Intense Precipitation Events in Mexico City

Carlos A. Ochoa-Moya¹, Arturo I. Quintanar¹, Graciela B. Raga¹ and Darrel Baumgardner²

¹Centro de Ciencias de la Atmosfera, Universidad Nacional Autónoma de México, Coyoacán, México D.F 04510.
²Droplet Measurements Technologies, Boulder, Colorado, USA.
Changes in precipitation timing
(Jauregui y Romales, 1996)

TACUBAYA (West)

Precip > 20 mm hr$^{-1}$

Increased 20%!!

Fig. 4. Frequency of intense rainfall events > 20 mm h$^{-1}$ for three decades by time of day in Mexico City.

Fig. 5. Frequency of rainfall events (July–September) > 1 mm h$^{-1}$ for two decades 1941–1950 and 1981–1990 for three periods during the day at the Tacubaya Observatory.
Changes on the hourly distribution of intense precipitation events (Precip > 20 mm/hr)
Defined two hypothesis

Changes on the timing and frequency of intense precipitation events can be related with:

1) Changes on the cloud microphysical properties due to an increase of emissions. Using CCN as a proxy for emissions.

2) Changes on the land use/land cover over the Mexico City Basin
Used WRF v3.4
Computational domains with 9km, 3km, and 1km spatial resolution
27 vertical levels
IC and BC from NARR

Land Surface Model: Noah-Ism
Boundary Layer Parameterization: YSU
Microphysics Parameterization: Thompson
Cumulus Convection Param.: Kain-Fritsch (d01,d02)
Ten Septembers between 2002-2011 were simulated.

Three different numeric experiments were designed:

CTRL: Simulations were done with USGS 1993 Land cover

EXP: Prescribed droplet number concentration was modified inside MP param. from 600 cm\(^{-3}\) to 1200 cm\(^{-3}\)

LULC: Part of the urban area was substituted by vegetation according to what is present on USGS 1993 land cover data.
Conclusions

- Observations show that there have been changes on the distribution of hourly precipitation. Most of the intense precipitation events (Precip > 20 mmh⁻¹) occur during night (19-24 h).
- Numeric simulations show that there is a possible influence of both (MP and LULC) on the timing of intense precipitation events.
- The model indicates that both changes (LULC and MP) tend to move the maximum to early in the evening.
Soil Moisture Effect On Simulated Diurnal Cycle of Precipitable Water Vapor in the North American Monsoon Region

Carlos A. Ochoa-Moya1, Arturo I. Quintanar1, Christopher Castro2, David K. Adams1 and Erika López1

1Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Coyoacán, México D.F 04510.
2Department of hydrology and water resources, University of Arizona, Tucson, Arizona, USA
North American Monsoon GPS Transect Experiment 2013

- Ten GPS-Met stations
- Three transects: Coastal, east-west (2)
- PWV each 5 min
- April to September 2013
- Look at the precipitation gradient over mountains

BAMS: Serra et al, 2016 (in press)
Numeric Experiment Design

- Weather Research & Forecasting (WRF) version 3.6.1
- 30 km, 10 km and 2.5 km spatial resolution
- 40 vertical levels
- IC & BC from ERA Interim
- 2012 MODIS Land Cover
- 26th June to 20th July 2013
- Spectral Nudging

- Yonsei University PBL scheme
- Kain-Fritsch Cumulus (d01, d02)
- Thompson Microphysics scheme
- Noah Land Surface model
Preliminary Results
Hourly Average
Convective days
Non-Convective days
ERA Interim Downscaling for
Extended Central America CORDEX Domain

Carlos A. Ochoa-Moya1, Christopher Castro2, Hsin-I Chang2, Arturo I. Quintanar1

1Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Coyoacán, México D.F 04510.
2Department of hydrology and water resources, University of Arizona, Tucson, Arizona, USA
Simulation Details

• Weather Research and Forecasting model (WRF) version 3.5.1
• 25 km spatial resolution and 40 vertical levels
• Yonsei University PBL scheme
• Kain-Fritsch Cumulus scheme
• WSM3 Microphysics scheme(Qr, Qc)
• Noah Land Surface Model
• ERA Interim data for IC and BC
• Adaptative time step
• Spectral Nudging
Gridded Observations (CHIRPS)

ERA Interim global reanalysis

Regional model applied

WRF Extended CA-CORDEX
Value Added of a Central American CORDEX model to produce wet season (May-Sep) precipitation in El Salvador

Gridded observations (CHIRPS)

ERA-Interim global reanalysis

Regional model applied

WRF Central American CORDEX
THANKS!!
carlos.ochoa@atmosfera.unam.mx