The extragalactic gamma-ray background.

Markus Ackermann

Perspectives on the Extragalactic Frontier ICTP Trieste May 2 - May 6, 2016

Extragalactic radiation backgrounds.

The universe is full of radiation backgrounds from the lowest to the highest energies.

Diffuse radiation

Known source populations

Sources too faint to be resolved.

Markus Ackermann | ICTP Trieste | 02/05/2016 | Page 3

- synchrotron emission from galaxies & galactic cores.
- ???

???

cores.

possible small contribution from unknown stellar populations (e.g. Pop III stars)

cores.

???

possible small contribution from unknown stellar populations (e.g. Pop III stars)

???

???

???

ermine origin of the Cite / Las abo

Sources

Blazars Dominant class of extra-galactic GeV / TeV sources.

Radio galaxies

- 30 sources resolved
- Situations of Clark than Blac

Star-forming galaxies

- few galaxies of a lved in
- Large number of sources → significant EGB contribution.

lactic

Intergalactic shocks

JSe

 Widely varying predictions of EGB contribution ranging from 1% to 100%.

Dark matter annihilation

 Potential signal dependent on nature of DM, cross-section and structure of DM distribution.

Interactions of UHE cosmic rays with the EBL

- Strongly dependent on evolution of UHECR sources.
- 1% 100% of EGB emission.

Isotropic Galactic contributions

- Contributions from an extremely large Galactic electron halo.
- CR interaction in small solar system bodies.

Fermi LAT, 4-year sky map, E > 1 GeV

Fermi LAT, 4-year sky map, E > 1 GeV

Bremsstrahlung

Fermi LAT, 4-year sky map, E > 1 GeV

Fermi LAT, 4-year sky map, E > 1 GeV

The isotropic and the total extragalactic background.

Intensity that can be resolved into sources depends on:

- the sensitivity of the instrument.
- the exposure of the observation.

- The isotropic γ-ray background depends on the sensitivity to identify sources.
- → Important as an **upper limit on** diffuse processes.
- The total extragalactic γ-ray background is instrument and observation independent.
- → Useful for comparisons with source population models.

Galactic diffuse emission

Cosmic-ray induced background in the LAT orbit.

> CR intensity up to 10⁶ times higher than EGB in the LAT orbit.

- > Two energy regimes:
 - > Primary CR dominate at high energies.
 - > Secondaries from CR interactions in the atmosphere dominate at low energies.

Dedicated event classes for the IGRB analysis.

Residual cosmic-ray background.

Galactic diffuse emission

Markus Ackermann | ICTP Trieste | 02/05/2016 | Page 13

Galactic diffuse foreground model.

- > **GALPROP** code used to produce **template maps** for diffuse Galactic emission.
 - Baseline model: CR injection/propagation scenario as in Ackermann et al. 2012
- > Intensity is derived from fit to LAT data in each energy band.

Galactic diffuse foreground model.

- > **GALPROP** code used to produce **template maps** for diffuse Galactic emission.
 - Baseline model: CR injection/propagation scenario as in Ackermann et al. 2012
- > Intensity is derived from fit to LAT data in each energy band.

Galactic diffuse foreground model.

- > Fit in individual energy bands is restricted to energies below ~ 50 GeV.
- > Derive universal normalization factor for model templates in 5 50 GeV band.
- > Use this normalization factor in high-energy analysis (13 GeV 820 GeV).

Alternative foreground models.

Alternative foreground models.

Results from the IGRB fit.

The IGRB spectrum.

> IGRB spectrum can be parametrized by single power-law + exponential cutoff.

- > Spectral index ~ 2.3 , cutoff energy ~ 250 GeV.
- > It is not compatible with a simple power-law ($\chi^2 > 85$).

Are there spectral features ?

- > No evidence within systematics
- > residual CR background spectrum is not a simple & smooth function

P7REP_IGRB_LO

Primary protons

Secondaries

Primary electrons

Earth limb y rays

 10^{3}

> This might introduce apparent spectral structures into IGRB

Residual background [cts s⁻¹ sr⁻¹ MeV⁻¹] 0 5 5

10-7

The total extragalactic background.

> Sum of the intensities of IGRB and the resolved high-latitude sources.

- > Contribution of high-latitude Galactic sources << 5%.</p>
- > Spectrum can be parametrized by **power-law with exponential cutoff**.
- > Spectral index ~ 2.3, cutoff energy ~ 350 GeV.

Comparison of LAT IGRB and EGB measurements.

Comparison for baseline diffuse model.

- > Integrated intensity of IGRB about 30% below measurement in Abdo et al. 2010.
- > Compatible within systematic uncertainties.
- > Main differences: Improved diffuse foreground and CR background models.

Comparison to other experiments.

Cosmic x-ray and gamma-ray background now measured over 9 orders of magnitude in energy.

The shape of the high-energy IGRB spectrum.

Comoving Emissivity Density ~ SFR, $E_{Max} = 10 \text{ TeV}$ r_{S} r_{S} r

Comoving Emissivity Density ~ $(1+z)^{\beta}$, $\Gamma = 2.3$, $E_{Max} = 10 \text{ TeV}$ E² dN/dE [cm⁻² s⁻¹ sr⁻¹ MeV] 10-4 β = -5 $\beta = -4$ β = -3 $\beta = -2$ $\beta = -1$ $\beta = 0$ $\beta = 1$ 10⁻⁵ $\beta = 2$ $\beta = 3$ $\beta = 4$ $\beta = 5$ 10⁵ 10⁶ Energy [MeV]

- Simple population of sources with power-law spectrum with index Γ
- Luminosity or density evolution ~ (1+z)^β or following star-formation rate
- Observed EGB spectrum is compatible with single population of sources with power-law spectrum (Γ=2.3) and no evolution (β=0).

Source populations contributing to the EGB.

- > Reality might be more complex.
- > Above few GeV Blazars seem to dominate the EGB
 - Iuminosity dependent evolution, negative for low-luminosity HSP-BLLacs

Low-energy analysis: 30 MeV - 1 GeV (later)

Potential foreground model improvements

> Foreground modeling improvements anticipated for pass8 EGB analysis

- Investigate a systematics optimized mask.
- Improve Loop I template
- Model B derivate as default model (sources in galactic center region)
- Evaluate North/South asymmetry of Galactic foreground
- Evaluate effects of arm structure

Evidence from CR for more complex propagation scenarios

Can we measure the TeV extragalactic background ?

Gamma-ray backgrounds beyond 1 TeV

- TeV gamma rays can reach us only from the local universe
- Re-emission of absorbed TeV photons by inverse Compton processes in the GeV band:
 - "cascade emission"

- TeV gamma rays can reach us only from the local universe
- Re-emission of absorbed TeV photons by inverse Compton processes in the GeV band:
 - "cascade emission"

Instrumental constraints.

- > Lower limit from counting TeV detected sources.
- > Upper limit from requirement that the cascade emission is not higher than observed GeV background.

A different messenger of high-energy processes.

- > Neutrinos give us an unobscured view of the TeV-PeV universe
- > Produced only in hadronic processes.

- > The IGRB spectrum can be described over the full energy range by a simple power-law of index ~2.3 with an exponential cutoff at ~250 GeV.
- The shape of the cutoff is compatible with expectations due to absorption of the gamma-rays in the extragalactic background light and a single dominating population.
 - Confirmed by dedicated studies.
- > Uncertainty in diffuse foreground modeling is the largest systematic uncertainty for the IGRB measurement.
- > Pass 8 analysis is underway to address this, and yield other substantial improvements of this measurement.
- > Neutrinos are a powerful new messenger to measure high-energy emission beyond few TeV

