Star formatior
and high
energy
neutrinos at
IceCube: a
correlation?

Cecilia Lunardini

Star formation and high energy neutrinos at IceCube: a correlation?

Cecilia Lunardini

Arizona State University

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

> Cecilia Lunardini

Kimberly Emig, CL and Rogier Windhorst, JCAP 1512 (2015) 029, arxiv:1507.05711 (3 years IceCube data)

Greg Vance, Kimberly Emig, CL and Rogier Windhorst, work in progress (\geq 4 years IceCube data)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

Spatial coincidence with astrophysical sources

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

Causality or randomness?

Equatorial coodinates J2000, galactic plane shown.

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

> Cecilia Lunardini

References:

IceCube Coll., ApJ. 796, 2014 , arXiv:1408.0634;

UHECR: K. Fang, T. Fujii, T. Linden, and A. V. Olinto, ApJ 794 2014; R. Moharana and S. Razzaque, arXiv:1501.05158 (2015); IceCube, Auger and TA coll., JCAP 1601 (2016) 01, 037, arXiv:1511.09408;

Blazars: P. Padovani and E. Resconi, MNRAS 443 2014 ; S. Sahu and L. S. Miranda, arXiv:1408.3664 ; F. Krauss, et al., Astron.Astrophys. 566 (2014) ; Fermi-LAT Coll., arXiv:1502.02147 ; Petropoulou, et al., MNRAS 448, 2015 ; ANTARES Coll., Astron. Astrophys. 576 2015 ; A. M. Brown, J. Adams, and P. M. Chadwick, arXiv:1505.00935 (2015) ; IceCube Collaboration, arXiv:1502.03104 (2015); P. Padovani et al., arXiv:1610.06550.

Star forming galaxies: L. A. Anchordoqui, et al., Phys. Rev. D 89, 2014 ; K. Emig, CL and R. Windhorst, JCAP 1512 (2015) 029

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

GRBs: IceCube coll., Astrophys.J. 805 (2015), arXiv:1412.651

Statistical analysis: the method

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

- Normalized angular distance between neutrino i (error σ_i) and candidate source j (error σ_j ≃ 0): R_{ij} = ψ_{ij}/σ_i
- distance of each neutrino to *nearest* candidate: $r_i = Min_{\{i\}}R_{ii}$
- coincidence : when a neutrino overlaps with a source within the error: $r \leq 1$
- Null case : the candidates follow the uniform distribution

> Cecilia Lunardini

- *"Null" distribution* : the distribution of *r* for candidates uniformly distributed in the sky.
 - Monte Carlo: randomization of candidate positions (10⁵ iterations)
 - analytics: for N ν s and M candidates $d\mathcal{P}(r)/dr = \sum_{i=1}^{N} \sigma_i (M/2^M) \sin(r\sigma_i) \left[1 + \cos(r\sigma_i)\right]^{M-1}$
- Comparing *r*-distribution of data with null:
 - *p-value* : probability that the null case produces a number of coincidences $(r \le 1)$ equal or larger than the one observed in the data.

H. R. de Ruiter, A. G. Willis, and H. C. Arp, Astron. Astrophys. Suppl. Ser. 28 (1977) 211293.; R. A. Windhorst, R. G. Kron, and D. C. Koo, Astron. Astrophys. Suppl. Ser. 58 (1984) 3987; W. Sutherland and W. Saunders, MNRAS 259 (1992) 413420; A. Virmani, et al., Astropart. Phys. 17 (2002) 489495; R. Moharana and S. Razzaque, arXiv:1501.05158 (2015)

Catalogs and selection criteria

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

• Fermi-LAT catalog (3FGL, $E \lesssim$ 500 GeV) + TeVCat

Fermi-LAT Coll., arXiv:1501.02003 ; tevcat.uchicago.edu

• E > 100 TeV observations too sparse, strong absorption

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

- Infrared Astronomical Satellite (IRAS)
 - $\bullet \sim 100 \mu m$ emission indicator of star formation

Becker, et al., arXiv:0901.1775 ; Sanders, et al., Astron. J. 126, 2003 16071664

- Create a set of candidates of suitable size:
 - same class/morphology
 - brightest: $L_{\gamma} > L_{min}$

Results: Blazars

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

Active Galactic Nuclei (AGN), with jet pointing to Earth

Blazar	3FGL	$F_{10-100 GeV} >$	11
		10 ⁻⁹ ph. cm ⁻² s ⁻¹	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

> Cecilia Lunardini

... consistent with null

Seyfert galaxies

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

Weaker AGN emission; active star formation near nucleus

Seyfert	3FGL	Seyfert I & II	6

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

> Cecilia Lunardini

non-significant excess (first bin, r < 1), consistent with null

> Cecilia Lunardini

> > For other results consistent with null, see : Kimberly Emig, CL and Rogier Windhorst, JCAP 1512 (2015) 029

Starburst galaxies (SBG)

> Cecilia Lunardini

some excess of coincidences....

SBG + superbubbles+ star forming regions

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

 $\sim 0.1-1 \mbox{ kpc}$ regions of extremely intense star formation activity

gamma-ray-observed only

Name	RA	RA dec	
NGC 253	00 27 34	-25 17 22	3.1
NGC 1068	02 42 43	-00 01 33	13.7
30 Dor C	05 35 55	-69 11 10	0.05
M 82	09 55 53	+69 40 46	3.6
NGC 4945	13 05 29	-49 26 03	3.9
W 49 A	19 10 27	+09 11 25	0.011
Cygnus Cocoon	20 28 41	+41 10 12	0.002

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Indication of correlation?

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

interesting excess! 0.3% probability of random occurrence ($p \leq 0.024$ post-trial)

Post-trial p-value

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

minimum pre-trial: $p_{min} = 0.003$

• J=4 independent trials: $P = 1 - (1 - p_{min})^J \simeq J p_{min} = 0.012$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

- K=8 total trials (not independent): *J*p_{min} ≤ P ≤ Kp_{min} ≃ 0.024.
- G. Choudalakis, arXiv:1101.0390

Sufficient flux to produce one event ?

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

Compare gamma ray spectra with minimum neutrino flux needed (assume $\phi_{\nu} \sim \phi_{\gamma}$):

mixed results; Cygnus cocoon a possibility

Beacom and Kistler, PRD 75 (2007) 083001 ; Gonzalez-Garcia, Halzen, and Mohapatra, Astropart.

ELE DQC

Phys. 31 (2009) 437444 ; Fox, Kashiyama, and Meszaros, ApJ. 774 (2013) 74.

Gamma ray spectra: SBG

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

- Comparison with required ν flux : M82, NGC253 disfavored
 - ullet horizontal line: ~ 0.1 events for IceCube exposure

P. Padovani and E. Resconi, MNRAS 443 2014

filled: Fermi-LAT ; open: HESS, VERITAS, ARGO-YBJ. Note: intergalactic absorption subtracted 🗐 😑 🛷 🔍 🗠

Local vs. cosmological

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

•
$$\frac{N_{local}}{N_{tot}}\sim rac{3}{35-17}\sim 0.15$$

- only $\sim 1-2\%$ predicted from D < 15 Mpc !
 - enhancement of local star formation?

Ando, Beacom, and Yuksel, PRL95 (2005)

171101

selection effect?

from: Madau and Dickinson,

Ann.Rev.Astron.Astrophys. 52 (2014) 415-486

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Backup: update with 54 IceCube data

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

Starburst galaxies

Name	RA	dec	D (Mpc)
NGC 253	00 27 34	-25 17 22	3.1
NGC 1068	02 42 43	-00 01 33	13.7
IC 342	03 46 49	+68 05 46	4.6
M 82	09 55 53	+69 40 46	3.6
NGC 4945	13 05 29	-49 26 03	3.9
M 83	13 37 01	-29 51 57	3.6
NGC 6946	20 34 52	+60 09 13	5.3

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Backup: update with 54 IceCube data

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

SBG + superbubbles+ star forming regions, gamma-ray-observed only

Name	RA	dec	D (Mpc)]	
NGC 253	00 27 34	-25 17 22	3.1]	
NGC 1068	02 42 43	-00 01 33	13.7		
30 Dor C	05 35 55	-69 11 10	0.05		
M 82	09 55 53	+69 40 46	3.6		
NGC 4945	13 05 29	-49 26 03	3.9		
W 49 A	19 10 27	+09 11 25	0.011		
Cygnus Cocoon	20 28 41	+41 10 12	0.002		
		Image: 1 million of the second sec	Image: A = 1		= ~~~~

Backup: full summary table

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

Candidate	Catalog(s)	Selection Criteria	Cand. number	$\operatorname{count}(r \leq 1)$	Excess	p -value $(r \leq 1)$
Blazar	3FGL	$F_{10-100 \text{GeV}} >$ $10^{-9} \text{ ph. cm}^{-2} \text{ s}^{-1}$	11	5 [1]	-1.0 [-1.2]	0.764 [0.938]
Seyfert	3FGL	Seyfert I & II	6	6 [2]	2.2 [0.7]	0.165 [0.368]
Starburst	TeVCat, 3FGL	starburst	4	6 [4]	3.3 [3.1]	0.046 [0.001]
Starburst	TeVCat, 3FGL IRAS 100 μm	L(100 μ m) \geq 250 Jy	7	8 [5]	3.8 [3.5]	0.042 [0.003]
Starburst	TeVCat, 3FGL IRAS 100 μm	same as above, randomize with $ b >10^\circ$	7	8 [5]	3.9 [3.6]	0.034 [0.002]
Star form.	TeVCat, 3FGL	starburst, superbubble, star form. region	7	10 [6]	5.8 [4.5]	0.003 [<0.001]

Backup: full candidates list

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

Name	RA	dec	Class	D_L	νID
	(J2000)	(J2000)		[Mpc]	
NGC 253	00 27 34	-25 17 22	sbg	3.1	7, 10, 21
NGC 1068	02 42 43	-00 01 33	sbg	13.7	1
[IC 342]	03 46 49	+68 05 46	sbg	4.6	31
30 Dor C	05 35 55	-69 11 10	superbbl	0.05	19
M 82	09 55 53	+69 40 46	sbg	3.6	31
NGC 4945	13 05 29	-49 26 03	sbg	3.9	35
[M 83]	13 37 01	-29 51 57	sbg	3.6	16
W 49 A	19 10 27	+09 11 25	sfr	0.011	25, 33, 34
Cygnus C.	20 28 41	+41 10 12	superbbl	0.002	29, 34
[NGC 6946]	20 34 52	+60 09 13	sbg	5.3	34

Superbubbles and star forming regions

Star formation and high energy neutrinos at IceCube: a correlation?

> Cecilia Lunardini

Very intense star formation activity

- Stellar winds and SN
- 85% of core-collapse SN
- 100s per starburst galaxy
 - some in our galaxy : Cygnus Cocoon, D=2 kpc

8- μ m intensity map of the Cygnus X region ($W m^{-2} sr^{-1}$, in log scale). From Ackermann et al., Science 334, 2011, 11037

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの