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Motivations

Long-range interacting systems: broken ergodicity (J. Stat.
Phys. 116, 1435 (2004); PRL 95, 240604 (2005)); long-lasting
out-of-equilibrium regimes (PRL 101, 260603 (2008).),
ensemble inequivalence, QSS, etc...

Surge of interest in cond-mat: cold atomic clouds, ion traps, light
harvesting complexes, etc.. Even all to all interactions! (see
Kurizki).

Cooperativity and Emergent Quantum properties:
Superconductivity, Superradiance, Macroscopic quantum
tunnelling.

Cooperativity, Functionality and Robustness. From quantum
device to basic theoretical questions.
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Cooperativity and long range interaction

Cold Atoms
Robin Kaiser Lab

Vij = −
cos(k0rij)

k0rij
− i

sin(k0rij)

k0rij
,

arXiv:1604.07868, G.L.C., R.
Kaiser, F. Borgonovi

Photosynthetic Complexes
LH1-RC complex of purple Bacteria

Vij =
3γ (cosφi,j − 3 cos θi cos θj )

4(k0ri,j )3 −iγ cosφi,j

G.L.C., F. Borgonovi, V.I. Tsifrinovich, M.
Merkli and G.P. Berman, The Journal of

Physical Chemistry C, 116, 22105 (2012).
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Spreading of Perturbations: Lieb-Robinson bounds

Spreading of information:
quantum computing,
thermalization

Short-Range,
Lieb-Robinson bounds: In
short range systems,
spreading is linear, velocity
is finite and independent of
the systems size.

Long-Range: Breaking of
LR bounds.

1d Many Body Hamiltonian:

H = B
∑

k

σz
k + J

∑
i<j

σx
i σ

x
j

|i − j |α

Long Range: 1/rα, long range α < 1,
short range α > 1.
Spreading of perturbations
P. Hauke and L. Tagliacozzo, PRL 11, 207202 (2013).

α = 3 α = 0.7

the fast constituents in an effective description of the slow
ones involving a nonlocal interaction. A prime example is
quantum electrodynamics, describing the contact interac-
tion of charges with photons propagating at the speed of
light. In the nonrelativistic limit, where the charges move
much slower than the light, the presence of photons can be
encoded in a long-range Coulomb potential between the
charges. Theories with long-range interactions can have
overextensive energies [24,25] and are thus strongly non-
local. In such circumstances, one would expect that
concepts like causality and the locality of quasiparticle
excitations should be reconsidered.

The purpose of this Letter is to address this issue using
complementary analytical and numerical calculations. We
find three qualitatively different dynamical regimes, with a
breakdown of Lieb-Robinson bounds for strong long-range
interactions, and a weaker form of locality breaking that
obeys the Lieb-Robinson bounds for intermediate interac-
tion ranges. We are able to explain these regimes via the
above-mentioned pseudoparticle picture. Finally, we dis-
cuss experimental regimes in trapped-ion setups where our
findings can be observed.

For this purpose, we study the out-of-equilibrium
dynamics generated by long-range interactions in the
simplest possible scenario that can be implemented in
trapped-ions experiments [26], namely the long-range
transverse Ising chain (LRTI),

H ¼ sinð�ÞX
hi;ji

�x
i �

x
j

ji� jj� þ cosð�ÞX
i

�z
i : (2)

Here, � denote the usual spin-1=2 Pauli matrices, and we
set fundamental energy unit and lattice spacing to unity.
We consider a finite chain of L sites with open boundary
conditions. The parameter � is varied within the broad
limits 3 * � * 0 that can be realized in the ion setups,
allowing us to tune from effectively short-range to strong
long-range physics. The parameter � is varied in the range
of antiferromagnetic interactions 0 � � � ð�=2Þ. For any
�> 0, the system has two gapped phases, a z-polarized
phase for small �, and a Néel-ordered phase for values
of � ’ �=2. The two phases are separated by a line of
second-order phase transitions, whose universality class
depends on � [27].

Although the LRTI model does not obey the bound (1),
which only holds for exponentially decaying Hamiltonians,
one can still find a generalized Lieb-Robinson bound
[17,28,29] if the power-law interactions are reproducing.
This condition, equivalent to a sufficiently fast decay, is
fulfilled for �> 1 (see the Supplemental Material [30]),
and bounds decay of correlations by a power law gove-
rned by �.

Numerical results.—To study the effects of � on the
out-of-equilibrium dynamics after a local quench, we use
as initial state the ground state jc GSi of Hamiltonian (2) at
specific values of � and �, and at time t ¼ 0 perturb it

locally; typically jc 0i ¼ �x
L=2jc GSi. To observe the

response of jc GSi to this local perturbation, we evolve
jc 0i in time with the same Hamiltonian (2).
In our analysis, we employ two complementary

approaches, the quasiexact time-dependent variational prin-
ciple (TDVP) on matrix-product states (MPS) [31] and a
linear spin-wave theory (LSWT) (see the Supplemental
Material [30]). The used TDVP algorithm generalizes the
ones available in the literature [27,32–37]. Here, we con-
sider chain sizes up to L ¼ 150, and we have checked that
the accuracy of MPS with matrix sizes � � 200 is suffi-
cient. The LSWT involves a higher degree of approxima-
tion, and is only valid for states with sufficient magnetic
order. It has the advantage that it can access, with lower
computational cost, larger times and system sizes than what
is possible with the TDVP (we calculate numerically up to
L ¼ 1024 and analytically for the thermodynamic limit).
In those regimes where the LSWT can be applied, we have
checked that the two methods provide compatible results,
showing that the time evolution they describe is essentially
semiclassical. This agreement is plausible, since jc 0i con-
tains a single excitation with a density that decreases during
the evolution, thus justifying the assumption of noninteract-
ing quasiparticles that underlies the LSWT.
We exemplify the TDVP results for � ¼ �=5 [see

Figs. 1(a)–1(c)], which is not accessible with the LSWT
because a nearby quantum phase transition strongly
reduces magnetic order. We study the spread of quantum
correlations via the block entanglement entropy (EE)
Sl ¼ �P

n�
n
l log�

n
l , where �n

l is the nth eigenvalue of

the reduced density matrix �l involving the spins 1; . . . ; l.
As known from Ref. [27], in the ground state of the

FIG. 1 (color online). (Non)light cones. (a)–(c) Block entan-
glement entropy �Sl¼SlðtÞ�Slð0Þ from the TDVP (� ¼ �=5,
L ¼ 100). (d)–(f) Polarization �mi ¼ hSzi i þ 1=2 from the

LSWT (� ¼ �=20). (a),(d) For �> 2, the excitation at i ¼ 50
spreads light-cone-like, as in the short-range model. (b),(e) For
2>�> 1, there is no well-defined wave front, but the excitation
needs a finite time to bridge large distances. (c),(f) For �< 1,
the excitation spreads immediately over the entire system. Black
dashed lines in (d),(e) denote the maximal spin-wave group
velocity [in (f), it practically coincides with the abscissa].
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findings can be observed.
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phase for small �, and a Néel-ordered phase for values
of � ’ �=2. The two phases are separated by a line of
second-order phase transitions, whose universality class
depends on � [27].

Although the LRTI model does not obey the bound (1),
which only holds for exponentially decaying Hamiltonians,
one can still find a generalized Lieb-Robinson bound
[17,28,29] if the power-law interactions are reproducing.
This condition, equivalent to a sufficiently fast decay, is
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and bounds decay of correlations by a power law gove-
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out-of-equilibrium dynamics after a local quench, we use
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jc 0i in time with the same Hamiltonian (2).
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approaches, the quasiexact time-dependent variational prin-
ciple (TDVP) on matrix-product states (MPS) [31] and a
linear spin-wave theory (LSWT) (see the Supplemental
Material [30]). The used TDVP algorithm generalizes the
ones available in the literature [27,32–37]. Here, we con-
sider chain sizes up to L ¼ 150, and we have checked that
the accuracy of MPS with matrix sizes � � 200 is suffi-
cient. The LSWT involves a higher degree of approxima-
tion, and is only valid for states with sufficient magnetic
order. It has the advantage that it can access, with lower
computational cost, larger times and system sizes than what
is possible with the TDVP (we calculate numerically up to
L ¼ 1024 and analytically for the thermodynamic limit).
In those regimes where the LSWT can be applied, we have
checked that the two methods provide compatible results,
showing that the time evolution they describe is essentially
semiclassical. This agreement is plausible, since jc 0i con-
tains a single excitation with a density that decreases during
the evolution, thus justifying the assumption of noninteract-
ing quasiparticles that underlies the LSWT.
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Average polarization δmi = 〈Sz
i 〉 + 1/2 vs time.
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Contradictory features in Long-Range

Ion Traps experiment
1d Many Body Hamiltonian:

H = B
∑

k

σz
k + J

∑
i<j

σx
i σ

x
j

|i − j |α

with 0 ≤ α ≤ 3 .
Breaking of Lieb-Robinson

bounds in Ion Trap
Richerme et al., Nature Letter 511,

198 (2014); P. Jurcevic et. al., Nature, 511, 202 (2014).
localized excitation refocuses are non-trivial even in the simpler case of
nearest-neighbour interactions13.

Flipping several spins at both ends of the chain creates counter-prop-
agating wavefronts, opening the prospect of studying quasiparticle colli-
sions (Fig. 2c). Extended Data Fig. 1 shows close agreement with theory
in all cases. Initializing all N spins in ;j iz :j i realizes a global quench. In
this case, the many-body state is in a superposition containing 0 through
to N excitations, in which interactions between single-excitation quasi-
particle modes can no longer be neglected. In this case, the resulting
distribution of information can be observed through two-point correla-
tion functions9,26, as seen in Fig. 2d and Extended Data Fig. 2.

To reveal the distribution of quantum correlations after a local quench,
we tomographically measure the evolution of the full quantum state of
pairs of spins (see Fig. 3 and Extended Data Fig. 3). Figure 3a exemplifies
the results for an interaction range a<1:75, for which a clear wavefront
is apparent. The results show that magnon wave-packets emerging from
either side of the initial excitation distribute entanglement across the
spin chain (Fig. 3b, c); the wavefront first entangles spins neighbouring
the quench site, then the next-nearest neighbours, and so on until the
boundaries are reached.

Finally, we investigate how the spin–spin interaction range affects the
way in which information is transported around the system. For this, we
measure the magnetization dynamics following a local quench in a chain
of 15 spins, for three values of a roughly equally spaced around a~1. In
the shortest-range case (Fig. 4a, a~1:41), an approximate light cone can
be seen. There is a clear leading wavefront of spin-excitation that moves
away from the quench site at a well defined velocity, and outside which
the signal decays rapidly (Fig. 4a, d). These are the features of a well-
defined speed limit for quantum dynamics that one would expect for
finite-range interactions, and that has previously been observed in sys-
tems of neutral atoms with nearest-neighbour interactions9,10. Indeed,
the information transport observed in our shortest-range experiment
is largely captured by a Lieb–Robinson bound that considers only the
nearest-neighbour interactions in the system (Fig. 4a, d, e).
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Theoretical work:
Suppression of the velocity of

spreading with the increase of the
interaction range α.

M. Kastner, New J. Phys. 17, 063021
(2015)

4.3.Dispersion and group velocity
In the limit of large system size the dispersion relation takes the form

( ) ( )k( ) Li e Li e , (21)k ki i⎡⎣ ⎤⎦ϵ = − +α α
−

where Liα is the polylogarithm [39], and this function is plotted infigure 7 (left). For α=3 the dispersion ϵ is a
smooth function of k, while it shows a cusp at k=0 for α=2, and a divergence at k=0 forα= 1. Correspondingly,
the derivative k( )ϵ′ as shown infigure 7 (right) is discontinuous at k=0 forα= 2, and diverges at k= 0 forα=1.
More generally we can analyze ϵ′ in the vicinity of k=0 by considering the difference quotient between the
zeroth and thefirstmode
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In the large-N limit we approximate the sumby an integral
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−
− ∼α α α− − −

This implies that, for 2α < , the derivative ϵ′diverges at k=0 in the limit of infinite system size. Interpreting
(0)ϵ′ as a group velocity, we infer thatwe have afinite group velocity only for 2α > , whereas the concept of a

group velocity breaks down for 2α < 7. This finding can help us to understand figure 5: for 2α > afinite group
velocity restricts the propagation to the interior of a cone, whichmakes this cone appear rather sharp. For 2α < ,
although a cone is still visible, larger (and, in fact, arbitrarily large) propagation velocitiesmay occur and are
responsible for the ‘leaking’ of correlations outside the cone.

Figure 6. Left: dominant velocity of propagation, as read off from the inverse slope of the striking cones in figure 5, plotted as a
function of the exponent α. Right: density of states (25) for α=1, 2 and∞.

Figure 7.Dispersion relation (21) (left) and its derivative k( )ϵ′ (right) for the long-range fermionic hoppingmodel (13)with
exponents α=1, 2, and 3.

7
The same conclusions about dispersion relations and group velocities also hold for long-range interactingXX andXXZ spinmodels when

restricting the dynamics to the singlemagnon sector, as the dispersion relations of thesemodels are essentially identical to (17).

7

New J. Phys. 17 (2015) 063021 D-MStorch et al

.

Cooperative Shielding can help to
explain such contradictory features
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Cooperative Shielding

Given a system H = H0 + V , we
can eliminate V from the
dynamics.

Existence of subspaces where the
propagation of information is
determined by an effective short
range Hamiltonian, even in
presence of strong long range.

Cooperative Shielding

Long Range: H = H0 + V
V does not affect the evolution
(shielding) up to a time scale that
grows with N (cooperativity).

G.L.Celardo Cooperative Shielding



The Shielding effect

Let us consider a system:

H = H0 + V , with [H0,V ] = 0

with V highly degenerate V |vk 〉 = v |vk 〉

if |ψ0〉 =
∑g

k=1 ck |vk 〉, V contributes only with global phase:

|ψ(t)〉 = eiHt |ψ0〉 = eivteiH0t |ψ0〉

We have shielding from V !!. H0: emerging Hamiltonian.

If initial state contains different eigenvalues of V , dynamics is
affected by V .

What if [H0,V ] 6= 0?

What if spectrum of V is not degenerate? What is the
connection with long range? What is the emergent Hamiltonian?

G.L.Celardo Cooperative Shielding



Cooperative Shielding in many-body.

Experimentally accessible 1d spin 1/2 Hamiltonian:

H = H0 + V , (1)

H0 = B
L∑

n=1

σz
n

V =
∑
n<m

J
|n −m|α

σx
nσ

x
m.

α < 1: long range. α > 1: short range.

Cooperative Shielding in Many-Body Systems with Long-Range
Interaction L. F. Santos, F. Borgonovi, and GLC PRL 116, 250402
(2016).
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Spectrum of V
The case α = 0 :

V = J
∑
n<m

σx
nσ

x
m =

JM2
x

2
− JL

2
where Mx =

∑
n

σx
n

Vb = J(L/2− b)2/2− JL/2, where b = 0,1, . . .L/2

∆=J[(L/2-b)-1]/2
b=0

b=1

SPECTRUM OF V

α=0 0<α<1 α>1

b=2
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Light-cones
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Invariant Subspaces

H=H
ext Field 

 + V

∆=J[(L/2-b)-1]/2

b=0

b=1

External Field: σ
z
= σ

+

x
+ σ

−

x

V

B

B

H
eff

=0

Pleak ∝ (W/J)2/L for random field and no NN interaction
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Cooperative Shielding in many-body.

Experimentally accessible spin 1/2 Hamiltonian:

H = H0 + V , (2)

H0 =
L−1∑
n=1

Jzσ
z
nσ

z
n+1,

V =
∑
n<m

J
|n −m|α

σx
nσ

x
m.

α < 1: long range. α > 1: short range.

NN+ LONG RANGE
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Shielding
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Invariant Subspaces II

H= H
NN 

 + V

∆=J[(L/2-b)-1]/2

b=0

b=1

NN: σ
z

n 
σ

z

n+1 
 = σ

+

n
σ

−

n+1 
 +σ

−

n
σ

+

n+1

V

+σ
+

n
σ

+

n+1
 +σ

−

n
σ

−

n+1

H
reff

= σ
+

n
σ

−

n+1 
 +σ

−

n
σ

+

n+1

Pleak ∝ (Jz/J)2/L for NN interaction only.
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(Cooperative) Zeno Dynamics

QZE: Observation freeze dynamics in
invariant subspaces.

H = H0 + KHmeas

As K increases, eigensubspace of Hmeas
becomes invariant.

Zeno Hamiltonian: in our case:
H = H0 + VLR , VLR ← Hmeas.

HZ =
∑

b

[PbH0Pb + VbPb] =

= diag(H0) +
∑

b

VbPp

where Pb are the projectors on the
eigensubspace of V corresponding to
the eigenvalues Vb.

For α = 0 Heff = HZ !
For ext field:Hz = 0, for NN:

Hz = JZ
4 (σ+

n σ
−
n+1 + hc)

Zeno Fidelity:

F (t) = |〈Ψ(0)|eiHZ te−iHt |Ψ(0)〉|2
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Fidelity decay slows down with N!
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Partial Conclusions

For α = 0, Zeno Hamiltonian describes the dynamics up to time
scale increasing with N! Cooperative Shielding

Also for 0 < α < 1 we saw signatures of shielding. Explanation
is more difficult since the bands of V are not degenerate and NN
interaction connects states within each band.
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Classical vs Quantum Shielding

Questions:

Is it a classical or quantum
effect?

Is the energy gap
essential?

What if we rescale the long
range term (J/N1−α)?

Classical case...continuum
spin of modulus one.

The classical model:

H =
N∑

j=1

hjSz
j + Jz

N−1∑
j=1

Sz
j Sz

j+1+

+
J

2N1−α
∑

j,m 6=j

Sx
j Sx

m

|rj − rm|α
,

G.L.Celardo Cooperative Shielding



Classical vs Quantum Shielding II

Simulations: B = W = 0, and
Jz = 1, J = 1/N1−α, α = 0.5,

E ≈ 0.95Emin.
Shielding

Spreading of perturbations depends
only on Jz and not on J! Short

Ranged spreading.

Cooperativity

Short-ranged spreading last for
longer time as we increase N!
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Conclusions and Perspectives

1. Cooperative Shielding is able to explain
contradictory behaviour of Long Range
Systems.

2. Shielding allows to control quantum
dynamics: spreading of information
strongly depends on the initial state.

3. Classical vs Quantum Shielding. (R.
Bachelard, USP, Sao Carlos, Brazil).

4. CS allows localization even in presence
of LR: cold atoms.

Cooperative Shielding

THANK YOU!!!
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Cooperative Shielding in tight binding models

1d Anderson model with long range
hopping:

H = HNN + VLR + D =

HNN = −Ω
∑
〈i,j〉

(|j〉〈i |+ |i〉〈j |)

VLR = −γ
∑
i 6=j

|i〉〈j |
rαi,j

; D =
∑

i

ε0i |i〉〈i |

Shielding with Disorder?
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Perspectives: many body open quantum systems

Fano, Rev. Mod. Phys. 64, 313 (1992), Nambu

RMP Colloquia
This section, offered as an experiment beginning in January 1992, contains short articles intended to
describe recent research of interest to a broad audience of physicsts. lt will concentrate on research
at the frontiers of physics, especially on concepts able to link many different subfields of physics.
Responsibility for its contents and readability rests with the Advisory Committee on Colloquia, U.

Fano, chair, Robert Cahn, S. Freedman, P. Parker, C. J. Pethick, and D. L. Stein. Prospective au-

thors are encouraged to communicate with Professor Fano or one of the members of this committee.

A common mechanism of collective phenomena

U. Fano

Department of Physics and The James Franck Institute, University of Chicago, Chicago, Illinois 80637

A common thread is followed through diverse phenomena: Weak interactions lock seemingly indepen-
dent variables into a collective state of enhanced or depressed energy. A rather novel perspective is thus
afforded on superconductivity and on nuclear and particle physics.
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I. INTRODUCTION

Familiar knowledge of the structure of matter centers
on the motion of (quasi)independent particles and on the
(quasi)free wavelike propagation of photon and phonon
fields. In this context surprise has been elicited by the
emergence of phenomena —superconductivity, plasmons,
nuclear deformations —that hinge instead on coordina-
tion of particles and fields.

Treatments of this coordination, developed in the late
1950s, utilize, in fact, a single mathematical mechanism
whose manifestations differ in origin and form
throughout physics. Common to these phenomena is the
role of a dense spectrum of states viewed initiaHy as in-
dependent. The seemingly weak interaction among these
states often condenses into a single eigenvalue separated
from the rest of the spectrum by an energy gap. The
present outline of this mechanism and of its manifesta-
tions has been stimulated by an indication of its possible
role in particle physics, a role that will be touched upon
in a final section but that remains nebulous at this time.

The truly macroscopic phenomena mentioned above,
plasmons and superconductivity, will be seen to hinge on
long-wavelength Fourier components of the Coulomb

force, which cement multitudes of electrons and/or nu-

clei into extended coherent states of aggregation. This
cementing action emerges when a suitable index ap-
proaches or exceeds unity. Short-range nuclear forces
and short-wavelength Coulomb components play the cor-
responding role for nuclear deformations and for other
localized phenomena.

An index that measures the effectiveness of particle-
field interactions will be developed analytically for the ex-
ample of plasmon excitation. Its relevance to other phe-
nomena will then be indicated through qualitative discus-
sion only. Application of this approach to superconduc-
tivity will allow us to bypass apparent complexities of the
BCS theory, which are rooted in its historical develop-
ment and persist in current texts. It will also stress the
effective strength of interactions over the role of specific
mechanisms. SuperAuidity will not be dealt with per se,
but is presumed to differ from superconductivity mainly
in that it concerns mass displacements instead of charge
displacements.

II. PLASMON EXCITATION IN CONDENSED MATTER

Collective motions of charged particles are readily ana-
lyzed in low-density ionized gases ("plasmas"). Each
electron or positive ion moves through the gas with oc-
casional collisions under the in6uence of the fluctuating
field from other particles and of its own inertia. The long
range of the Coulomb field provides, however, some coor-
dination. rhis inhuence manifests itself through wave-
like departures of the electron density from its average
value N. The frequency

co =(4~e N/m)'

of these oscillations is inversely related to the electron
mass m, rather than to the larger ion masses. Bohm and
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I. INTRODUCTION

Familiar knowledge of the structure of matter centers
on the motion of (quasi)independent particles and on the
(quasi)free wavelike propagation of photon and phonon
fields. In this context surprise has been elicited by the
emergence of phenomena —superconductivity, plasmons,
nuclear deformations —that hinge instead on coordina-
tion of particles and fields.

Treatments of this coordination, developed in the late
1950s, utilize, in fact, a single mathematical mechanism
whose manifestations differ in origin and form
throughout physics. Common to these phenomena is the
role of a dense spectrum of states viewed initiaHy as in-
dependent. The seemingly weak interaction among these
states often condenses into a single eigenvalue separated
from the rest of the spectrum by an energy gap. The
present outline of this mechanism and of its manifesta-
tions has been stimulated by an indication of its possible
role in particle physics, a role that will be touched upon
in a final section but that remains nebulous at this time.

The truly macroscopic phenomena mentioned above,
plasmons and superconductivity, will be seen to hinge on
long-wavelength Fourier components of the Coulomb

force, which cement multitudes of electrons and/or nu-

clei into extended coherent states of aggregation. This
cementing action emerges when a suitable index ap-
proaches or exceeds unity. Short-range nuclear forces
and short-wavelength Coulomb components play the cor-
responding role for nuclear deformations and for other
localized phenomena.

An index that measures the effectiveness of particle-
field interactions will be developed analytically for the ex-
ample of plasmon excitation. Its relevance to other phe-
nomena will then be indicated through qualitative discus-
sion only. Application of this approach to superconduc-
tivity will allow us to bypass apparent complexities of the
BCS theory, which are rooted in its historical develop-
ment and persist in current texts. It will also stress the
effective strength of interactions over the role of specific
mechanisms. SuperAuidity will not be dealt with per se,
but is presumed to differ from superconductivity mainly
in that it concerns mass displacements instead of charge
displacements.

II. PLASMON EXCITATION IN CONDENSED MATTER

Collective motions of charged particles are readily ana-
lyzed in low-density ionized gases ("plasmas"). Each
electron or positive ion moves through the gas with oc-
casional collisions under the in6uence of the fluctuating
field from other particles and of its own inertia. The long
range of the Coulomb field provides, however, some coor-
dination. rhis inhuence manifests itself through wave-
like departures of the electron density from its average
value N. The frequency

co =(4~e N/m)'

of these oscillations is inversely related to the electron
mass m, rather than to the larger ion masses. Bohm and

Rev. Mod. Phys. , Vol. 64, No. 5, January 1992 Copyright 1992 The American Physical Society 313

G.L.Celardo Cooperative Shielding



Cooperative Shielding
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Experimental Relevance
Cold Atomic Clouds
Robin Kaiser (CNRS, France)

SESC in Exciton Wires
J. Feist and F. J. Garcia-Vidal

Extraordinary exciton conductance induced by strong coupling

Johannes Feist1, ∗ and Francisco J. Garcia-Vidal1, 2, †

1Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC),
Universidad Autónoma de Madrid, E-28049 Madrid, Spain

2Donostia International Physics Center (DIPC), E-20018 Donostia/San Sebastian, Spain
(Dated: September 11, 2014)

We demonstrate that exciton conductance in organic materials can be enhanced by several orders of
magnitude when the molecules are strongly coupled to an electromagnetic mode. Using a 1D model system,
we show how the formation of a collective polaritonic mode allows excitons to bypass the disordered array
of molecules and jump directly from one end of the structure to the other. This finding could have important
implications in the fields of exciton transistors, heat transport, photosynthesis, and biological systems in
which exciton transport plays a key role.

PACS numbers: 71.35.-y, 05.60.Gg, 71.36.+c, 81.05.Fb

The transport of excitons (bound electron-hole pairs) is
a fundamental process that plays a crucial rule both in nat-
ural phenomena such as photosynthesis, where energy has
to be transported to a reaction center [1–3], and in artifi-
cial devices such as excitonic transistors [4, 5] or organic
solar cells, whose power conversion efficiency can be im-
proved significantly when the exciton diffusion length is
increased [6]. Similarly, understanding and manipulating
the role of excitons in heat transport has become an ac-
tive field of research, with possible applications ranging
from thermo-electric effects to heat-voltage converters, to
nanoscale refrigerators, and even thermal logic gates (cf. [7]
and references therein). The exciton transport efficiency
depends on a wide range of factors with such surprising
features as the occurrence of noise-assisted transport [8–
10]. Pioneering works have even suggested that coherent
transport can play an important role in biological systems
[2, 3, 11]. However, most systems composed of organic
molecules are disordered and possess relatively large dis-
sipation and dephasing rates, such that exciton transport
typically becomes diffusive over long distances [12].

An intriguing possibility to modify exciton properties is
by strong coupling to an electromagnetic (EM) mode, form-
ing so-called polaritons (hybrid light-matter states). This is
achieved when the Rabi frequency, i.e., the energy exchange
rate between exciton and EM modes, becomes faster than
the decay and/or decoherence rates of either constituent.
Polaritons combine the properties of their constituents, in
particular, mutual interactions and low effective masses, en-
abling new applications such as polariton condensation in
semiconductors [13] and organic materials [14], the modifi-
cation of molecular chemistry [15] and work functions [16],
or the transfer of excitation between different molecular
species [17]. Due to the large dipole moments and high
densities, organic materials support large Rabi splittings
[18–20], and can also be strongly coupled to surface plas-
mon polaritons [19, 21–24]. The dispersion relation can
then be tuned to achieve a further reduction of the effective
mass [25].

�p �d~di
~Ec(~r)

FIG. 1. Sketch of the model system. A 1D chain of (possibly
disordered) quantum emitters with dipole moments ~di inside a
cavity with cavity mode ~Ec(~r). Excitons are pumped into the
system from the left reservoir with rate γp. The exciton current is
measured by the excitons reaching the sink reservoir on the right,
coupled through incoherent decay of the last emitter with rate γd.

Very recently, an increase of the electrical conductance
of an organic material was shown under strong coupling of
the excitons to a cavity mode [26]. Inspired by this result,
we demonstrate in this Letter that through strong coupling
to an electromagnetic mode, i.e., the creation of polaritonic
states, the exciton transport efficiency can be improved by
many orders of magnitude. The strong coupling allows
the excitons to bypass the disordered organic system, pre-
venting localization and leading to dramatically improved
energy transport properties. We note that while we focus on
organic molecules in the following, the results can readily
be generalized to other systems such as quantum dots and
Rydberg atoms, or even chains of trapped ions, which offer
a high degree of controllability [27, 28].

We focus on a model system that captures the essential
physics: A 1D chain of two-level emitters inside a cavity
(see Fig. 1). The emitter dipole transition is coupled to the
single cavity mode, and additionally induces Coulombic
dipole-dipole interaction between the emitters. The effect
of internal (e.g., rovibrational or phononic) and external
environment modes is taken into account through effective
dephasing and nonradiative decay rates modeled using a
master equation of Lindblad form. The system Hamiltonian
H in the rotating wave approximation (setting ~ = 1 here
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Figure 1. Photosynthetic apparatus. A, Cartoon of light-harvesting complex in green sulfur bacteria. The bacteria
transform solar photons into chemical energy. Sunlight absorbed by the chlorosome is transferred in the form of an exciton
through the baseplate and Fenna-Matthews-Olson (FMO) complexes subsequently to the reaction center. A snapshot of the
model structure is also shown. B, Atomistic model with corresponding length scales. The atomistic model is composed of a
double wall roll for the chlorosome (Roll A: 1620 (=60×27) BChl c sites and Roll B: 2160 (=80×27) BChl c sites), baseplate
(64 BChl a sites) and 6 FMO trimer complexes (144 (=24×6) BChl a sites).

posed of BChl a pigments held together by a protein
scaffolding. Energy in the form of molecular excitations
(i.e. exciton) is collected by the chlorosome and fun-
neled through these antenna units to the reaction center
where charge carriers are then generated. The distance
between the pigments in LHCs is sufficiently large such
that the overlap of electronic wave functions can be ne-
glected. In this case the energy transfer is mediated by
the near field interaction between molecular electronic
transitions, the Förster interaction [44–46]. If the in-
teraction between several molecules is sufficiently strong
as compared to the energy difference between their elec-
tronic transitions, the exciton states are delocalized over
the group of pigments [45, 46]. The preferential direc-
tion for energy transport is controlled by the frequencies
of electronic transitions: the excitation goes to molecules
or groups of molecules with lower excited state energy,
while dissipating the energy difference to the environ-
ment.

A. Molecular aggregate model

A single LHC of Chlorobium tepidum contains 200–
250 thousand BChl molecules [2, 19, 47]. Most of these
molecules are found in the chlorosome. The model we
have created is shown in Fig. 1, it is composed of 3988
pigments and represents all the functional units of LHC
in green sulfur bacteria, excluding the reaction center.

In our model (Fig. 1B) a double wall roll aggregate
with diameter of about 16 nm and length of about 21 nm,
represents the chlorosome. Several possible structural ar-
rangements of BChls in the chlorosome have been inves-
tigated theoretically and experimentally [48–54]. Here
we use the structure of Ref. [52], obtained from a triple
mutant bacteria and characterized with nuclear magnetic
resonance and cryo-electron microscopy. This structure
is also supported by 2-dimensional polarization fluores-
cence microscopy experiments [55].

The microscopic structure of the baseplate has not yet
been experimentally verified [42]. We construct a base-
plate lattice as following. The unit cell consists of dimers
of CsmA proteins [56] containing 2 BChl a molecules
sandwiched between the hydrophobic regions and bound
near the histidine. To establish a stable structure of the

Microwave Cavity, U. Kuhl (LPMC, France).
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Is Localization possible with long range?

LONG RANGE HOPPING
Levitov, PRL 64, 547 1990: "IT IS KNOWN THAT IN SYSTEMS
WITH DIMENSION d WITH r−α INTERACTION,
LOCALIZATION CAN EXIST ONLY IF α > d . FOR α ≤ d A
DIVERGING NUMBER OF RESONANCES DESTROYS
LOCALIZED STATES”.
ANDERSON (1958): More distant sites are not important
because the probability of finding one with the right energy
increases much more slowly with distance than the interaction
decreases
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Localization and Long Range

Levitov Argument: EPL (1989):

Resonance Condition: |Vi,j | > |∆Ei,j |

Cosider two spheres: 2k R < ri,j < 2k+1R, the volume is

Volk =
28π

3
(2k R)3 Nk = ρVolk

Probability of Resonance: Vk/W , with

Vk = A/(2k R)α

.
Number of Resonances:

Nres =
Vk

W
Nk ∝ R3−α →∞ for α < d
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Random vs non-random long range

1 We consider a random coupling γi,j is randomly distributed
between −1 and +1.

2 Compute PR vs E for random and non random.

H =
∑

i

Ei |i〉〈i | −Ω
∑

i

|i〉〈i + 1| −
∑
i,j

γi,j

rαi,j
|i〉〈j |

γi,j = γ or γi,j random.
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Random vs non random: localization
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Hermitian long range: Results I
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Structure of Eigenstates

0 5 10

r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

<
|Ψ

|2
>

N=5
3

N=10
3

N=20
3

hybrid states: Anderson Peak + plateau
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Shielding in cold atoms?

Our starting point is the effective Hamiltionian (E. Akkermans, A.
Gero and R. Kaiser, PRL 101 103602, 2008) for N two levels atoms
system when only one photon is present

Heff =

(
~ω0 − i

~Γ0

2

)
Sz +

~Γ0

2

∑
i 6=j

VijS+
i S−j ,

The potential is a random and complex-valued quantity and in a
scalar approximation can be written as:

Vij = −
cos(k0rij )

k0rij
− i

sin(k0rij)

k0rij
,

where k0 = 2πλ0 and rij = |ri − rj |. For k0ri,j → 0 Dicke limit, the same
of Anderson Model!!
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Consequences on Transport: Localization and long
range.

Localization: Absence of diffusion, Anderson 1958.

LONG RANGE HOPPING
Levitov, PRL 64, 547 1990: "IT IS KNOWN THAT IN SYSTEMS
WITH DIMENSION d WITH r−α INTERACTION,
LOCALIZATION CAN EXIST ONLY IF α > d . FOR α ≤ d A
DIVERGING NUMBER OF RESONANCES DESTROYS
LOCALIZED STATES”.
ANDERSON (1958): More distant sites are not important
because the probability of finding one with the right energy
increases much more slowly with distance than the interaction
decreases

Resonance Condition: |Vi,j | > |∆Ei,j |

Nres =
Vk

W
Nk ∝ Rd−α →∞ for α < d
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Experimental Relavance: α = 0 case

Ion Traps, valence electron can be in two states: spin 1/2.

H =
∑

k

hkσ
z
k +JNN

∑
[σk

xσ
k+1
x +σk

yσ
k+1
y ]+JLR

∑ [σl
xσ

m
x + σl

yσ
m
y ]

rαlm

α = 0,0.5,3. Equivalent to our model in the single excitation
manifold.

Light Harvesting models: Heff = H0 + Hem = H0 + ∆− iγQ/2,

Qi,j = γ cosφi,j

∆i,j = 3γ
4(k0ri,j )3 (cosφi,j − 3 cos θi cos θj )

(3)

Superconducting grains, Excitonic transport, Microwave
cavities..
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Purple Bacteria photosynthetic complexes

Purple Bacteria
photosynthetic complex

Spherical chromatophore from Rhodobacter

sphaeroides. J. Strumpfer et al., Phys. Chem. Lett. 3,

536 (2012)

Photosynthetic Complexes
LH1-RC complex: 32 chromophores on a circle, and 4 central

chromophores.
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Superradiance Transition (ST)

Simplified Heff :

Heff = H0 −
i
2
γQ Ek = E0

k − iΓk/2

Non Superradiant regime: for γ � 1: Ei = E i
0 −

i
2γQii .

Superradiant regime: for γ � 1: Qi,j =
∑M

c=1 Ac
i Ac

j . Only M
with Γ 6= 0

Roughly, the transition occurs when

〈Γ 〉/D ≈ 1,

where D is the mean level spacing of H0.
Signature of Superradiance: non monotonic behavior of Γk .

Superradiance is a general phenomenon!
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Extension of Fermi Golden Rule
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L
=1000 Ω=0 Ω
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One state and continuum: c0(t) = e−i(E0+δ)t/~−γt/2~,
γ = ~wFGR = 2π|Ai(E)|2ρ

Many states and continuum: Heff = H0 + ∆− iγ/2Q

Qi,j = 2πAi(E)(Aj(E))∗ρ(E)
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Interplay of superradiance and disorder

10
-2

10
0

10
2

10
4

W/Ω

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

<
Γ

/γ
>

W
cr

Figure: Average decay widths for a ring with N = 32, γ = 10−3, Ω = 1 are plotted vs the disorder strength,

W .

COOPERATIVE ROBUSTNESS TO DISORDER for Nγ/4Ω � 1:

Wcr ≡ ST Wcr ∝ γN; (Wcr ∝ ΓSR)
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INTRO: Anderson Localization

Absence of diffusion
Anderson Model:
H =

∑
Ei |i >< i |+

∑
Ωi,k |i >< k |+h.c.

localization only if Ω decays faster then
D
|ψ| ∼ e−|x−x0|/ξ

< lnG >∝ −ξL: non ohmic!
1D: ξ ∝ l ,
where l : elastic mean free path
2D: ξ ∝ leal

3D: Anderson transition

Exponential density profile (green) shows the

atomic matter waves localized by an optical

disorder (in blue) within a laser wave guide (red).

Nature 453, 891-894 (12 June 2008), Juliette

Billy et all. Laboratoire Charles Fabry de l’Institut

d’Optique, Palaiseau (CNRS / UniversitÃÂ Paris

Sud-XI / Institut Optique graduate school).

www.atomoptic.fr
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Interplay of superradiance and disorder

Figure: Log(PR − 1) is plotted in the γ/Ω and W/Ω plane.

(a) refers to the state with the largest width, which become

superradiant above the ST. In both panels the system is a cubic

lattice with N = 10× 10× 10 sites and Ω = 1.

Figure: Log(PR − 1) is plotted in the γ/Ω and

W/Ω plane. N − 1 states which become subradiant

above the ST.

Region I (at the left of the AT line)

Region II (right of the AT line and below the ST line)

Region III (right of the AT line and above the ST line):

superradiant state is fully delocalized ,

subradiant states are hybrid and localized.

subradiant localized regime.
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Zeno Fidelity
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Mediated Long Range
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Antenna Complexes

Purple Bacteria Green Sulfur Bacteria

Relation Structure-Functionality?
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Long Range and Localization
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Effective interaction

One atom: P(t) ∝ e−γt/~, with γ/~ from
Fermi Golden Rule:

γ/~ =
2π
~
|V |2ρ

If I start with one atom P1,2 → 1/4!

 Atom 1  Atom 2

 effective interaction mediated by the common environment

Heff =

(
E0 − iγ/2 −iγ/2
−iγ/2 E0 − iγ/2

)
Complex Eigenvalues:
Ek = E0

k − iΓk/2

Triplet: |+〉 = |1〉+ |2〉, with Γ+ = −γ,

Singlet: |−〉 = |1〉 − |2〉, with Γ− = 0,

|ψ(t)〉 =
e−iE+t/~
√

2
|+〉+

e−iE−t/~
√

2
|−〉

Generation of Entanglement coupled
via common environment 2 qubits,
zero temperature. F. Francica, S. Maniscalco, J. Piilo,

F. Plastina and K.-A. Suominen, PRA 79, 032310; S. Maniscalco,

F. Francica, R. L. Zaffino, N. Lo Gullo and F. Plastina, PRL 100,

090503 (2008).
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Coopertative Robustness to Disorder
Kuramoto parameter:

K =
1
N

N∑
i=1
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=
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N
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10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

t

0

0.2

0.4

0.6

0.8

1

<
|K

|>

γ=10
−2

γ
cr

γ=10
−1

γ
cr

γ=γ
cr

/2

γ=γ
cr

γ=10 γ
cr

10
-2

10
-1

10
0

10
1

10
2

γ/γ
cr

0

0.2

0.4

0.6

0.8

1

<
|K

|>
a

s
y
m

p
t

N=20

N=40

N=320

α=1/3 γ
cr

=W/ 2 N
1-α

G.L.Celardo Cooperative Shielding



Localization and Long Range

Levitov Argument: EPL (1989):

Resonance Condition: |Vi,j | > |∆Ei,j |

Cosider two spheres: 2k R < ri,j < 2k+1R, the volume is

Volk =
28π

3
(2k R)3 Nk = ρVolk

Probability of Resonance: Vk/W , with

Vk = A/(2k R)α

.
Number of Resonances:

Nres =
Vk

W
Nk ∝ R3−α →∞ for α < d
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Fidelity Decay

H0|E0〉 = E0|E0〉, H|E〉 = E |E〉

F = |〈E0|eiH0te−iHt |E0〉|2 = |
∑

E

|〈E |E0〉|2e−i(E−E0)t |2

In general for H = H0 + KV , E ∝ K so that τ ∝ 1/K . When the Gap
opens the eigenvalues of H are not perturbed in the same manner:
Eigenvalues in the Z = 0 are not affected much.
Following Ref.s: G.L. Celardo, A. Biella, L. Kaplan, F. Borgonovi Fortschr. Phys. 61, No. 2-3, 250-260 (2013).

V. V. Sokolov, I. Rotter, D. V. Savin and M. Müller, Phys. Rev. C 56, 1031 (1997).

Analytical expression:

|Eµ〉 =
1√
Cµ

N∑
j0=1

1
Eµ − E0

j
|E0

j 〉

with
∑N

j0=1
1

ε̃µ−E0
j

= 0.Cµ is a normalization factor, |E0
j 〉, Ej0 are the

eigenstates and eigenvalues of the closed Anderson model.
τ ∝ N/W .
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Anderson Localization

Absence of diffusion
Anderson Model:
H =

∑
Ei |i >< i |+

∑
Ωi,k |i >< k |+h.c.

localization only if Ω decays faster then
D
|ψ| ∼ e−|x−x0|/ξ

< lnG >∝ −ξL: non ohmic!
1D: ξ ∝ l ,
where l : elastic mean free path
2D: ξ ∝ leal

3D: Anderson transition

Participation Ratio:

PR =
1∑N

i=1 |ψ(i)|4
.

EXTENDED: PR ∝ N
LOCALIZED: PR =const.
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Random vs non-random long range

1 We consider a random coupling γi,j is randomly distributed
between −1 and +1.

2 Compute PR vs E for random and non random.

H =
∑

i

Ei |i〉〈i | −Ω
∑

i

|i〉〈i + 1| −
∑
i,j

γi,j

rαi,j
|i〉〈j |

γi,j = γ or γi,j random.
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Random vs non random: localization
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Hermitian long range: Results I
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Experimental Relavance

Ion Traps, valence electron can be in two
states: spin 1/2.

Experimentally relevant: P. Jurcevic et
al., Nature 511, 202 (2014).
H =

∑
k hkσ

z
k + JNN

∑
[σk

xσ
k+1
x +

σk
yσ

k+1
y ] + JLR

∑ [σl
xσ

m
x +σl

yσ
m
y ]

rαlm

long range hopping: coupling of
electronic degrees of freedom with the
ions collective modes of motion
perpendicular to the string 0 ≤ α ≤ 3.

Ion Traps
Richerme et al., Nature Letter 511, 198 (2014).

LETTER
doi:10.1038/nature13450

Non-local propagation of correlations in quantum
systems with long-range interactions
Philip Richerme1, Zhe-Xuan Gong1, Aaron Lee1, Crystal Senko1, Jacob Smith1, Michael Foss-Feig1, Spyridon Michalakis2,
Alexey V. Gorshkov1 & Christopher Monroe1

The maximum speed with which information can propagate in a quan-
tum many-body system directly affects how quickly disparate parts of
the system can become correlated1–4 and how difficult the system will be
to describe numerically5. For systems with only short-range interactions,
Lieb and Robinson derived a constant-velocity bound that limits corre-
lations to within a linear effective ‘light cone’6. However, little is known
about the propagation speed in systems with long-range interactions,
because analytic solutions rarely exist and because the best long-range
bound7 is too loose to accurately describe the relevant dynamical time-
scales for any known spin model. Here we apply a variable-range Ising
spin chain Hamiltonian and a variable-range XY spin chain Hamiltonian
to a far-from-equilibrium quantum many-body system and observe its
time evolution. For several different interaction ranges, we determine
the spatial and time-dependent correlations, extract the shape of the light
cone and measure the velocity with which correlations propagate through
the system. This work opens the possibility for studying a wide range of
many-body dynamics in quantum systems that are otherwise intractable.

Lieb–Robinson bounds6 have strongly influenced our understanding of
locally interacting, quantum many-body systems. They restrict the many-
body dynamics to a well-defined causal region outside of which correlations
are exponentially suppressed8, analogous to causal light cones that arise in
relativistic theories. These bounds have enabled a number of important
proofs in condensed-matter physics5,7,9–11, and also constrain the timescales
on which quantum systems might thermalize12–14 and the maximum speed
that information can be sent through a quantum channel15. Recent experi-
mental work has observed linear (that is, Lieb–Robinson-like) correlation
growth over six sites in a one-dimensional quantum gas16.

When interactions in a quantum system are long range, the speed with
which correlations build up between distant particles is no longer guaranteed
to obey the Lieb–Robinson prediction. Indeed, for sufficiently long-range
interactions, the notion of locality is expected to break down completely17.
Inapplicability of the Lieb–Robinson bound means that comparatively
little can be predicted about the growth and propagation of correlations
in long-range-interacting systems, although there have been several
recent theoretical and numerical advances2,3,7,17–20.

Here we report direct measurements of the shape of the causal region
and the speed at which correlations propagate in an Ising spin chain and
a newly implemented XY spin chain. The experiment is effectively deco-
herence free and serves as an initial probe of the many-body dynamics of
isolated quantum systems. Within this broad experimental framework,
studies of entanglement growth21, thermalization12,14 or other dynamical
processes—with or without controlled decoherence—can be realized. Scal-
ing such quantum simulations to larger system sizes is straightforward
(Methods), unlike ground-state or equilibrium studies that typically must
consider diabatic effects22,23.

To induce the spread of correlations, we perform a global quench by
suddenly switching on the spin–spin couplings across the entire chain and
allowing the system to evolve coherently. The dynamics following a global
quench can be highly non-intuitive; one picture is that entangled quasi-
particles created at each site propagate outwards, correlating distant parts

of the system through multiple interference pathways13. This process differs
substantially from local quenches21, where a single site emits quasiparticles
that may travel ballistically3,13, resulting in a different causal region and prop-
agation speed than in a global quench (even for the same spin model).

The effective spin-1/2 system is encoded into the 2S1/2jF 5 0, mF 5 0æ
and jF 5 1, mF 5 0æ hyperfine ‘clock’ states of trapped 171Yb1 ions, denoted
j#æz and j"æz, respectively24. We initialize a chain of 11 ions by optically pump-
ing to the product state j###…æz (Fig. 1). At time t 5 0, we quench the
system by applying phonon-mediated, laser-induced forces25–27 to yield an
Ising or XY model Hamiltonian (Methods)

HIsing~
X
ivj

Ji,js
x
i sx

j ð1Þ

HXY~
1
2

X
ivj

Ji,j sx
i sx

j zsz
i sz

j

� �
ð2Þ

where sc
i (c 5 x, y, z) is the Pauli matrix acting on the ith spin, Ji,j (in cyclic

frequency) is the coupling strength between spins i and j, and we use units
in which Planck’s constant equals 1. For both model Hamiltonians, the

1Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, Maryland 20742, USA. 2Institute for Quantum Information and
Matter, California Institute of Technology, Pasadena, California 91125, USA.

1 2

3

Ci, j

Figure 1 | Sketch of experimental protocol. Step (1): the experiment is
initialized by optically pumping all 11 spins to the state |#æz. Step (2): after
initialization, the system is quenched by applying laser-induced forces on the
ions, yielding an effective Ising or XY spin chain (see text for details). Step (3):
after allowing dynamical evolution of the system, the projection of each spin
along the ẑ direction is imaged onto a charge-coupled device (CCD) camera.
Such measurements allow us to construct any possible correlation function Ci,j

along ẑ.

1 9 8 | N A T U R E | V O L 5 1 1 | 1 0 J U L Y 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014
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Shielding in cold atoms?

Our starting point is the effective Hamiltionian (E. Akkermans, A.
Gero and R. Kaiser, PRL 101 103602, 2008) for N two levels atoms
system when only one photon is present

Heff =

(
~ω0 − i

~Γ0

2

)
Sz +

~Γ0

2

∑
i 6=j

VijS+
i S−j ,

The potential is a random and complex-valued quantity and in a
scalar approximation can be written as:

Vij = −
cos(k0rij )

k0rij
− i

sin(k0rij)

k0rij
,

where k0 = 2πλ0 and rij = |ri − rj |. For k0ri,j → 0 Dicke limit, the same
of Anderson Model!!
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Cooperative Robustness to Noise

Open Anderson model with the addition of
static (W ) and dynamical (Γφ) disorder.

Wcr ∝ γN Γφcr ∝ γN

10
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AT ST
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SR

sub

Fortschr. Phys. 61, 250 (2013); EPL 103,
57009 (2013); PRB 90, 075113 (2014);
PRB 90, 085142 (2014); PRB 91, 094301
(2015).

Long range interaction and energy gap
at the origin of robustness:

Heff =

(
E1 − iγ/2 −iγ/2
−iγ/2 E2 − iγ/2

)
Superadiance vs Superconductivity
Distance independent coupling also
present in discrete-BCS models (Jan
von Delft, Ann. Phys. 3, 219 (2001))

∆SR = ∆SC
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Shielding and Subradiance

1D and 3D Open Anderson model with
static (W ) and dynamical (Γφ) disorder.

Wcr ∝ γN Γφcr ∝ γN
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Fortschr. Phys. 61, 250 (2013); EPL 103,
57009 (2013); PRB 90, 075113 (2014);

PRB 90, 085142 (2014); PRB 91, 094301
(2015).

Hybrid subradiant states
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Figure: The averaged probability distribution of all

eigenstates of the non-Hermitian Hamiltonian that are strongly

peaked in the middle of the chain is shown. In all cases we fix

Ω = 1, γ = 0.1.

Common lore: no localization with long
range..connection with CS
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PART II: Cooperative Shielding. The Model

1d Anderson model with long range hopping:

H = D+HNN+VLR =
∑

i

ε0i |i〉〈i |−Ω
∑
〈i,j〉

(|j〉〈i |+ |i〉〈j |) −γ
∑
i 6=j

|i〉〈j |
rαi,j

ε0j : are random energies [−W/2,+W/2]; ri,j = |i − j |; long range
for α < 1. α = 0: all to all.

Ω > 0, γ > 0: the tunnelling transition amplitude.

Experimentally relevant in Ion Traps, P. Jurcevic et al., Nature
511, 202 (2014).
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Loschmidt echo Fidelity

|Ψ
0
> e

-iH
0
t

e
-iH t

|Ψ
Η

0

 (t)>

|Ψ
Η  

(t)>

H
0
=H

NN
 + D

H=H
0
 + V

LR

Fidelity: (Loschmidt echo)

F (t) = |〈ψ0|eiH0t/~e−iHt/~|ψ0〉|2

|ψ0〉 is a random superposition of N − 1 states with Z = 0.
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Cooperative Shielding
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Shielding and Transport: Anderson Localization

Absence of diffusion
Anderson Model:
H =

∑
Ei |i >< i |+

∑
Ωi,k |i >< k |+h.c.

localization only if Ω decays faster then
D
|ψ| ∼ e−|x−x0|/ξ

< lnG >∝ −ξL: non ohmic!
1D: ξ ∝ l ,
where l : elastic mean free path
2D: ξ ∝ leal

3D: Anderson transition

Participation Ratio:

PR =
1∑N

i=1 |ψ(i)|4
.

EXTENDED: PR ∝ N
LOCALIZED: PR =const.
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Is Localization possible with long range?

LONG RANGE HOPPING
Levitov, PRL 64, 547 1990: "IT IS KNOWN THAT IN SYSTEMS
WITH DIMENSION d WITH r−α INTERACTION,
LOCALIZATION CAN EXIST ONLY IF α > d . FOR α ≤ d A
DIVERGING NUMBER OF RESONANCES DESTROYS
LOCALIZED STATES”.
ANDERSON (1958): More distant sites are not important
because the probability of finding one with the right energy
increases much more slowly with distance than the interaction
decreases
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Experimental Relevance
Cold Atomic Clouds
Robin Kaiser (CNRS, France)

SESC in Exciton Wires
J. Feist and F. J. Garcia-Vidal

Extraordinary exciton conductance induced by strong coupling

Johannes Feist1, ∗ and Francisco J. Garcia-Vidal1, 2, †

1Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC),
Universidad Autónoma de Madrid, E-28049 Madrid, Spain

2Donostia International Physics Center (DIPC), E-20018 Donostia/San Sebastian, Spain
(Dated: September 11, 2014)

We demonstrate that exciton conductance in organic materials can be enhanced by several orders of
magnitude when the molecules are strongly coupled to an electromagnetic mode. Using a 1D model system,
we show how the formation of a collective polaritonic mode allows excitons to bypass the disordered array
of molecules and jump directly from one end of the structure to the other. This finding could have important
implications in the fields of exciton transistors, heat transport, photosynthesis, and biological systems in
which exciton transport plays a key role.

PACS numbers: 71.35.-y, 05.60.Gg, 71.36.+c, 81.05.Fb

The transport of excitons (bound electron-hole pairs) is
a fundamental process that plays a crucial rule both in nat-
ural phenomena such as photosynthesis, where energy has
to be transported to a reaction center [1–3], and in artifi-
cial devices such as excitonic transistors [4, 5] or organic
solar cells, whose power conversion efficiency can be im-
proved significantly when the exciton diffusion length is
increased [6]. Similarly, understanding and manipulating
the role of excitons in heat transport has become an ac-
tive field of research, with possible applications ranging
from thermo-electric effects to heat-voltage converters, to
nanoscale refrigerators, and even thermal logic gates (cf. [7]
and references therein). The exciton transport efficiency
depends on a wide range of factors with such surprising
features as the occurrence of noise-assisted transport [8–
10]. Pioneering works have even suggested that coherent
transport can play an important role in biological systems
[2, 3, 11]. However, most systems composed of organic
molecules are disordered and possess relatively large dis-
sipation and dephasing rates, such that exciton transport
typically becomes diffusive over long distances [12].

An intriguing possibility to modify exciton properties is
by strong coupling to an electromagnetic (EM) mode, form-
ing so-called polaritons (hybrid light-matter states). This is
achieved when the Rabi frequency, i.e., the energy exchange
rate between exciton and EM modes, becomes faster than
the decay and/or decoherence rates of either constituent.
Polaritons combine the properties of their constituents, in
particular, mutual interactions and low effective masses, en-
abling new applications such as polariton condensation in
semiconductors [13] and organic materials [14], the modifi-
cation of molecular chemistry [15] and work functions [16],
or the transfer of excitation between different molecular
species [17]. Due to the large dipole moments and high
densities, organic materials support large Rabi splittings
[18–20], and can also be strongly coupled to surface plas-
mon polaritons [19, 21–24]. The dispersion relation can
then be tuned to achieve a further reduction of the effective
mass [25].

�p �d~di
~Ec(~r)

FIG. 1. Sketch of the model system. A 1D chain of (possibly
disordered) quantum emitters with dipole moments ~di inside a
cavity with cavity mode ~Ec(~r). Excitons are pumped into the
system from the left reservoir with rate γp. The exciton current is
measured by the excitons reaching the sink reservoir on the right,
coupled through incoherent decay of the last emitter with rate γd.

Very recently, an increase of the electrical conductance
of an organic material was shown under strong coupling of
the excitons to a cavity mode [26]. Inspired by this result,
we demonstrate in this Letter that through strong coupling
to an electromagnetic mode, i.e., the creation of polaritonic
states, the exciton transport efficiency can be improved by
many orders of magnitude. The strong coupling allows
the excitons to bypass the disordered organic system, pre-
venting localization and leading to dramatically improved
energy transport properties. We note that while we focus on
organic molecules in the following, the results can readily
be generalized to other systems such as quantum dots and
Rydberg atoms, or even chains of trapped ions, which offer
a high degree of controllability [27, 28].

We focus on a model system that captures the essential
physics: A 1D chain of two-level emitters inside a cavity
(see Fig. 1). The emitter dipole transition is coupled to the
single cavity mode, and additionally induces Coulombic
dipole-dipole interaction between the emitters. The effect
of internal (e.g., rovibrational or phononic) and external
environment modes is taken into account through effective
dephasing and nonradiative decay rates modeled using a
master equation of Lindblad form. The system Hamiltonian
H in the rotating wave approximation (setting ~ = 1 here
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Figure 1. Photosynthetic apparatus. A, Cartoon of light-harvesting complex in green sulfur bacteria. The bacteria
transform solar photons into chemical energy. Sunlight absorbed by the chlorosome is transferred in the form of an exciton
through the baseplate and Fenna-Matthews-Olson (FMO) complexes subsequently to the reaction center. A snapshot of the
model structure is also shown. B, Atomistic model with corresponding length scales. The atomistic model is composed of a
double wall roll for the chlorosome (Roll A: 1620 (=60×27) BChl c sites and Roll B: 2160 (=80×27) BChl c sites), baseplate
(64 BChl a sites) and 6 FMO trimer complexes (144 (=24×6) BChl a sites).

posed of BChl a pigments held together by a protein
scaffolding. Energy in the form of molecular excitations
(i.e. exciton) is collected by the chlorosome and fun-
neled through these antenna units to the reaction center
where charge carriers are then generated. The distance
between the pigments in LHCs is sufficiently large such
that the overlap of electronic wave functions can be ne-
glected. In this case the energy transfer is mediated by
the near field interaction between molecular electronic
transitions, the Förster interaction [44–46]. If the in-
teraction between several molecules is sufficiently strong
as compared to the energy difference between their elec-
tronic transitions, the exciton states are delocalized over
the group of pigments [45, 46]. The preferential direc-
tion for energy transport is controlled by the frequencies
of electronic transitions: the excitation goes to molecules
or groups of molecules with lower excited state energy,
while dissipating the energy difference to the environ-
ment.

A. Molecular aggregate model

A single LHC of Chlorobium tepidum contains 200–
250 thousand BChl molecules [2, 19, 47]. Most of these
molecules are found in the chlorosome. The model we
have created is shown in Fig. 1, it is composed of 3988
pigments and represents all the functional units of LHC
in green sulfur bacteria, excluding the reaction center.

In our model (Fig. 1B) a double wall roll aggregate
with diameter of about 16 nm and length of about 21 nm,
represents the chlorosome. Several possible structural ar-
rangements of BChls in the chlorosome have been inves-
tigated theoretically and experimentally [48–54]. Here
we use the structure of Ref. [52], obtained from a triple
mutant bacteria and characterized with nuclear magnetic
resonance and cryo-electron microscopy. This structure
is also supported by 2-dimensional polarization fluores-
cence microscopy experiments [55].

The microscopic structure of the baseplate has not yet
been experimentally verified [42]. We construct a base-
plate lattice as following. The unit cell consists of dimers
of CsmA proteins [56] containing 2 BChl a molecules
sandwiched between the hydrophobic regions and bound
near the histidine. To establish a stable structure of the

Microwave Cavity, U. Kuhl (LPMC, France).
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Mediated Long Range
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The origin of cooperativity: effective coupling
mediated by continuum

Dicke, PR 93, 99 (1954).

 Atom 1  Atom 2

 effective interaction mediated by the common environment

One atom:

P(t) ∝ e−γt/~

with γ/~ = 2π
~ |A|

2ρ from FGR:
Two atoms: If I start with one atom

P1,2 → 1/4

!

Single Excitation Superradiance: The
Super of Superradiance Marlan O.
Scully et al., Science, 325, 1510
(2009). Single Atom:

e−γt/~

|k〉 = |0〉1|0〉2....|1〉k ....|0〉N

Cooperative Emission of N entangled
atoms:

|Superradiant〉 =
1√
N

∑
k=1,N

|k〉,

e−ΓSR t/~, ΓSR = Nγ

Subradiant, Γsub = 0
G.L.Celardo Cooperative Shielding



The Fermi Golden Rule and transition to
Superradiance

A(E)

ρ(E)
E

0

γ=2 π |A|
2
ρ

P(t) = e−γt/~, γ = 2π|A(E0)|2ρ(E0)

When exponential decay is valid? for
t < t1 P(t) ≈ 1− αt2 and for t > t2
P(t) ≈ c/tβ . S. Pascazio, H. Pastawski, A. Peres

What happens when we have many
level?

Interference effects: transition to
superradiance; cooperativity,
deviations from FGR, Fano
resonances.
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PART I: What does it mean long range?

Statistical and Dynamical properties (S.
Ruffo et al.). Coulomb, Gravitation
(gravitational waves!), Magnetism..

Vi,j =
J
rαij

Non-Extensivity:
E ∝ JN

∫ R rd−1

rα dr ∝ JNRd−α ∝ JN2−α/d

Non-Additivity:
E 6= E1 + E2 even if J → J/N1−α/d

ensemble inequivalence

Suppression of Chaoticity

Non-Ergodicity (GLC, F Borgonovi, S
Ruffo, J Barre’)

Abundance of Regular
orbits

neous phase), while the bicluster QSS has a small residual
magnetization (homogeneous phase).

The monocluster QSS can be ideally mapped onto a
collection of weakly interacting pendula. As revealed by
our stroboscopic analysis, particles evolve on regular
tracks, which are approximately one dimensional, though
they do manifest a degree of local diffusion (thickness). For
the bicluster QSS, the Poincaré section shows a phase
portrait which closely resembles the one obtained for a
particle evolving in the potential of two contrapropagating
waves. These latter interact very weakly, as the associated
propagation velocities appear rather different.

In order to get a quantitative estimate of the thickness of
the tori as a function of the total number of particles, we
focus on the monocluster QSS. Figures 2(a)–2(c) display
the single particle phase space for increasing values of N.
A clear trend towards integrability is observed as quanti-
fied in Fig. 2(d), where the thickness is plotted versus N.

Summing up, we have assessed that the single particle
motion of a typical long-range interacting system becomes
progressively more regular as the number of particles is
increased. This is at variance with what happens for sys-
tems with short-range interactions and provides a different
interpretation of the abundance of regular motion in long-

range dynamics. In addition, we have seen that the features
of the single particle motion depend on the choice of the
initial condition. A natural question then arises: what is the
link between the macroscopic properties of the different
QSS with the change observed in the single particle dy-
namics? Anticipating the answer, we will see that this is
related to a bifurcation occurring in the effective
Hamiltonian.
In the thermodynamic limit, the evolution of the single

particle distribution function fð�; p; tÞ is governed by the
Vlasov equation [18]. This equation also describes the
mean-field limit of wave-particle interacting systems
[10]. It can be reasonably hypothesized that QSS are sta-
tionary stable solutions of the Vlasov equation [8].
Following these lines, a maximum entropy principle, pre-
viously developed in the astrophysical context by Lynden-
Bell [14], allowed one to predict [13,19], for the HMF
model, the occurrence of out-of-equilibrium phase transi-
tions, separating distinct macroscopic regimes (magne-
tized or demagnetized) by varying selected control
parameters which represent the initial condition.
The central idea of Lynden-Bell’s approach consists in

coarse graining the microscopic one-particle distribution
function fð�; p; tÞ by introducing a local average in phase
space. Starting from a waterbag initial profile, with a
uniform distribution f0, a fermionic entropy can be asso-
ciated with the coarse-grained profile �f, namely,

s½ �f�¼�
Z
dpd�

� �f

f0
ln

�f

f0
þ
�
1�

�f

f0

�
ln

�
1�

�f

f0

��
: (2)

The corresponding statistical equilibrium, which applies to
the relevant QSS regimes, is hence determined by max-
imizing such an entropy, while imposing the conservation
of the Vlasov dynamical invariants, namely, energy, mo-
mentum, and norm of the distribution. The analysis reveals
the existence of an out-of-equilibrium phase transition
from a magnetized to a demagnetized phase [13,19].
We here reinterpret the transition in a purely dynamical

framework, as a bifurcation from a monocluster QSS to a
bicluster QSS. Aiming at shedding light on this issue, we
proceed as follows: For fixed M0 and N, we gradually
increase the energy U and compute the Poincaré sections,
as discussed above. We then analyze the recorded sections
by identifying the number of resonances and measuring the
associated width and position (both calculated in the p
direction). Results forM0 ¼ 0:6 are displayed in the lower
panel of Fig. 3: the shaded region, bounded by the dashed
lines, quantifies the width of the resonances. As antici-
pated, one can recognize the typical signature of a bifur-
cation pattern. Repeating the above analysis for different
values of the initial magnetization M0 allows us to draw a
bifurcation line in the parameter space (M0; U). In the
upper panel of Fig. 3 we report both this bifurcation
(full) and the Lynden-Bell phase transition (dashed) lines
[13]. The two profiles resemble each other qualitatively,
and even quantitatively for small M0. The change of the
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FIG. 2 (color online). Poincaré sections of a few selected
particles of one trajectory of Hamiltonian (1), when the system
size is varied (for M0 ¼ 0:6 and U ¼ 0:54). The thickness of the
tori decreases as N is increased (see text). For large enough
values of N, the magnetization M is found numerically to
approximately scale asMðtÞ � �Mþ �MðtÞ cos!t, with j�Mj �
�M and j@t�Mj � !jMj. Ignoring the time dependence of �M
and using a reduced model of test particles in the external field
MðtÞ, one obtains stroboscopic sections which are qualitatively
and quantitatively similar to the ones reported in this figure, with
the unique difference that the thickness is zero [22]. Considering
a torus with action J � 1:9, we plot in (d) its variance �J
computed over a time interval �t ¼ 300 as a function of N.
The scaling 1=N (dotted line) looks accurate over a wide range
of N values.

PRL 101, 260603 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2008

260603-3

HMF, PRL 101 260603
(2008)
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The origin of robustness: effective coupling mediated
by continuum

Dicke, PR 93, 99 (1954).

 Atom 1  Atom 2

 effective interaction mediated by the common environment

Long range interaction and energy gap:

Heff =

(
E1 − iγ/2 −iγ/2
−iγ/2 E2 − iγ/2

)

ΓSR ∝ Nγ; Γsub � γ

Superadiance vs Superconductivity
Distance independent coupling also
present in discrete-BCS models (Jan
von Delft, Ann. Phys. 3, 219 (2001))

∆SR = ∆SC

Robustness: Quantum vs Classical?

G.L.Celardo Cooperative Shielding



Shielding and Subradiance

1D and 3D Open Anderson model with
static (W ) and dynamical (Γφ) disorder.

Wcr ∝ γN Γφcr ∝ γN
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Fortschr. Phys. 61, 250 (2013); EPL 103,
57009 (2013); PRB 90, 075113 (2014);

PRB 90, 085142 (2014); PRB 91, 094301
(2015).

Hybrid subradiant states
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Figure: The averaged probability distribution of all

eigenstates of the non-Hermitian Hamiltonian that are strongly

peaked in the middle of the chain is shown. In all cases we fix

Ω = 1, γ = 0.1.

Common lore: no localization with long
range..connection with CS
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Cooperative Shielding in many-body.
Experimentally accessible spin 1/2 Hamiltonian:

H = H0 + V , (4)

H0 =
L∑

n=1

(B + hn)σz
n +

L−1∑
n=1

Jzσ
z
nσ

z
n+1,

V =
∑
n<m

J
|n −m|α

σx
nσ

x
m.

transverse field: hn ∈ [−W/2,W/2].

α < 1: long range. α > 1: short range.

The case α = 0 :

V = J
∑
n<m

σx
nσ

x
m =

JM2
x

2
− JL

2
where Mx =

∑
n

σx
n

Vb = J(L/2− b)2/2− JL/2, where b = 0,1, . . .L/2
G.L.Celardo Cooperative Shielding



Zeno Shielding in Many body Systems

In Such subspaces long range does not affect the dynamics:
Cooperative Zeno Shielding.

External Field:

L∑
n=1

(B + hn)σz
n →

L∑
n=1

(B + hn)(σ+
n + σ−n )/2

does not connect states inside the bands.

NN interaction:

Jz

L−1∑
n=1

σz
nσ

z
n+1 → (Jz/4)

L−1∑
n=1

(σ+
n + σ−n )(σ+

n+1 + σ−n+1)

The projection leaves only the terms σ+
n σ
−
n+1 + σ−n σ

+
n+1:

effective NN interaction which conserves the number of
excitation inside each band b.
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