 3

I Mouhot-Villani theorem (2010): if the perturbation is small
enough (in a very strong manner), the perturbed potential
tends to 0 exponentially, with Landau rate.
NB: δf does not tend to 0.

I Lin-Zheng (2011): if one measures the smallness of δf in a
less demanding way, there are undamped solutions arbitrarily
close to f0 (there is a precise regularity threshold).



Dynamical system approach, 4

I Stable stationary state, beyond Landau damping: when the
perturbation exceeds a certain threshold, damping is
incomplete; excitation of non linear solutions known as
Bernstein-Greene-Kruskal modes (Manfredi,
Lancellotti-Dorning).

Simulations by G. Manfredi (1997).



Dynamical system approach, 4

I Stable stationary state, beyond Landau damping: when the
perturbation exceeds a certain threshold, damping is
incomplete; excitation of non linear solutions known as
Bernstein-Greene-Kruskal modes (Manfredi,
Lancellotti-Dorning).

I Weakly unstable stationary state: does the instability saturate,
and how? An old question, which is actually a complicated
bifurcation problem. For homogeneous stationary state, many
contributions (O’Neil, Crawford, Del-Castillo-Negrete...)
One conclusion: a universal weakly non linear dynamics,
governed by the ”Single Wave Model”.

Side remark: Yet, the ”Single Wave Model” is less universal than
Landau damping... (eg: Kuramoto model).
→ Question: could one classify more precisely these bifurcations
with continuous spectrum?



Dynamical system approach, 4

I Stable stationary state, beyond Landau damping: when the
perturbation exceeds a certain threshold, damping is
incomplete; excitation of non linear solutions known as
Bernstein-Greene-Kruskal modes (Manfredi,
Lancellotti-Dorning).

I Weakly unstable stationary state: does the instability saturate,
and how? An old question, which is actually a complicated
bifurcation problem. For homogeneous stationary state, many
contributions (O’Neil, Crawford, Del-Castillo-Negrete...)
One conclusion: a universal weakly non linear dynamics,
governed by the ”Single Wave Model”.

I Non homogeneous stationary state: different physics,
technical difficulties (PhD thesis of David Métivier, with Y.
Yamaguchi).

I Response theories (Ogawa-Yamaguchi, Patelli et al.)

→ a very rich problem, with still plenty to explore.



Statistical mechanics approach

Far from linear regime: out of reach for dynamical systems
techniques.
Another approach: statistical mechanics.
Rationale: regularities in the structure of galaxies; it is natural to
think of a statistical mechanics argument. Yet, we know that the
equilibrium stat. mech. of the N particles is irrelevant...
Idea (Lynden-Bell, 68): could one define an equilibrium for Vlasov
dynamics?
Basic ingredient: Vlasov dynamics preserves all level volumes of f .
Basic assumption: we have to look for the ”most disordered” state
compatible with all constraints.
→ describe the state by a probability distribution on the levels at
each point (x , v), and maximize the entropy of this ”field of pdf”,
under constraints.



Statistical mechanics approach

Far from linear regime: out of reach for dynamical systems
techniques.
Another approach: statistical mechanics.
Rationale: regularities in the structure of galaxies; it is natural to
think of a statistical mechanics argument. Yet, we know that the
equilibrium stat. mech. of the N particles is irrelevant...
Idea (Lynden-Bell, 68): could one define an equilibrium for Vlasov
dynamics?
Some comments:
-A beautiful idea, which sometimes gives qualitatively useful
predictions.
-The assumption of a maximum mixing is far from verified in
general.
-A similar approach has been developed in 2D fluid dynamics



Statistical mechanics approach

Far from linear regime: out of reach for dynamical systems
techniques.
Another approach: statistical mechanics.
Rationale: regularities in the structure of galaxies; it is natural to
think of a statistical mechanics argument. Yet, we know that the
equilibrium stat. mech. of the N particles is irrelevant...
Idea (Lynden-Bell, 68): could one define an equilibrium for Vlasov
dynamics?
Mixed approaches: try to take into account as much dynamics as
possible...
Relate initial conditions and final state by assuming a ”not too
violent” transient (Ex: De Buyl et al., Pakter-Levin).
A parametric resonance during the transient dynamics (Levin,
Pakter et al.) → a succesful theory of core-halo structures (if not
”universal” feature, commonly observed...)



Beyond Vlasov equation

Particles: should approach statistical equilibrium when N →∞.
Questions: How to describe this approach to equilibrium? On
which timescale?
Vlasov equation = mean field dynamics; particles dynamics =
mean-field + fluctuations
Formal analysis of these fluctuations → Balescu-Lenard equation
(plasma physics)

∂t f =
C

N

∫
d3k k·∇v

∫
dv′

Ṽ 2(k)

|ε(k, k · v)|2
δ(k·v−k·v′)k·(f (v′)∇vf − f (v)∇v′ f )

”Collisions” → approach to equilibrium on a long time scale
No mathematical proof: much more difficult than Vlasov, because
it encodes the passage time reversible/ irreversible!



About Balescu-Lenard equation

I Timescale: ∼ Nτdyn; ∼ (N/ lnN)τdyn for 3D Coulomb or
Newton cases.
→ a very important piece of information, to decide whether to
describe a system with Vlasov equation, or equilibrium
statistical mechanics.

I Basic physical mechanism: resonances → fluxes in velocity (or
actions) space.

I For a homogeneous background: Balescu-Lenard equation well
established.
Non homogeneous backgrounds (crucial in astrophysics!):
technical difficulties; subject of current research
(Luciani-Pellat 1987, Heyvaerts, Pichon, Fouvry, Chavanis,
Tremaine, Bennetti, Marcos...)

I Question: standard techniques rely on the integrability of the
background potential; what can we say when it is not
integrable?



Dynamical evolution, summary

Initial
condition

Asymptotic
state - Vlasov

Statistical
equilibrium

Vlasov dynamics Collisional dynamics

Timescale dyn collTimescale

1. Initial conditions (out of equilibrium)

2. Fast evolution, on Vlasov timescale → ”Quasi-stationary
state”

3. Slow ”collisionnal” relaxation (Balescu-Lenard)

4. Statistical equilibrium



Kinetic theory - Non Hamiltonian systems

With a friction −γv and a noise η(t):

ẋi = vi

v̇i =
1

N

∑
j 6=i

K (xi − xj)− γvi +
√

2Dηi (t)

”Kinetic” equation: Vlasov-Fokker-Planck

∂t f + v · ∇x f − (K ?

∫
fdv) · ∇v f = ∇v · (γvf + D∇v f )

• Side remark: what is really f ?
-Limit of the empirical density 1

N

∑
i δ(x − xi )δ(v − vi )?

-Limit of the one-particle distribution function?
Same thing if the particles distribution is ”chaotic”, ie
f (2)(z1, z2)→ f (z1)f (z2)



Kinetic theory - Non Hamiltonian systems

With a friction −γv and a noise η(t):

ẋi = vi

v̇i =
1

N

∑
j 6=i

K (xi − xj)− γvi +
√

2Dηi (t)

”Kinetic” equation: Vlasov-Fokker-Planck

∂t f + v · ∇x f − (K ?

∫
fdv) · ∇v f = ∇v · (γvf + D∇v f )

• Mathematical status of VFP equation:
Empirical density f̂ N not a solution of VFP. . . but not far
→ convergence to a solution of VFP when N →∞, under
regularity hypotheses for the force again.



Dynamical evolution, summary (2)
Friction → new time scale.
→ competition between dynamical τdyn, relaxation τrel � τdyn
and friction τfric time scales.

Initial
condition

Asymptotic
state - Vlasov

Statistical
equilibrium

Vlasov dynamics Collisional dynamics

Timescale dyn collTimescale



Dynamical evolution, summary (2)

Friction → new time scale.
→ competition between dynamical τdyn, relaxation τrel � τdyn
and friction τfric time scales.
i) τfric � τrel : no change to the Hamiltonian phenomenology, until
t ∼ τfric .
Possible physical example: some globular clusters
ii) τdyn � τfric � τrel Quasi-stationary state driven towards
equilibrium (or other) by Fokker-Planck operator.
Possible physical example: galactic evolution? (external actions are
much more complicated than friction + noise though!))
iii) τfric � τdyn Fokker-Planck operator hides Vlasov dynamics.
Possible physical example: a dynamical regime of Magneto-optical
traps.



Beyond Vlasov-Fokker-Planck, 1

• Vlasov-Fokker-Planck equation ' law of large numbers.
→ finite N fluctuations?
• For simplicity, I will consider the Mac-Kean-Vlasov (overdamped)
setting

ẋi =
1

N

N∑
i=1

K (xi − xj) +
√

2Dηi (t)

Central object: empirical density

ρ̂N =
1

N

∑
i

δ(x − xi (t))

Law of large numbers: with high probability, ρ̂N(t) is close to
ρ(t, x), solution of Mac-Kean-Vlasov equation

∂tρ = ∇ · (−(K ? ρ)ρ+ D∇ρ)



Beyond Vlasov-Fokker-Planck, 2

Large deviations: what is the probability that ρ̂N(t) is close to
some ρ that is not solution of Mac-Kean-Vlasov equation?

P (ρ̂N ≈ ρ) � e−NI[0,T ][ρ] , with

I[0,T ][ρ] =
1

4D

∫ T

0

[
inf

j , ∂t ρ+∇·j=0

∫
[j − (K ? ρ)ρ+ D∇ρ]2

ρ
dx

]
dt

Formal noisy PDE version:

∂t ρ̂N +∇ (−D∇ρ̂N + (K ? ρ̂N)ρ̂N) = ∇

(√
ρ̂N
N
η(x , t)

)

→ we are ready for ”macroscopic fluctuation theory” (Bertini et
al.)



Conclusions

I This was a personal view on long-range interactions. There
are probably many others.

I Guiding idea: common features due to long-range interactions
Of course, there are many caveats when comparing systems as
different as galaxies, colloids and cold atoms...

I Nevertheless: we all have a lot to share and to learn by mixing
people from different fields with long range interactions, such
as in this conference!



More specialized section

Perturbing a non homogeneous stationary state of the Vlasov equation

Co-authors: David Métivier (U. of Nice, France) and Yoshiyuki
Yamaguchi (U. of Kyoto, Japan)

Question: Start close to a stationary state, stable, or weakly
unstable. What can we say about the dynamics, using dynamical
systems methods?



Context

Vlasov equation:

∂t f + v · ∇xf −∇xΦ · ∇vf = 0 , Φ =

∫
V (x − y)f (y , v)dy dv .

I Long-range interacting systems described by Vlasov equation
over time scales that diverge with N
→ the asymptotic dynamics of Vlasov equation may be
relevant for some particles systems

I Approach followed here: ”dynamical systems”; ie: study
stationary state, linear and non linear stability, weakly non
linear dynamics. . .

I Weakly non linear dynamics close to a homogeneous
stationary state F0(v): a long story, now relatively well
understood.
This work: non homogeneous F0(x , v).



An astrophysical motivation

Radial Orbit Instability: take a family of spherically symmetric
stationary state of the gravitational Vlasov-Poisson equation,
depending on a parameter α.
Few low angular momentum stars (large α ) → stable
Many low angular momentum stars (small α ) → unstable, real
eigenvalue

What happens when the instability develops? Supposed to play an
important role in determining the shape of some galaxies.

Palmer et al. (1990): detailed numerics and approximate
computations. Ex:

f (E , L) ∝ 1

L2 + α2



An astrophysical motivation, 2

Scenario according to Palmer et al.:

axisymmetric dynamics

unconstrained dynamics

spherical =
stable

a nearby oblate
solution +
a far away stable 
prolate solution

prolate solution
unstable

How general is it? Can we quantify this (what does ”nearby”
means)?



An astrophysical motivation, 2

Scenario according to Palmer et al.:

axisymmetric dynamics

unconstrained dynamics

spherical =
stable

a nearby oblate
solution +
a far away stable 
prolate solution

prolate solution
unstable

Strategy: Use of asymptotic expansions (backed by numerical
simulations), trying to control the errors → results currently
limited to 1D



Bifurcations, standard case

• A family of stationary states.
Varying a parameter, stable → unstable.
• General strategy: look at the linearized equation, identify the
”slow modes”, and taking advantage of the time-scale separation,
find a reduced dynamics

ε

eigenvalues

slow modes

→ a finite dimensional reduced dynamics



Bifurcations with continuous spectrum

A typical bifurcation for a Vlasov equation:

ε

continuous spectrum

eigenvalues

→ no slow manifold!



Bifurcations with continuous spectrum (2)

Continuous spectrum ↔ resonances between the growing
perturbation and some particles

v

x

v

x

Reference state: free 

flowing particles
With a perturbation at 

zero frequency

Homogeneous background: old problem in plasma physics,
extensive literature (Baldwin, O’Neil 60’s . . . Crawford, Del Castillo
Negrete 90’s).
Messages: strong non linear effects, divergences in standard
expansions; yet: there is an universal reduced dynamics.



Continuous spectrum, inhomogeneous case

Reference state: particles in a stationary potential.

Frequency

actionPotential

→ weak or no resonance for frequency ω = 0.
→ differences with the plasma case expected.
• 3D gravitational Vlasov-Poisson: technical difficulties, even at
linear level.
→ use simpler 1D models, for which explicit computations can be
carried out, and numerics is easy.

Hope: the weakly non linear dynamics may be ”universal”



Outline of the computations: unstable manifold expansion
JD Crawford’s idea (plasma): construct the unstable manifold

u A

R

[A]+unstable manifold

unstable eigenspace

f0

Expansion around the reference stationary state f0(x , v):

f (x , v , t) = f0(x , v) + A(t)u(x , v) + R[A](x , v , t)

Reduced dynamics (ε = instability rate):

Ȧ = εA + C (ε)A2 + . . .

with C (ε) ∼ c/ε (lengthy computations here).

→ 1/ε singularities appear! Origin = the double eigenvalue at the
instability threshold; different from homogeneous case.



Result of the computations

Ȧ = εA + C (ε)A2 + . . .

A=A*

A=0

Conclusions:

I There is an attractive (on the unstable manifold) stationary
state A∗ ∝ ε2

I Asymmetry between the two directions on the unstable
manifold: one direction goes to a ”nearby stationary state”,
the other one goes far away, out of range for the present
theory

I All this can be directly checked numerically. On a 1D model
with a cosine potential (HMF model), it works nicely!



Numerics

• Standard semi-lagrangian method; uses GPU (cf Rocha Filho
2013)

• Simple cosine potential, periodic box (so called HMF model) + 1
spatial dimension
→ possible to reach good resolution (at least 1024x1024)

• Order of magnitude of the unstable eigenvalue ε ' 0.05
→ confirms predictions, including the scaling A(t →∞) ∝ ε2

perturbation +ε

perturbation −ε



Back to Radial Orbit Instability
NB: Radial Orbit Instability associated with a real eigenvalue →
consistent with the present theory

Some of the findings in Palmer et al. 1990 are recovered; new
information gained; some of their predictions are inaccessible with
our method.

axisymmetric dynamics

unconstrained dynamics

spherical =
stable

a nearby oblate
solution +
a far away stable 
prolate solution

prolate solution
unstable



Back to Radial Orbit Instability

NB: Radial Orbit Instability associated with a real eigenvalue →
consistent with the present theory

Some of the findings in Palmer et al. 1990 are recovered; new
information gained; some of their predictions are inaccessible with
our method.

I Existence of a nearby stationary state, attractive at least for a
restricted dynamics

I We have a prediction for the distance of this state from the
reference stationary state

I The system can go far away from the original reference
stationary state



Conclusions

I The truncated reduced dynamics on the unstable manifold
provides a good qualitative description, even for initial
conditions that are not on the unstable manifold. More
numerical investigations are needed

I Higher dimensions: the structure of resonances is more
complicated. → Universality of this scenario?

I Exploring the case of complex eigenvalues. . . Again resonances
appear.


