LAVA FLOWS AND DOMES

Dynamics of spreading and morphology

Colima

Unzen, Japan

Montagne Pelée, Martinique (1902)

Venus

Popocatepetl, Mexico

Cylindrical conduit from $z=0$ to $z=H$.
Lava flow or dome with thickness h.
$p(z)=$ pressure in the conduit.
Pressure at the vent:

$$
p(H)=P_{a}+\rho_{m} g h
$$

Pressure at $z=0$ (top of the reservoir)
$P_{c}=$ lithostatic pressure + overpressure (or underpressure) ΔP_{c}.

$$
p(0)=P_{c}=P_{a}+\rho_{c} g H+\Delta P_{c}
$$

Hydrostatic pressure component at $z=0$.

$$
P_{L}=P_{a}+\rho_{m} g(H+h)
$$

Pressure difference that drives ascent

$$
\Delta P=P_{c}-P_{L}=\left(\rho_{c}-\rho_{m}\right) H+\Delta P_{c}-\rho_{m} g h
$$

Eruption stops when $\Delta P=0$.
(1) Decreasing reservoir overpressure ΔP_{c}.
(2) Increasing thickness of lava at the vent.

NOTE 1: magma buoyancy $\left(\rho_{c} \geq \rho_{m}\right)$ positive or negative !
Negative buoyancy leads to $\Delta P_{c}<0$.
NOTE 2: we have assumed that the conduit remains open.

Calculation of the eruption rate.

Incompressible magma of density ρ_{m} and viscosity μ.
Flow at small Reynolds numbers (laminar regime, no inertia).
Cylondrical coordinate system (r, θ, z). Velocity components $\left(u, v_{\theta}, w\right)$.
Assume purely vertical flow, such that $\left(u, v_{\theta}\right)=(0,0)$.
Assume that pressure and velocity do not depend on θ (no swirling motion).

Navier-Stokes equations

$$
\begin{aligned}
0 & =\frac{\partial w}{\partial z} \\
0 & =-\frac{\partial p}{\partial r} \\
0 & =-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial w}{\partial r}\right)+\frac{\partial^{2} w}{\partial z^{2}}\right]-\rho_{m} g
\end{aligned}
$$

Two very useful simplifications:
w does not depend on z
p does not depend on radial distance r.
Recast the vertical momentum balance:

$$
\frac{d}{d r}\left(r \frac{d w}{d r}\right)=\frac{1}{\mu} r\left(\frac{d p}{d z}+\rho_{m} g\right)
$$

$$
\frac{d}{d r}\left(r \frac{d w}{d r}\right)=\frac{1}{\mu} r\left(\frac{d p}{d z}+\rho_{m} g\right)
$$

Integrate once between $r=0$ and r :

$$
r \frac{d w}{d r}=\frac{r^{2}}{2 \mu}\left(\frac{d p}{d z}+\rho_{m} g\right)
$$

Integrate between $r=a$ and r :

$$
w(r)-w(a)=\frac{1}{4 \mu}\left(r^{2}-a^{2}\right)\left(\frac{d p}{d z}+\rho_{m} g\right)
$$

No slip at the conduit walls, such that $w(a)=0$.

$$
w=\frac{1}{4 \mu}\left(r^{2}-a^{2}\right)\left(\frac{d p}{d z}+\rho_{m} g\right)
$$

The mass flux of magma (eruption rate):

$$
Q^{*}=\int_{0}^{r=a} \rho_{m} w 2 \pi r d r=-\rho_{m} \frac{\pi a^{4}}{8 \mu}\left(\frac{d p}{d z}+\rho_{m} g\right)
$$

Poiseuille parabolic radial profile.
Vertical pressure gradient?
Q^{*} must be constant and independent of height z (mass conservation). Thus, $d p / d z$ independent of z, and hence constant.
From $p(0)$ and $p(H)$

$$
\frac{d p}{d z}=\text { constant }=\frac{p(H)-p(0)}{H}=-\frac{\rho_{c} g H+\Delta P_{c}-\rho_{m} g h}{H}
$$

And hence:

$$
Q \stackrel{*}{=} \rho_{m} \frac{\pi a^{4}}{8 \mu} \frac{\left(\rho_{c}-\rho_{m}\right) g H+\Delta P_{c}-\rho_{m} h}{H}
$$

Montagne Pelée, Martinique (1902)

* Powerful pyroclastic flows which reached the sea.
- Pyroclastic flows which descended halfway down the riviere Blanche valley
+ Pyroclastic flows descended in directions other than that of the riviere Blanche

Velocity decrease from phase (1) to phase (2) implies that:

- the reservoir pressure decreased by $\approx 2 \mathrm{MPa}$,
- there is a reservoir !

For the total erupted volume, total $\Delta \mathrm{P}>30 \mathrm{MPa}$.

Dynamics of spreading

Flow dimensions and spreading rate 1 . Constant eruption rate.

Assume incompressible lava (to be discussed later).
Control variables: eruption rate Q (volumetric) + lava properties. Global mass balance. Volume increases linearly with time.

$$
V(t)=Q t \sim H R^{2}
$$

\sim symbol $=$ proportional to.

Horizontal force balance.
Driving $=$ pressure .
Pressure acting on a cylindrical surface with area $2 \pi R H$, prop. to $(H R)$.

$$
F_{D} \sim\left(\rho_{m} g H\right) H R
$$

Resisting $=$ viscous shear at the base of the flow.
Shear stress:

$$
\tau \sim \mu \frac{U}{H}
$$

Acting on area πR^{2}.
Force balance:

$$
\rho_{m} g H^{2} R \sim \mu \frac{U R^{2}}{H}
$$

Three unknowns, H, R, U, and only two equations.
But velocity \sim spreading rate, such that $U \sim d R / d t \sim R / t$.

$$
\begin{aligned}
& R \sim\left(\frac{\rho_{m} g Q^{3}}{\mu}\right)^{1 / 8} t^{1 / 2} \\
& H \sim\left(\frac{\mu Q}{\rho_{m} g}\right)^{1 / 4}
\end{aligned}
$$

Full solution

Cylindrical coordinate system (r, θ, z)
Assume no orthoradial velocity component: $\bar{v}=(u, 0, w)$.
Navier-Stokes equations:

$$
\begin{aligned}
& 0=\frac{1}{r} \frac{\partial(r u)}{\partial r}+\frac{\partial w}{\partial z} \\
& 0=-\frac{\partial p}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}(r u)\right)+\frac{\partial^{2} u}{\partial z^{2}}\right] \\
& 0=-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial w}{\partial r}\right)+\frac{\partial^{2} w}{\partial z^{2}}\right]-\rho_{m} g
\end{aligned}
$$

$H \ll R$: neglect radial derivatives compared to vertical ones.
Continuity equation implies that:
$|w| \ll|u|$
Viscous stresses associated with gradients of vertical velocity are small.
Reduced equations:

$$
\begin{aligned}
& 0=\frac{1}{r} \frac{\partial(r u)}{\partial r}+\frac{\partial w}{\partial z} \\
& 0=-\frac{\partial p}{\partial r}+\mu \frac{\partial^{2} u}{\partial z^{2}} \\
& 0=-\frac{\partial p}{\partial z}-\rho_{m} g
\end{aligned}
$$

Integrate vertical momentum equation:

$$
p(r, z)=P_{a}+\rho_{m} g(h-z)
$$

$P_{a}=$ atmospheric pressure (negligibe).

$$
\frac{\partial p}{\partial r}=\rho_{m} h \frac{\partial h}{\partial r}
$$

Flow is driven by thickness variations.

Integrate the simplified radial momentum balance. Boundary conditions:

$$
\begin{aligned}
\mu\left(\frac{\partial u}{\partial z}\right)_{z=h} & =0 \quad \text { (zero shear stress at the top) } \\
u(r, 0) & =0 \quad \text { (no slip at the base) }
\end{aligned}
$$

$$
u(r, z)=-\frac{\rho_{m} g}{2 \mu} \frac{\partial h}{\partial r} z(2 h-z)
$$

Mass conservation constraint ?
Continuity equation allows calculation of w as a function of u.
Choose control volume : avoid mass flux through a horizontal surface. Control volume between two vertical cylinders at radii r and $r+d r$. Control volume $\delta V=2 \pi h r d r$.
Horizontal mass flux across a vertical cylinder $=\phi(r)$.
Mass (volume) conservation:

$$
2 \pi r \frac{\partial h}{\partial t}=-\frac{\partial \phi}{\partial r}
$$

Using solution for u :

$$
\phi(r)=-2 \pi r \frac{\rho_{m} g}{3 \mu} h^{3} \frac{\partial h}{\partial r}
$$

Substituting into the mass balance equation:

$$
\frac{\partial h}{\partial t}-\frac{\rho_{m} g}{3 \mu} \frac{1}{r} \frac{\partial}{\partial r}\left(h^{3} \frac{\partial h}{\partial r}\right)=0
$$

Non linear!

$$
\frac{\partial h}{\partial t}-\frac{\rho_{m} g}{3 \mu} \frac{1}{r} \frac{\partial}{\partial r}\left(h^{3} \frac{\partial h}{\partial r}\right)=0
$$

To be solved with global volume conservation:

$$
V(t)=Q t=\int_{0}^{r_{N}(t)} h 2 \pi r d r
$$

Solution method: introduce similarity variable $\eta \sim r / R(t)$. This states that the flow is self - similar.

$$
\begin{aligned}
h(r, t) & =\left(\frac{3 \mu Q}{\rho_{m} g}\right)^{1 / 4} H(\eta) \\
\eta & =\left(\frac{\rho_{m} g Q^{3}}{3 \mu}\right)^{-1 / 8} r t^{-1 / 2}
\end{aligned}
$$

where $H(\eta)$ is a dimensionless function.
Numerical integration yields:

$$
r_{N}(t)=(0.715 \ldots)\left(\frac{\rho_{m} g Q^{3}}{3 \mu}\right)^{1 / 8} t^{1 / 2}
$$

Defining $\xi=r / r_{N}$, an approximate solution:

$$
H(\xi)=\left(\frac{3}{2}\right)^{1 / 3}(1-\xi)^{1 / 3}\left[1+\frac{1}{12}(1-\xi)+\mathcal{O}(1-\xi)^{2}\right]
$$

Constant eruption rate

Flow dimensions and spreading rate 2 . Constant volume.

Residual spreading once the eruption has stopped.

Mass conservation :

$$
V_{o} \sim H R^{2}
$$

Same horizontal force balance. Same relationship between U and R.

$$
\begin{aligned}
& R \sim\left(\frac{\rho_{m} g V_{o}^{3}}{\mu}\right)^{1 / 8} t^{1 / 8} \\
& H \sim\left(\frac{\mu V_{o}}{\rho_{m} g}\right)^{1 / 4} t^{-1 / 4}
\end{aligned}
$$

LAVA FLOW MORPHOLOGY

1. Observations
2. Physical principles
3. Laboratory experiments

Mount St Helens 1980 lava dome

Mount St Helens dome

Formation of lobes

Mount St Helens

Mount St Helens

"Rifting structure"

Volume flow rate Q , magma viscosity μ, magma density ρ
Cooling mechanism (with relevant variables and properties)

Volume flow rate Q , magma viscosity μ, magma density ρ
Cooling mechanism (with relevant variables and properties)
Behaviour of flow depends on crust resistance.
Two time-scales:
Flow time-scale τ_{a}
Solidification time-scale τ_{s}
$\tau_{\mathrm{a}} \gg \tau_{\mathrm{s}}$: crust formation has a large influence on the flow.
$\tau_{\mathrm{a}} \ll \tau_{\mathrm{s}}$: flow is faster than crust formation.

Volume flow rate Q , magma viscosity μ, magma density ρ
Spreading time-scale τ_{a} :

$$
Q=\frac{d V}{d t} \sim \frac{H^{3}}{t}
$$

Use thickness scale derived previously:

$$
\begin{aligned}
H & \sim\left(\frac{\mu Q}{\rho_{m} g}\right)^{1 / 4} \\
\tau_{a} & \sim \frac{H^{3}}{Q} \sim\left(\frac{\mu}{\rho_{m} g}\right)^{3 / 4} Q^{-1 / 4}
\end{aligned}
$$

Volume flow rate Q , magma viscosity μ, magma density ρ
Time-scale for cooling depends on the cooling mechanism. For diffusion:

$$
\tau_{S} \sim \frac{H^{2}}{\kappa}
$$

Volume flow rate Q , magma viscosity μ, magma density ρ
Two time-scales:
Flow time-scale τ_{a} Solidification time-scale τ_{s}

Dimensionless number

$$
\Psi=\tau_{s} / \tau_{\mathrm{a}}
$$

Point source (vent eruption)

$\Psi>50$: crust has no detectable effect.

$$
\Psi=17: \text { folding }
$$

$\Psi=4$: rifting and
pillow (or lobe) formation

$$
\Psi=9: \text { rifting }
$$

(From Griffiths \& Fink, 1993)

$\Psi=17$ (small crust influence : "folding")

$\Psi=9$ (moderate crust effect : "rifting") Time evolution

$\Psi=4$ (strong crust effect)

Formation of "pillows" or "lobes"

