

OBSERVATORY

Recent results from the Pierre Auger Observatory

Serguei Vorobiov¹ for the Pierre Auger Collaboration²

¹University of Nova Gorica, Slovenia

²Av. San Martín Norte 304, 5613 Malargüe, Argentina

http://www.auger.org/archive/authors_2016_04.html

Workshop on Perspectives on the Extragalactic Frontier: from Astrophysics to Fundamental Physics, ICTP, Trieste, 03.05.2016

UHECR: key problems of astrophysics & fundamental physics

Cosmic particle accelerators UHECR energy spectrum, mass composition, arrival directions

Particle interactions at the energies inaccessible in laboratory

Validity of interaction models at the extreme CR energies

PAO hybrid design for CR detection above 10¹⁷ eV

2016-2018

≥ till 2025

Planned operations

+ radio antennas, muon detectors + atmospheric monitoring,

The Pierre Auger Collaboration

About 450 people from 16 countries and 68 institutions

The Pierre Auger Observatory

Surface detector (SD)

duty cycle 100%

SD-1500 m

3000 km² area

1600 water-Cherenkov detectors (WCDs)

SD-750 m

23.5 km² area

61 WCDs

Fluorescence detector (FD) duty cycle 15%

5 units at 4 locations

4 units × 6 fluorescence telescopes overlooking SD-1500 m array

FOV 30° \times 30° in azimuth and elevation minimum elevation of 1.5°

1 unit × 3 fluorescence telescopes (HEAT) overlooking SD-750 m array

FOV [30° , 60°] in elevation

Auger Coll., Nucl. Instrum. Meth. A798 (2015) 172

The Pierre Auger Observatory

Primary CR reconstruction

Auger events

x [km]

SD-1500 m, 60° < θ < 80°

x [km]

Combined measurement allows to cover 3 decades in energy

Auger energy calibration & systematics

FD: the common energy scale

free of SD-related uncertainties (cascade simulation + hadronic interaction models)

I. Valiño for the Auger Coll. PoS (ICRC2015) 271

Energy systematic uncertainties:

FD calibration: 9.9%

FD profile reconstruction 6.5-5.6%

Atmospheric conditions: 3-6%

Stability of the energy scale 5%

Fluorescence yield: 3.6%

Invisible energy 3-1.5%

Statistical error of SD calibration fit 0.7-1.8%

FD energy scale: 14%

SD resolutions for energy reconstruction: S(1000): 22% (@3 EeV) to 12% (highest E) Energy: 16% (@3 EeV) to 12% (highest E)

Hybrids (FD + at least 1 SD station):

Energy resolution 8%

Auger Coll., Nucl. Instrum. Meth. A798 (2015) 172

Energy spectra from SD and hybrid data

I. Valiño for the Auger Coll. PoS (ICRC2015) 271

Auger all-particle CR spectrum

Combined maximum-likelihood fit, the normalisations of the different spectra are allowed to vary within the corresponding uncertainties

I. Valiño for the Auger Coll. PoS (ICRC2015) 271

Update on X_{max} measurements

robust mass-sensitive EAS observable

uncertainties due to models << difference proton-iron

Extending analysis down to 0.1 EeV using HEAT

hybrid events used

Xmax resolution < 30 (20) g/cm² above 0.1 (0.63) EeV

A. Porcelli for the Auger Coll. PoS (ICRC2015) 420

First two moments of X_{max} distributions

Below \approx 2 EeV, <Xmax> increases by \approx 85 g cm⁻² per energy decade Above this energy, <Xmax> decreases by \approx 26 g cm⁻² per energy decade

=> the composition is getting lighter (heavier) below (above) ≈ half of the ankle energy

Auger Coll., PRD 90 (2014) 122005

A. Porcelli for the Auger Coll. PoS (ICRC2015) 420

Elemental primary CR fractions from X_{max} fits

Three hadronic models used to fit the data with 2, 3 or 4 (p, He, N, Fe) elemental groups

Iron fraction is almost absent, fractions of p and He change strongly with energy

Proton fraction present at 30 EeV ?!

Composition at the ankle: a joint X* _____ & S*(1000) analysis

lighter nuclei produce deeper showers with smaller signal (less muons) => S*(1000)general air shower properties, minor model dependenceP. Younk, M. Risse, APh 35 (2012) 807

correlation in the data with Ig(E/eV) = 18.5-19.0 compared with simulated primary beams Correlation coefficient $r_g (X^*_{max}, S^*(1000)) \ge 0$ for pure beams, EPOS-LHC: 0 (p), +0.08 (Fe) $r_g (X^*_{max}, S^*(1000))$ minimal (negative) for the 0.5 p – 0.5 Fe mixture (-0.37 for EPOS-LHC)

In data, $r_{c} = -0.125 \pm 0.024 =>$ primary CR composition near the ankle is mixed

X*_{max} : X_{max} scaled to 10 EeV; S^{*}(1000): S(1000) scaled to 10 EeV, 38° r_c : rank correlation coefficient, see R. Gideon, R. Hollister, JASA 82 (1987) 656

A. Yushkov for the Auger Coll. PoS (ICRC2015) 335

Dispersion of primary CR masses in data

Conversion of Xmax moments to In A moments applied

Data near the ankle are consistent with $1.0 \le \sigma(\ln A) \le 1.7$ for the three models Results are robust against modifications of hadronic models "Dip" model of the ankle is disfavoured

A. Yushkov for the Auger Coll. PoS (ICRC2015) 335

Combined fit of spectrum and composition data

Identical uniformly distributed sources with a rigidity-dependent injection of nuclei Several CR propagation models cross sections for photo-disintegration and for EBL spectrum LHC-tuned models for air-shower particle interactions the atmosphere

Best fit: flux limited by max. energy @ sources

Hard injection spectral index γ ~1 preferred, with low cutoff energy E ~ Z x 4.7 EeV

Second scenario γ ~2, R~70 EV disfavored (~7.5 σ): wider mass dispersion than in the data

A. di Matteo for the Auger Coll. PoS (ICRC2015) 249

Auger neutrino and photon limits

Cosmogenic ("GZK") photon and neutrino emission, flux depends on CR mass distribution Difference in air shower development w.r.t. nuclei => difference in WCD signal time structure

10-year Auger SD data set analysed, 0 neutrino candidates & 4 photon candidates found Upper limits on photon and neutrino fluxed derived, assuming differential flux dN(E) = $k \cdot E^{-2}$ Photon limits: top-down models clearly disfavored, astrophysical UHECR scenarios preferred Both limits reach predictions for cases of a pure proton composition at the UHECR sources

see today's talk on neutrino analyses by Lili Yang

C. Bleve for the Auger Coll. PoS (ICRC2015) 1103

Arrival directions of the highest energy Auger events

UHECR sources within GZK sphere => anisotropy at small or intermediate angular scales?

602 events above 40 EeV collected in 10 years, −90° to +45° in declination (< 80° in zenith angle)

Search in circles 1-30°, E_{thresh} up to 80 EeV for

1) intrinsic anisotropies 2) correlations with astrophysical structures (e.g. GP, SGP, GC) and plausible UHECR candidates: Cen A; catalogs: galaxies, X-ray emitting AGN, jetted radiogalaxies: +scan distance & luminosity

No significant anisotropy found. Two largest excesses are above 58 EeV (post-trial p ≈ 1.4%):
a) UHECR within 18° of Swift-BAT AGNs closer than 130 Mpc and brighter than 10⁴⁴ erg/s
b) UHECR within 15° of Cen A (consistent with the largest overdensity found, see the right plot)

Large number of low luminosity sources or large-Z nuclei ? CR mass information is crucial !

Auger Coll., ApJ 804 (2015) 15

J. Aublin for the Auger Coll. PoS (ICRC2015) 310

Large scale anisotropy at the highest energies?

May be indicative of the collective CR motion and/or of the CR sources distribution Rayleigh analysis in right ascension and azimuth

Dipole amplitude at E > 8 EeV Auger (7.3 ± 1.5)% (p=6.4 10⁻⁵)

Auger and TA $(6.5 \pm 1.9)\%$ (p=5 10⁻³)

Dipole directions are compatible between 2 analyses

Phase changes from $\approx 270^{\circ}$ (< 1 EeV) to $\approx 100^{\circ}$ (> 8 EeV)

Transition from galactic to extragalactic CR?

Prescription running for Auger to set confidence level

I. Al Samarai for the Auger Coll. PoS (ICRC2015) 372

O. Deligny for the Auger & TA Coll. PoS (ICRC2015) 395

UHECR: key problems of astrophysics & fundamental physics

Cosmic particle accelerators

UHECR energy spectrum, mass composition, arrival directions

Particle interactions at the energies inaccessible in laboratory Validity of interaction models at the extreme CR energies

Conversion of X_{max} moments to In A moments

One-to-one relation between X_{max} and $\ln A$ moments $\langle X_{\text{max}} \rangle \approx \langle X_{\text{max}}^p \rangle - D_p \langle \ln A \rangle$ $\sigma^2(X_{\text{max}}) \approx \langle \sigma_{\text{sh}}^2 \rangle + D_p^2 \sigma^2(\ln A)$ $\langle \sigma_{\text{sh}}^2 \rangle$ — shower-to-shower fluctuations for $\langle \ln A \rangle$;

 $D_p = d\langle X_{\max}^p \rangle / d \ln E$ (elongation rate for protons).

 $\langle \ln A \rangle = \sum_{i} f_{i} \ln A_{i}, (f_{i} - \text{relative fractions of masses } A_{i} = 1, ..., 56)$ $\langle \ln A \rangle (\text{proton}) \approx 0; \quad \langle \ln A \rangle (\text{Fe}) \approx 4$

purity of the primary beam $\sigma^2(\ln A) = \langle \ln^2 A \rangle - \langle \ln A \rangle^2$ for pure beams $\sigma^2(\ln A) = 0$; maximal mixing 0.5 p-0.5 Fe $\sigma^2(\ln A) \approx 4$

In A moments from X_{max} measurements

transition from lighter to heavier composition above 2 EeV

dispersion of masses decreases with energy

QGSJetII-04: $\sigma^2(\ln A) < 0$ (within 2σ), too large shower-to-shower fluctuations?

Auger Coll., PRD 90 (2014) 122005

Muons in highly inclined events

Muon density profiles in highly inclined events:

- depend strongly on azimuth (geomagnetic deflection) and zenith (atmospheric absorption)
- depend weakly on energy, mass, model for showers with $\theta > 60^{\circ}$

=> factorization is possible using ratio N19 of measured/reference density: $\rho_{\mu}(\vec{r}) = N_{19}\rho_{\mu,19}(\vec{r};\theta,\phi)$

Muon content R is the ratio data/MC :

$$R_{\mu} = N_{19}^{\text{data}}/N_{19}^{\text{MC}}$$

Average muon content

and is positive in agreement with the <X_{max}> evolution (transition from lighter to heavier elements)

Auger Coll., PRD 91 (2015) 032003

L. Collica for the Auger Coll. PoS (ICRC2015) 336

Average log muon content

muon content in MC (for <In A> from X_{max}) is (30 – 80)% smaller than in data, minimal difference is 1.4 $\sigma_{(sys)}$ with EPOS-LHC

Auger Coll., PRD 91 (2015) 032003

L. Collica for the Auger Coll. PoS (ICRC2015) 336

Summary

Spectrum	Combined measurements over 3 decades in E, ankle observed at about 5 EeV, flux suppression above 40 EeV
Composition	Gets heavier (lighter) with increasing energy in the region above (below) ~ 2 EeV, half the ankle energy
	Spectrum and composition together favor the "source extinction" scenario
Photons & Neutrinos	Photon limits above 1 EeV strongly disfavor top-down models. Absence of GZK neutrinos disfavors pure proton composition
Arrival directions	Compatible with isotropy at small and intermediate scales. Hints on a dipole anisotropy above 10 EeV
Hadronic interactions	Great potential of mass-sensitive observables. Muon content is larger in data w.r.t. simulations (by a model-dependent factor)

Open science case at the highest energies

- lack of composition data in the suppression region
- need to better understand hadronic interaction models
- need to separate a light component to identify UHECR sources

Perspectives: detector upgrade "AugerPrime"

1000

Goal: improve on the sensitivity to mass composition in the suppression region

Equip each WSD with scintillator layer on top => Scintillators sensitive to the electromagnetic content of the shower => muon component estimate

In addition:

- Upgraded and faster electronics
- Extension of the dynamic range
- Cross check with underground buried AMIGA detectors
- Extension of the FD duty cycle

Timeline:

July 2016: Engineering Array, 12 stations equipped with scintillators

end of 2016: evaluation

2017-2018: deployment of 1600 SSD until 2025: data-taking

4 m² scintillators, 1 cm thick

AugerPrime: discrimination of scenarios

R. Engel for the Auger Coll. PoS (ICRC2015) 686

AugerPrime: discrimination of scenarios

Reference: maximum rigidity model

Significance of distinguishing scenarios with and without 10% protons

(ideal case for knowing proton predictions without uncertainty due to had. int. models)

- Standard scenario 1 (almost no protons)
- Scenario 1 with 10% protons added

R. Engel for the Auger Coll. PoS (ICRC2015) 686