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Extragalactic radiation backgrounds.

> The universe is full of radiation backgrounds from the lowest to the highest 
energies.
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Origin of the radiation backgrounds.
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Known source populations

Sources too faint to be resolved.Diffuse radiation

Hubble deep field
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The origin of the GRB / EGB above 100 MeV.
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Sources Diffuse processes
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Why is this important ?
! The Extragalactic Gamma-ray Background may encrypt the signature of the

most powerful processes in astrophysics

Blazars contribute
20-100% of the
EGB (Stecker&Salomon96,
Mücke&Pohl00,
Narumoto&Totani04,Dermer0
7, Inoue&Totani09)

Emission from star
forming galaxies (e.g.
Pavlidou&Fields02)

Emission from
particle accelerated
in Intergalactic
shocks (Loeb&Waxmann00)
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Blazars
▪ Dominant class of extra-galactic 

GeV / TeV sources. 

Radio galaxies
▪ ~ 30 sources resolved in GeV 

band.
▪ Less luminous but more 

abundant than Blazars 

Star-forming galaxies
▪ Only few galaxies resolved in 

GeV band. 
▪ Large number of sources → 

significant EGB contribution. 

GRBs + High-latitude 
pulsars
▪ Small contributions expected. 

Intergalactic shocks
▪ Widely varying predictions of 

EGB contribution ranging from 
1% to 100%.

Dark matter annihilation
▪ Potential signal dependent on 

nature of DM, cross-section and 
structure of DM distribution. 

Interactions of UHE cosmic 
rays with the EBL
▪ Strongly dependent on evolution 

of UHECR sources.
▪ 1% - 100% of EGB emission.

Isotropic Galactic 
contributions 
▪ Contributions from an extremely 

large Galactic electron halo.
▪ CR interaction in small solar 

system bodies.
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The Fermi LAT gamma-ray sky.
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Inverse Compton                       π0-decay

Bremsstrahlung

Galactic diffuse emission 
(CR interactions with the interstellar medium)



Fermi LAT, 4-year sky map, E > 1 GeV

Markus Ackermann  |  ICTP Trieste  |  02/05/2016  |  Page  

The Fermi LAT gamma-ray sky.
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The Fermi LAT gamma-ray sky.
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Resolved sources

Inverse Compton                       π0-decay

Bremsstrahlung

Galactic diffuse emission 
(CR interactions with the interstellar medium)

Isotropic diffuse 
emission (IGRB)
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The isotropic and the total extragalactic background.

Intensity that can be resolved into 
sources depends on:

▪ the sensitivity of the instrument.
▪ the exposure of the observation.

➞ The isotropic γ-ray background 
depends on the sensitivity to 
identify sources.

➞ Important as an upper limit on 
diffuse processes.

➞ The total extragalactic γ-ray 
background is instrument and 
observation independent.

➞ Useful for comparisons with 
source population models.
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+

Resolved sources

Isotropic γ-ray background (IGRB)

Total extragalactic γ-ray background (EGB)
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Derivation of the isotropic gamma-ray background.
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=

+
Solar disk and IC

+
Resolved sources (2FGL)

+
Isotropic emission

Interstellar gas

Inverse Compton (IC)

Loop I / Local Loop

Galactic diffuse emission

Not used in this analysis: 
> Galactic plane  
> Regions with dense molecular clouds 
> Regions with non-local  

atomic hydrogen clouds

Low-energy analysis  
(100 MeV - 13 GeV) 
> High-statistics regime. 
> Intensity of all components is  

fitted in each energy band.

High-energy analysis  
(13 GeV - 820 GeV) 
> Low-statistics regime 
> Only resolved sources and 

isotropic emission are fitted 
in each energy band.
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Derivation of the isotropic gamma-ray background.
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Cosmic-ray induced background in the LAT orbit.

> CR intensity up to 106 times higher than EGB in the LAT orbit.
> Two energy regimes:

> Primary CR dominate at high energies.
> Secondaries from CR interactions in the atmosphere dominate at low energies.

10

!Ackermann!et!al.!2012,!ApJS,!203,!4!

Low-energy analysis High-energy analysis
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Dedicated event classes for the IGRB analysis.  

> Publicly available LAT event 
classes (P7ULTRACLEAN) 
have insufficient background 
rejection at very low and very 
high energies.

> New high-purity event 
classes developed for this 
analysis.

> P7REP_IGRB_LO
▪ Optimized to reject secondary 

CR background at low energies
> P7REP_IGRB_HI

▪ Optimized to reject primary CR 
background while retaining high 
statistics

11

Low-energy analysis High-energy analysis
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Residual cosmic-ray background.

12

!Ackermann!et!al.!2012,!ApJS,!203,!4!

Low-energy analysis High-energy analysis



Markus Ackermann  |  ICTP Trieste  |  02/05/2016  |  Page  

Derivation of the isotropic gamma-ray background.
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Galactic diffuse foreground model.
> GALPROP code used to produce template maps for diffuse Galactic emission.

▪ Baseline model: CR injection/propagation scenario as in Ackermann et al. 2012
> Intensity is derived from fit to LAT data in each energy band. 

14

Interstellar gas

Inverse Compton (IC)
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Interstellar gas

Inverse Compton (IC)

Spectral shape 
predicted 
by GALPROP 
model

Spectral shape 
from fit to LAT data
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Galactic diffuse foreground model.
> Fit in individual energy bands is restricted to energies below ~ 50 GeV.
> Derive universal normalization factor for model templates in 5 - 50 GeV band.
> Use this normalization factor in high-energy analysis (13 GeV - 820 GeV). 

15

Interstellar gas

Inverse Compton (IC)

Normalizations derived  
from this energy range

> Good  
agreement  
between spectral shapes above few GeV 
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Alternative foreground models.

> Large discrepancies in IC spectrum 
between model and fit not well understood.

> Evaluated alternative diffuse models.
> Example model “B”: Injection of e+/e- by 

population close to Galactic center.
> Any effect on derived IGRB? 

16

Model “B”

Model “B”Model “B” vs default model.

CR electron spectrum
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Model “B”

Model “B”Model “B” vs default model.

CR electron spectrum

….more diffuse foreground models:
> Model “C”: Spatial variation of propagation parameters in the 

Galaxy
> For systematics studies:

> Variations of source distributions, Galactic halo size, 
magnetic field parameters, gas densities, radiation field…

> Models including the Fermi “Bubbles”
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Results from the IGRB fit.
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Low-energy analysis High-energy analysis

Low-energy analysis High-energy analysis

> Based on 50 months of 
reprocessed pass7 LAT data.

> Average intensities ( |b| > 20° ) 
attributed to model templates.

> Baseline foreground model used.

> IGRB and CR contributions to 
isotropic emission

> Spectral fit of IGRB by power-
law with exponential cutoff. 
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The IGRB spectrum.

> Error bars:
statistical error 
+ syst. error from effective 

area parametrization
+ syst. error from CR 

background subtraction

> Yellow band: 
systematic uncertainties 
from foreground model 
variations.

18

> IGRB spectrum can be parametrized by single power-law + exponential cutoff.
> Spectral index ~ 2.3 , cutoff energy ~ 250 GeV.
> It is not compatible with a simple power-law (χ2 > 85).

Low-energy analysis High-energy analysis
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Are there spectral features ?

> No evidence within systematics
> residual CR background spectrum 

is not a simple & smooth function 
> This might introduce apparent 

spectral structures into IGRB

19
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The total extragalactic background.

> Sum of the intensities of IGRB and the resolved high-latitude sources.
> Contribution of high-latitude Galactic sources << 5%.
> Spectrum can be parametrized by power-law with exponential cutoff.
> Spectral index ~ 2.3, cutoff energy ~ 350 GeV.

20
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Comparison of LAT IGRB and EGB measurements.

> Comparison for baseline diffuse model.
> Integrated intensity of IGRB about 30% below measurement in Abdo et al. 2010.
> Compatible within systematic uncertainties.
> Main differences: Improved diffuse foreground and CR background models. 

21
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Comparison to other experiments.

> Cosmic x-ray and gamma-ray background now measured over 9 orders of 
magnitude in energy.

22
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The shape of the high-energy IGRB spectrum.

> Simple population of sources with 
power-law spectrum with index Γ 

> Luminosity or density evolution ~ 
(1+z)β or following star-formation rate

> Observed EGB spectrum is 
compatible with single population 
of sources with power-law spectrum  
(Γ=2.3) and no evolution (β=0).

23
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Source populations contributing to the EGB.

> Reality might be more complex.
> Above few GeV Blazars seem to dominate the EGB

▪ luminosity dependent evolution, negative for low-luminosity HSP-BLLacs
24

Ajello et al., ApJL, 2015 



First and Last Name  |  Title of Presentation  |  Date  |  Page  

Where to go from here: Pass8 analysis
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Extend energy range to <~30 MeV Reduce foreground modeling systematic uncertainty

Reduce  
high-energy  
statistical  
uncertainty

Resolve more sources.
Extend the measurement 
to >~ 2 TeV (probably 
IGRB limits only)

> 2 steps:
▪ High-energy analysis: above ~ 1 GeV
▪ Low-energy analysis: 30 MeV - 1 GeV (later)
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Potential foreground model improvements

26

> Foreground modeling improvements anticipated for pass8 EGB analysis 
▪ Investigate a systematics optimized mask.
▪ Improve Loop I template
▪ Model B derivate as default model (sources in galactic center region)
▪ Evaluate North/South asymmetry of Galactic foreground
▪ Evaluate effects of arm structure 

Model “B”

Model “A”
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Evidence from CR for more complex propagation scenarios

> A single set of (constant) propagation 
parameters cannot describe the light 
elements and B/C data 
simultaneously.

27

Johannesson et al., arXiv:1602.02243
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Can we measure the TeV extragalactic background ?
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Gamma-ray backgrounds beyond 1 TeV

> Absorption of gamma-rays 
in low-energy radiation fields 
introduces horizon at TeV 
energies

> Spectral cutoff expected 
(and observed) in the GRB 

29

γ

e

Pair production

γ

e

𝛾-𝛾 pair production  
cross section
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Absorption of γ-rays in the extragalactic background light (EBL).
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γ

e

Pair production

γ

e

> TeV gamma rays can 
reach us only from the 
local universe

> Re-emission of 
absorbed TeV photons 
by inverse Compton 
processes in the GeV 
band:  
“cascade emission”
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Absorption of γ-rays in the extragalactic background light (EBL).
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Instrumental constraints.

> Ground-based telescopes 
cannot distinguish electrons 
from gamma rays (very well)

> CR electron background 
dominates by more than an 
order of magnitude.

> But they can observe  
close-by TeV sources.

31

CR 
electrons

EGB

2-3 orders of magnitude
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Constraints from observations.

32

Inoue & Tanaka, ApJ, 2016

Sources detected  
in TeV

Upper limit from cascade  
emission in the  

GeV band

> Lower limit from 
counting TeV 
detected sources.

> Upper limit from 
requirement that the 
cascade emission is 
not higher than 
observed GeV 
background.
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A different messenger of high-energy processes.
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> Neutrinos give us an unobscured view of the TeV-PeV universe
> Produced only in hadronic processes.

Inoue & Tanaka, ApJ, 2016 astrophysical 
neutrino flux

IceCube
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Summary.

> The IGRB spectrum can be described over the full energy range by a simple 
power-law of index ~2.3 with an exponential cutoff at ~250 GeV.

> The shape of the cutoff is compatible with expectations due to absorption of the 
gamma-rays in the extragalactic background light and a single dominating 
population.
▪ Confirmed by dedicated studies.

> Uncertainty in diffuse foreground modeling is the largest systematic 
uncertainty for the IGRB measurement.

> Pass 8 analysis is underway to address this, and yield other substantial 
improvements of this measurement.

> Neutrinos are a powerful new messenger to measure high-energy emission 
beyond few TeV

34


