

GRavitation AstroParticle Physics Amsterdam

Updated measurement of gamma-ray angular power spectrum of anisotropies

Mattia Fornasa

fornasam@gmail.com

In collaboration with A. Cuoco, J. Zavala, J. Gaskins, M. A. Sanchez-Conde, G. Gomez-Vargas, E. Komatsu, T. Linden, F. Prada, F. Zandanel and A. Morselli

The Diffuse Gamma-Ray Background (DGRB)

- multi-component fit to Fermi-LAT data
- power-law energy spectrum with a slope of 2.32±0.02 at lower energies and a cut-off at 279±52 GeV
- systematic uncertainty related to the Galactic foreground (15% to 30%)

Unresolved gamma-ray sources

- cumulative emission of unresolved sources
- guaranteed components from unresolved blazars, star-forming galaxies, misaligned AGNs
- build a similar plot for angular power spectrum of anisotropies

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell m}|^2$$

New APS measurement

New measurement	Ackermann et al. (2012)
81 months	22 months
Pass 7 reprocessed (ULTRACLEAN_v15) front	Pass 6 (DIFFUSE_v3) front and back
13 energy bins between 0.5-500 GeV	4 energy bins between 1-50 GeV
masking sources in 3FGL	masking sources in 1FGL

APS estimator

Binned APS measurement

signal region between ℓ =49 and 706 Energy bin [1.38-1.99] GeV Energy bin [50.00-95.27] GeV 10<mark>×10⁻18</mark> 20 × 10⁻²¹ PRELIMINARY PRELIMINARY 8 15 6 10 S_ 5 sr⁻² **°**' C_I [cm⁻⁴ -5 Masking sources in 3FGL Masking sources in 3FGL -10 Masking sources in 2FGL -6 Masking sources in 2FGL Poissonian fit (masking sources in 3FGL) Poissonian fit (masking sources in 3FGL) -15 -8 Poissonian fit (masking sources in 2FGL) Poissonian fit (masking sources in 2FGL) -20 -10 10³ 10^{2} 10³ 10² Multipole Multipole

- contamination of Galactic foreground at low ℓ and effect of the beam window function at large ℓ
- fitting the data with a Poissonian APS: χ^2 /dof = 1.01, *p*-value=0.61
- fits with $A(\ell/\ell 0)^{\alpha}$ and $C_{P} + A(\ell/\ell 0)^{\alpha}$ have also been considered

Updated measurement of gamma-ray angular power spectrum of anisotropies

C₁ [cm⁻⁴ s⁻² sr⁻² sr]

Anisotropy energy spectrum

- anisotropy energy spectrum traces the intensity energy spectrum of sources
- features in the anisotropy energy spectrum hint at multiple components

Cross-correlation APS

$$C_{\ell}^{ij} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m}^{i} a_{\ell m}^{j \star}$$

Energy [GeV]

- 91 independent combination of en. bins: 91 Poissonian $C_{P^{i,j}}$
- cross correction coefficients

$$C_{\mathrm{P}}^{i,j}/\sqrt{C_{\mathrm{P}}^{i,i}C_{\mathrm{P}}^{j,j}}$$

• one source class:

$$C_{\mathbf{P}}^{i,j} = I(E_i)I(E_j)\tilde{C}_{\mathbf{P}}$$

• multiple source classes:

$$C_{\mathbf{P}}^{i,j} = \sum_{\alpha} C_{\mathbf{P},\alpha}^{i,j} = \sum_{\alpha} I(E_i) I(E_j) \tilde{C}_{\mathbf{P},\alpha}^{i,j}$$

 cross-correlation coefficients different than 1.0 hint at multiple components

Cross-correlation APS

Interpretation in terms of multiple populations

Fitting the data with one or more populations, assuming specific energy spectra:

$$I(E) \propto E^{-\alpha} \qquad \qquad I(E) \propto \begin{cases} (E/E_0)^{-\alpha} & \text{if } E \leq E_b \\ (E_0/E_b)^{-\alpha+\beta} (E/E_0)^{-\beta} & \text{otherwise} \end{cases}$$

Best-fit model has two contributions both emitting as broken power laws:

*E*_b=(88.9-14.4+9.6) GeV,
α=2.15±0.05, β>3.9

•
$$E_{b}$$
>79 GeV,
 α =3.0_{-0.2}+0.3,
 β =0.88_{-0.15}+0.09

 χ^2 /dof = 1.21, *p*-value=0.16

Gamma-ray emission induced by Dark Matter (DM)

Gamma-ray anisotropies from Dark Matter

E=4 GeV, M_{min}=10⁻⁶ M₀, b quarks

 m_{χ} =200 GeV, σv =3×10⁻²⁶cm³s⁻¹ (annihilation), m_{χ} =2 TeV, τ =2×10²⁷ s (decay)

DM-induced APS

Conservative exclusion limits

 $\langle C_{\ell,\rm DM}^{i,j} \rangle < C_{\rm P}^{i,j} + 1.64 \, \sigma_{C_{\rm P}^{i,j}}$

2-component fit to the binned APS

95% CL exclusion limit when Test Statistics $\Delta \chi^2$ =3.84

2-component fit to the binned APS

• $TS = -2 \ln[\chi^2(no DM)] + 2 \ln[\chi^2(m_\chi, \sigma v)]$

• best-fit solution has TS=-4.5, m_{χ} =607 GeV, $(\sigma_{ann}v)$ =2.2×10⁻²⁴ cm³s⁻¹

2-component fit to the binned APS

best-fit solution has m_{χ} =1743 GeV, τ =1.2×10²⁶ s

- <u>new measurement of anisotropy angular power spectrum</u>
- possibly two distinct population of sources are responsible for the signal
- constraints on additional components can be derived
- combination with cross-correlation with other tracers of Large Scale Structures and with other messengers (neutrinos)

Estimating the emission of unresolved sources

- abundant sources: number of detected objects as a function of their flux
- rare sources (in gamma rays): measure correlation with other frequencies (IR for star-forming galaxies, radio for misaligned AGNs)

How to bin the APS

- produce 100 Monte Carlo realisations of the gamma-ray sky with a fixed nominal C_P
- PolSpice computes C_{ℓ} and estimates errors and covariances
- analytical expression for the error is

$$\sigma_{\ell} = \sqrt{2/(2\ell+1)} \left(C_{\ell} + \frac{C_{\mathrm{N}}}{W_{\ell}^2} \right)$$

• to bin C_{ℓ} in one multipole bin, you can compute:

A. unweighted average

- B. weighted average with weight = $1/\sigma_{\ell}$
- C. weighted average with weight = $1/\sigma_{\ell}$ and only photon noise
- Monte Carlo simulations prove that method B underestimates the APS
- method B was used in Ackermann et al. (2012)

How to estimated the error of the binned APS

- method A: average of the analytical expression for the error σ_{ℓ}

$$\sigma_{\ell} = \sqrt{2/(2\ell+1)} \left(C_{\ell} + \frac{C_{\rm N}}{W_{\ell}^2} \right)$$

- method B: average of the variances and covariances computed by PolSpice
- the two methods agree
- the estimated error describes well the distribution of the binned C_{ℓ} from the 100 Monte Carlo realisations

Cross-correlation

DM-induced emission

- repetition of the Millennium-II simulation box to cover a large portion of the Universe
- extrapolation below the mass resolution of the Millennium-II (assuming low-mass halos trace the smallest halos in Millennium-II)
- unresolved subhalos accounted for through an analytic fit to $P(\rho, r)$
- Milky Way smooth halo and Galactic subhalos from Aquarius (carved in the centre)

10

22/17

Effect of an uncertain MW mass on GAL-AQ

- uncertainty of a factor 4 on the mass of the Milky Way (MW)
- 16 bins in M_{MW} accounting for a correspondent depletion in the amount of Galactic subhalos
- including uncertainty on the position of the observer

Effect of an too-bright subhalos on GAL-AQ

- for certain combination of (m_{χ} , $\sigma_{ann}v$) and (m_{χ} , τ), some subhalos are brighter than the 3FGL sensitivity
- those structures should be masked

Effect of an too-bright subhalos on GAL-AQ

Updated measurement of gamma-ray angular power spectrum of anisotropies

25/17