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1 Controls on the eruption rate

1.1 The driving pressure difference for magma ascent

Cylindrical conduit from z = 0 to z = H .
Lava flow or dome with thickness h.
p(z) = pressure in the conduit.
Pressure at the vent:

p(H) = Pa + ρmgh (1)

Pressure at z = 0 (top of the reservoir)
Pc = lithostatic pressure + overpressure (or underpressure) ∆Pc.

p(0) = Pc = Pa + ρcgH +∆Pc (2)

Hydrostatic pressure component at z = 0.

PL = Pa + ρmg(H + h) (3)

Pressure difference that drives ascent

∆P = Pc − PL = (ρc − ρm)H +∆Pc − ρmgh (4)

This can be understood as the sum of effects that enhance the flow of
magma up the conduit and others that impede it. Magma buoyancy
(ρc ≥ ρm) obviously drives ascent but one could also have negatively buoyant
magma rising up a conduit if the reservoir pressure is large enough (more on
this later). The reservoir overpressure may be positive or negative and hence
may enhance or impede flow depending on the situation. Finally, the last
term is obviously always acting against magma ascent: accumulating lava at
the vent builds up pressure in the conduit. For a given magma, flow (and
hence eruption) will stop when ∆P = 0, which can be achieved in two
different ways, by decreasing the reservoir overpressure ∆Pc or by increasing
the thickness of lava at the vent. An eruption that stops because the lava
flow has reached a critical thickness cannot be a stable situation because the
spreading of lava is unlikely to stop.

In this calculation, we have assumed that the conduit remains open, so that
there is a continuous magma column between the reservoir and the eruptive
vent. We shall come back to this later.
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Eruption stops when ∆P = 0.
(1) Decreasing reservoir overpressure ∆Pc.
(2) Increasing thickness of lava at the vent.
NOTE 1: magma buoyancy (ρc ≥ ρm) positive or negative !
Negative buoyancy leads to ∆Pc < 0.
NOTE 2: we have assumed that the conduit remains open.

3



Incompressible magma of density ρm and viscosity µ.
Flow at small Reynolds numbers (laminar regime, no inertia).
Cylondrical coordinate system (r, θ, z). Velocity components (u, vθ, w).
Assume purely vertical flow, such that (u, vθ) = (0, 0).
Assume that pressure and velocity do not depend on θ (no swirling motion).
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Calculation of the eruption rate.



0=
∂w

∂z
(5)

0=−
∂p

∂r
(6)

0=−
∂p

∂z
+ µ

[

1

r

∂

∂r

(

r
∂w

∂r

)

+
∂2w

∂z2

]

− ρmg (7)

Two very useful simplifications:
w does not depend on z
p does not depend on radial distance r.
Recast the vertical momentum balance:

d

dr

(

r
dw

dr

)

=
1

µ
r

(

dp

dz
+ ρmg

)

(8)

Integrate once between r = 0 and r:

r
dw

dr
=

r2

2µ

(

dp

dz
+ ρmg

)

(9)

Integrate between r = a and r:

w(r)− w(a) =
1

4µ

(

r2 − a2
)

(

dp

dz
+ ρmg

)

(10)

No slip at the conduit walls, such that w(a) = 0.

w =
1

4µ

(

r2 − a2
)

(

dp

dz
+ ρmg

)

(11)

The mass flux of magma (eruption rate):

Q∗ =
∫ r=a

0

ρmw2πrdr = −ρm
πa4

8µ

(

dp

dz
+ ρmg

)

(12)

Poiseuille parabolic radial profile.
Vertical pressure gradient ?
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Navier-Stokes equations
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Q∗ must be constant and independent of height z (mass conservation).
Thus, dp/dz independent of z, and hence constant.
From p(0) and p(H)

dp

dz
= constant =

p(H)− p(0)

H
= −

ρcgH +∆Pc − ρmgh

H
(13)

And hence:

Q = ρm
πa4

8µ

(ρc − ρm)gH +∆Pc − ρmh

H
(14)
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Montagne Pelée, Martinique  (1902)





Velocity decrease from phase (1) to phase  (2) implies that : 
- the reservoir pressure decreased by ≈ 2 MPa,
- there is a reservoir !

For the total erupted volume, total DP > 30 MPa.



Dynamics of spreading

Scales
H for height
R for radius
U for horizontal velocity

Laminar regime (small Reynolds number) : no inertia.



Assume incompressible lava (to be discussed later).
Control variables: eruption rate Q (volumetric) + lava properties.
Global mass balance. Volume increases linearly with time.

V (t) = Qt ∼ HR2 (15)

∼ symbol = proportional to.
Horizontal force balance.
Driving = pressure.
Pressure acting on a cylindrical surface with area 2πRH , prop. to (HR).

FD ∼ (ρmgH)HR (16)

Resisting = viscous shear at the base of the flow.
Shear stress:

τ ∼ µ
U

H
(17)

Acting on area πR2.
Force balance:

ρmgH
2R ∼ µ

UR2

H
(18)

Three unknowns, H,R, U , and only two equations.
But velocity∼spreading rate, such that U ∼ dR/dt ∼ R/t.

R∼

(

ρmgQ3

µ

)1/8

t1/2 (19)

H ∼

(

µQ

ρmg

)1/4

(20)
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Flow dimensions and spreading rate 1. Constant eruption rate.
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Cylindrical coordinate system (r, θ, z)
Assume no orthoradial velocity component: v̄ = (u, 0, w).
Navier-Stokes equations:

0=
1

r

∂(ru)

∂r
+

∂w

∂z
(21)

0=−
∂p

∂r
+ µ

[

∂

∂r

(

1

r

∂

∂r
(ru)

)

+
∂2u

∂z2

]

(22)

0=−
∂p

∂z
+ µ

[

1

r

∂

∂r

(

r
∂w

∂r

)

+
∂2w

∂z2

]

− ρmg (23)

H << R : neglect radial derivatives compared to vertical ones.
Continuity equation implies that:
|w| ≪ |u|
Viscous stresses associated with gradients of vertical velocity are small.
Reduced equations:

0=
1

r

∂(ru)

∂r
+

∂w

∂z
(24)

0=−
∂p

∂r
+ µ

∂2u

∂z2
(25)

0=−
∂p

∂z
− ρmg (26)

Integrate vertical momentum equation:

p(r, z) = Pa + ρmg(h− z) (27)

Pa = atmospheric pressure (negligibe).

∂p

∂r
= ρmh

∂h

∂r
(28)

Flow is driven by thickness variations.
Integrate the simplified radial momentum balance.
Boundary conditions:

µ

(

∂u

∂z

)

z=h

=0 (zero shear stress at the top) (29)

u(r, 0)= 0 (no slip at the base) (30)

u(r, z) = −
ρmg

2µ

∂h

∂r
z(2h− z) (31)
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Mass conservation constraint ?
Continuity equation allows calculation of w as a function of u.
Choose control volume : avoid mass flux through a horizontal surface.
Control volume between two vertical cylinders at radii r and r + dr.
Control volume δV = 2πhrdr.
Horizontal mass flux across a vertical cylinder = φ(r).
Mass (volume) conservation:

2πr
∂h

∂t
= −

∂φ

∂r
(32)

Using solution for u:

φ(r) = −2πr
ρmg

3µ
h3∂h

∂r
(33)

Substituting into the mass balance equation:

∂h

∂t
−

ρmg

3µ

1

r

∂

∂r

(

h3∂h

∂r

)

= 0 (34)

Non linear !
To be solved with global volume conservation:

V (t) = Qt =
∫ rN (t)

0
h2πrdr (35)
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Solution method: introduce similarity variable η ∼ r/R(t).
This states that the flow is self − similar.

h(r, t) =

(

3µQ

ρmg

)1/4

H(η) (36)

η=

(

ρmgQ3

3µ

)

−1/8

rt−1/2 (37)

where H(η) is a dimensionless function.
Numerical integration yields:

rN(t) = (0.715...)

(

ρmgQ3

3µ

)1/8

t1/2 (38)

Defining ξ = r/rN , an approximate solution:

H(ξ) =
(

3

2

)1/3

(1− ξ)1/3
[

1 +
1

12
(1− ξ) +O(1− ξ)2

]

(39)
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Constant eruption rate

Slope 1/2



3 Spreading of lava at Earth’s surface(2) . Constant volume.

The constant volume conditions modifies the scaling laws.
Mass conservation :

Vo ∼ HR2 (40)

Same horizontal force balance.
Same relationship between U and R.

R∼

(

ρmgV 3
o

µ

)1/8

t1/8 (41)

H ∼

(

µVo

ρmg

)1/4

t−1/4 (42)

4 Conclusions
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Flow dimensions and spreading rate 2. Constant volume.

Residual spreading once the eruption has stopped.



Slope 1/8



Slope  -1/4



LAVA FLOW  MORPHOLOGY

1. Observations
2. Physical principles
3. Laboratory experiments



Mount St Helens 1980 lava dome



Formation of lobes

Mount St Helens dome



Mount St  Helens



Mount St Helens

“Rifting structure”



INPUTS

Volume flow rate Q, magma viscosity µ, magma density r

Cooling mechanism (with relevant variables and properties)



Behaviour of flow depends on crust resistance.

Two time-scales:
Flow time-scale ta
Solidification time-scale ts

ta >> ts : crust formation has a large influence on the flow.
ta << ts : flow is faster than crust formation.

INPUTS

Volume flow rate Q, magma viscosity µ, magma density r

Cooling mechanism (with relevant variables and properties)



INPUTS

Volume flow rate Q, magma viscosity µ, magma density r

Spreading time-scale τa:

Q =
dV

dt
∼

H3

t
(48)

Use thickness scale derived previously:

H ∼

(

µQ

ρmg

)1/4

(49)

τa∼
H3

Q
∼

(

µ

ρmg

)3/4

Q−1/4 (50)
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INPUTS

Volume flow rate Q, magma viscosity µ, magma density r

Time-scale for cooling depends on the cooling mechanism.
For diffusion:

τS ∼
H2

κ
(51)

4 Conclusions
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Two time-scales:
Flow time-scale ta
Solidification time-scale ts

INPUTS

Volume flow rate Q, magma viscosity µ, magma density r

Dimensionless number

Y =  ts/ta



Point  source  (vent  eruption)

Y =  17: folding

Y =  9: rifting

Y >  50 : crust has no detectable effect.

(From Griffiths & Fink, 1993)

Y = 4: rifting and
pillow (or lobe) formation



Y =  17  (small crust influence : “folding”)



Y =  9  (moderate crust effect : “rifting”)
Time evolution



Y =  4   (strong crust effect)
Formation of  “pillows”  or  “lobes”


