Mesoscale/regional examples

Ocean-Atmosphere Interactions & Modelling: A General Overview

8th ICTP Workshop on the Theory and Use of Regional Climate Models May 27, 2016

> **RICCARDO FARNETI** rfarneti@ictp.it

> > (ESP/ICTP)

Motivation for	using	coupled	models

Mesoscale/regional examples

Outline

- Motivation for using coupled models
 - Ocean-atmosphere modelling
- Posing the coupled model problem 2
 - Foundations
 - Resolving versus parameterizing: some numbers
- Basics on (Low-Frequency) Variability 3 A few examples
- Mesoscale/regional examples
 - Or how regional simulations can help overcome some issues

Mesoscale/regional examples

General motivational comments and challenges

- Climate model fundamentals and the use of climate models as a tool for science involves some of the most difficult problems in classical and computational physics.
 - turbulence closures and subgrid scale parameterizations
 - analysis and rationalization of massive datasets
 - efficient methods for discretizing continuous media.
- We are also touching on elements of the most important
 - Climate warming is happening and humans are the key reason.

General motivational comments and challenges

- Climate model fundamentals and the use of climate models as a tool for science involves some of the most difficult problems in classical and computational physics.
 - turbulence closures and subgrid scale parameterizations
 - analysis and rationalization of massive datasets
 - efficient methods for discretizing continuous media.
- We are also touching on elements of the most important environmental and societal problem facing the planet.
 - Climate warming is happening and humans are the key reason.
 - The ocean's role in the earth climate is significant.
 - Providing rational and robust models for understanding and predicting climate is a central element of climate science.

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Types of climate models

Posing the coupled model problem

Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Hierarchical approach

Hierarchical Ocean-Atmosphere Modelling

A hierarchy of models and simulations to understand and simulate the physics and dynamical mechanisms of climate

Posing the coupled model problem Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Hierarchical approach

Mesoscale/regional examples

Decadal Variability/Predictability lies in the Oceans

From Hawkins and Sutton, 2009

Motivation for using coupled models

Posing the coupled model problem

Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Space-time diagram of motions

- Broad range of space-time scales
- We see the absence of a clear spectral gap except for scales larger than 1000 km.
- We can use EMICs or Downscale to get information on smaller space-time scales.

Mesoscale/regional examples

Turbulent cascade of mechanical energy

Compliments of Baylor Fox-Kemper, Brown University, USA

- 3d turbulence: energy cascade to small scales
- 2d/QG turbulence: energy cascade to large scales (inverse cascade)
- Cascades act to couple space-time scales.

Mesoscale/regional examples

Theoretical foundations for ocean-atmosphere models

- Continuum thermo-hydrodynamical equations
 - Seawater mass conservation
 - Tracer mass conservation
 - Momentum conservation
 - Linear irreversible thermodynamics of seawater
 - Typically assume hydrostatic balance
- Boundary conditions
 - Air-sea interactions
 - Sea ice-ocean interactions
 - Ice shelf-ocean interactions
 - Solid-earth-ocean interactions
- Subgrid scale parameterizations
 - Momentum closure: frictional stress tensor
 - Tracer closure: transport tensor
 - Boundary layer parameterizations

Motivation for using coupled models Posing the coupled model problem

Basics on (Low-Frequency) Variability

Mesoscale/regional examples

A zoo of physical processes

- The ocean-atmosphere interface contains a zoo of physical processes!
- Strong coupling ۲ between processes \Leftrightarrow no spectral gap.
- Coupling means it is generally better to resolve than parameterize.
- Yet we cannot resolve everything

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability

Mesoscale/regional examples

A zoo of physical processes in the Ocean interior

- What happens in the interior will affect the surface interacting with the ٠ atmosphere.
- ... The Ocean is not an SST ... 🕥

RFARNETI@ICTP.IT

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Equilibration time scale problem

Scaling argument for deep adjustment time

$$H^{2}/\kappa = (2000 \ m)^{2}/(2 \times 10^{-5} \ m^{2}/s)$$
(1)
= $\mathcal{O}(5000 \ years)$ (2)

$$= \mathcal{O}(5000 \text{ years})$$
 (

Bottom line for global climate:

- Performing long (climate scale) simulations at eddy-resolving / permitting resolution are not practical
- Must live with deep ocean not being at equilibrium in most ۲ simulations

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Upper ocean boundary and wave interactions

From Cavaleri et al (2012)

New research activities in boundary layer param prompted by refined atmos and ocean resolutions that admit new dynamical regimes (e.g., mesoscale eddies, tropical cyclones).

An increased awareness in the climate community of the importance of surface ocean gravity waves. See also Ufuk's talk in a few minutes.

Mesoscale/regional examples

(CTP)

The marginal ice zone (MIZ)

From ONR Marginal Ice Zonal Project

 Questions about processes at the marginal ice zone are of prime importance as Arctic sea ice melts.

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability

Mesoscale/regional examples

The marginal ice zone (MIZ)

Resolving versus parameterizing: some numbers

- Setting the model's grid scale to the Kolmogorov length $\Delta = 10^{-3}$ m over a global (ocean) domain of volume 1.3×10^{18} m³ requires 1.3×10^{27} discrete grid cells. This is roughly $10^4 \times \text{Avogadro's number!}$
- Each model grid point has a velocity vector and tracer fields to time integrate.
- Conclude:
 - We will be dust long before DNS of global climate simulations.
 - We must use parameterizations to simulate, or regional simulations.

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Spatial scale of mesocale and submesoscale eddies

MODIS satellite w/ inserts by A. Adcroft (GFDL)

Eddy size \propto first baroclinic Rossby Radius $\lambda_m = c_m/|f|$, where the phase speed is approximated by (Chelton et al. 1998)

$$c_m \approx \frac{1}{m\pi} \int_{-H}^0 N \,\mathrm{d}z.$$

Global models are marginal at representing this scale: regional and process models can help reach into the submesoscale.

Spatial scale of mesocale and submesoscale eddies

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

Resolution required to represent mesoscale eddies

From Hallberg (2013)

- Hallberg (2013): $2\Delta < \lambda_1$ needed to resolve mesoscale eddies.
- Map indicates the necessary Mercator spacing for $2\Delta = \lambda_1$.

RFARNETI@ICTP.IT

ICTP

Ocean resolution in IPCC-class climate models

- The ocean is but one component amongst many within climate system models.
- Resolution refinement is painfully slow!
- This diagram is useful to target one's career choices.

Mesoscale/regional examples

Nevertheless, progress is exciting!

Daily SST from the GFDL CM2.6, a 0.1° configuration for the ocean component, under a 50 km global atmosphere model

But with a big limitation...

Motivation for using coupled models

Posing the coupled model problem Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Mesoscale/regional examples

- Climate variability might arise primarily from the atmosphere. independent of varying boundary conditions such as SST.
- Climate variability might be enhanced by the presence of an
- Climate variability might arise via coupled ocean-atmosphere
- Climate variability might have primarily an oceanic origin. Ocean

Mesoscale/regional examples

- Climate variability might arise primarily from the atmosphere. independent of varying boundary conditions such as SST.
- Climate variability might be enhanced by the presence of an ocean with a large heat capacity, leading to a red spectrum. The null hypothesis for climate variability.
- Climate variability might arise via coupled ocean-atmosphere
- Climate variability might have primarily an oceanic origin. Ocean

Mesoscale/regional examples

- Climate variability might arise primarily from the atmosphere. independent of varying boundary conditions such as SST.
- Climate variability might be enhanced by the presence of an ocean with a large heat capacity, leading to a red spectrum. The null hypothesis for climate variability.
- Climate variability might arise via coupled ocean-atmosphere modes (e.g. ENSO). Controversial in mid-latitudes.
- Climate variability might have primarily an oceanic origin. Ocean

- Climate variability might arise primarily from the atmosphere. independent of varying boundary conditions such as SST.
- Climate variability might be enhanced by the presence of an ocean with a large heat capacity, leading to a red spectrum. The null hypothesis for climate variability.
- Climate variability might arise via coupled ocean-atmosphere modes (e.g. ENSO). Controversial in mid-latitudes.
- Climate variability might have primarily an oceanic origin. Ocean variability might affect the atmosphere without the need for coupled modes.

Posing the coupled model problem

Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Hasselmann (1977)'s Stochastic Climate Model

- The ocean mixed layer (the slow component), of much higher heat capacity, integrates atmospheric white noise (the fast component), giving rise to a red spectrum.
- $\partial_t T' = -\lambda T' + F(t)$
- The variance spectrum is $|T'(\omega)|^2 = \frac{|F'|^2}{\omega^2 + \lambda^2}$
- and so the slope is ω^{-2}

Mesoscale/regional examples

Barsugli and Battisti (1977)'s Stochastic Climate Model

Motivation for using coupled models

Posing the coupled model problem

Basics on (Low-Frequency) Variability

Mesoscale/regional examples

Does this work?

00000000000

Mesoscale/regional examples

Does this work? YES!

Basic effects of ocean-atmosphere thermal coupling

- increases variance in both media.
- decrease energy fluxes between them.
- prescribing mid-latitude SSTs does not lead to a correct simulation of low-frequency thermal variance in the atmosphere.
- We need a coupled ocean-atmosphere model ...

Is this 'all there is'? ...

- Is the integration of atmospheric variability by the oceanic mixed layer producing a red spectrum *all there is*?
- dynamical process can indeed produce variance at long periods

Figure 6. Mean spectra of midlatitude SST anomalies of the HADISST and Kaplan SST data sets (thick lines), along with the best fit spectra from an AR(1) process (thin central line) with 95% confidence levels (thin outer lines). Adapted from Dommenget & Latif (2002).

RFARNETI@ICTP.IT

Posing the coupled model problem Basics on (Low-Frequency) Variability Motivation for using coupled models

000000000000

Mesoscale/regional examples

We can add spatial coherence in atmosphere and a dynamical ocean: Regional Basin Modes/Oscillations

Mesoscale/regional examples

Adding spatial coherence in atmosphere and a dynamical ocean: Regional Basin Modes/Oscillations

- The Pacific Decadal Oscillation PDO
- North Pacific SST integrates weather noise
- SST anomalies provide reduced damping of atmospheric signals at low-frequency
- Iocal and remote coupled feedbacks

RFARNETI@ICTP.IT

Adding spatial coherence in atmosphere and a dynamical ocean: Regional Basin Modes/Oscillations

- The Atlantic Multidecadal Oscillation AMO
- AMOC variability forces AMO signal (most probably)
- AMO forces atmospheric response, e.g. negative NAO (maybe)
- trans-basin connections

Atlantic Multidecadal Oscillation

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples 0000000000

Adding spatial coherence in atmosphere and a dynamical ocean: Regional Basin Modes/Oscillations

- The Indian Ocean Dipole IOD
- ocean-atmosphere interaction causing interannual climate variability
- Oscillations of SSTs due to variability in trade winds
- Tropical \rightarrow shorter time scale (interannual)

Motivation for using coupled models

Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

•000000000000

Net Surface Heat Flux

Blue → Heat into the Ocean

Motivation for using coupled models

Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

SST bias in Coupled Models

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

Two-way nesting in the Agulhas region

RFARNETI@ICTP.IT

Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

The Benguela Upwelling problem

- Of all the major coastal upwelling systems in the World's ocean. the Benguela, located off south-west Africa, is the one which climate models find hardest to simulate well.
- Increasing both oceanic and atmospheric resolutions (and shifting winds towards the coast) improves the simulation.

Motivation for using coupled models

Posing the coupled model problem

Basics on (Low-Frequency) Variability

Mesoscale/regional examples

The double-ITCZ problem

RFARNETI@ICTP.IT

Motivation for using coupled models

Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

Air-Sea interaction at basin (slow and large) scales

- Stronger wind speed \rightarrow lower SST via mixing and turbulent flux
- Negative Correlation \rightarrow Atmosphere drives the Ocean

Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

000000000000

Air-Sea interaction at mesoscales (fast and short)

- Enhanced (Reduced) wind speed over warm (cold) SST
- Positive Correlation \rightarrow Ocean drives the Atmosphere

Motivation for using coupled models

Posing the coupled model problem

Basics on (Low-Frequency) Variability Mesoscale/regional examples

0000000000000

Effects on the Atmosphere

- Enhanced (Reduced) wind speed over warm (cold) SST
- Positive Correlation → Ocean drives the Atmosphere

Minobe et al. 2008

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

00000000000000

How does it work?

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

Discretizing a column of ocean fluid

Posing the coupled model problem

Basics on (Low-Frequency) Variability Mesoscale/regional examples

Conservation is important

Take the vertically-integrated Temperature budget

- $\partial_t \left(\int_{-H}^{\eta} dz \theta \right) =$ $-\nabla \cdot \left(\int_{-H}^{\eta} dz \left(\mathbf{u}\theta + \mathbf{F}_{sgs}\right)\right) + Q_{heat}/(\rho C_p)$
- Assuming steady state and a basin: $\rho C_p \int dx \int_{-H}^{\eta} dz (v\theta + F^y) = \int_{v_n}^{y_n} dy \int dx Q_{heat}$
- A meridional ocean heat transport is thus **implied** by the net surface forcing.

Motivation for using coupled models Posing the coupled model problem Basics on (Low-Frequency) Variability Mesoscale/regional examples

Lateral BCs for regional ocean models

Near-global observations are pushing models to improve.

Argo + satellites provide high quality near-global information. These data sources are now assimilated into global ocean models. These products could generate the BC's for our coupled regional models.

Summary

Where the envelope can be pushed

Role of resolution in climate

- How/will climate sensitivity, variability, predictability be modified with eddying ocean simulations and higher atmospheric resolution?
- Coupled ocean-atmosphere models are still too coarse to resolve mesoscale SST influence on the atmosphere.
- This can readily be achieved with regional coupled models.

Provide the second state of the second stat

- There is a clear motivation for the development of both regional and global coupled models.
- and for a comparison and feedback between the two.

