AGN Emission Models Multiwavelength Variability and Polarization as Diagnostics of Jet Physics

Markus Böttcher North-West University Potchefstroom South Africa

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

<u>Blazars</u>

 Class of AGN consisting of BL Lac objects and gammaray bright quasars
 Rapidly (often intra-day) variable

Strong gamma-ray sources
Radio and optical polarization

Quasar 30175 YLA 6cm image (c) NRAO 1996

Polarization Angle Swings

- Optical + γ-ray variability of LSP blazars often correlated
- Sometimes O/γ flares correlated with increase in optical polarization and multiple rotations of the polarization angle (PA)

<u>Blazars</u>

 Class of AGN consisting of BL Lac objects and gammaray bright quasars
 Rapidly (often intra-day) variable

- Strong gamma-ray sources
- Radio and optical polarization
- Radio jets, often with superluminal motion

Quasar 30175 YLA 6cm image (c) NRAO 1996

Open Physics Questions

- Source of Jet Power (Blandford-Znajek / Blandford/Payne?)
- Physics of jet launching / collimation / acceleration – role / topology of magnetic fields
- Composition of jets (e⁻-p or e⁺-e⁻ plasma?) leptonic or hadronic high-energy emission?
- Mode of particle acceleration (shocks / shear layers / magnetic reconnection?) – role of B fields
- Location of the energy dissipation / gamma-ray emission region

<u>Leptonic Blazar Model</u>

<u>Sources of External Photons</u> (↔ Location of the Blazar Zone)

Direct accretion disk emission (Dermer et al 1992, Dermer & Schlickeiser 1994) → d < few 100 – 1000 R_s

Optical-UV Emission from the BLR (Sikora et al. 1994) → d < ~ pc

Infrared Radiation from the Obscuring Torus (Blazejowski et al. 2000) $\rightarrow d \sim 1 - 10s$ of pc

Synchrotron emission from slower/faster Black regions of the jet (Georganopoulos & Hole Kazanas 2003) \rightarrow d ~ pc - kpc

Spine – Sheath Interaction (Ghisellini & Tavecchio 2008)

 \rightarrow d ~ pc - kpc

Obscuring

Narrow Line Region

> Broad Line Region

> > Accre Disk

Hadronic Blazar Models

Gamma-Gamma Absorption

- External: EBL (Dominguez, Biteau, Gabici, ...)
- Internal: BLR Radiation field

3C279

 $R_{em} \ge R_{BLR}$

Constraint particularly important for **VHE-detected** FSRQs (3C279, PKS 1510-089, ...)

Leptonic and Hadronic Model Fits along the Blazar Sequence

3C454.3

Leptonic and Hadronic Model Fits Along the Blazar Sequence

Lepto-Hadronic Model Fits Along the Blazar Sequence

RGB J0710+591 (HBL)

Requirements for lepto-hadronic models

- To exceed p-γ pion production threshold on interactions with synchrotron (optical) photons: E_p > 7x10¹⁶ E⁻¹_{ph,eV} eV
- For proton synchrotron emission at multi-GeV energies:
 E_p up to ~ 10¹⁹ eV (=> UHECR)
- Require Larmor radius

 $r_L \sim 3x10^{16} E_{19}/B_G cm ≤ a few x 10^{15} cm => B ≥ 10 G$ (Also: to suppress leptonic SSC component below synchrotron) – inconsistent with radio-core-shift measurements if emission region is located at ~ pc scales (e.g., Zdziarski & Boettcher 2015).

• Low radiative efficiency: Requiring jet powers $L_{jet} \sim L_{Edd}$

Distinguishing Diagnostic: Variability

In homogeneous, single-zone (spherical-cow) models:

• Time-dependent evolution of particle spectra:

• Variations of input parameters to model variability

(e.g., Mastichiadis & Kirk 1997; Li & Kusunose 2000; Böttcher & Chiang 2002; Chen et al. 2011; Diltz & Böttcher 2014; Diltz et al. 2015; ...)

Distinguishing Diagnostic: Variability

3C454.3 Flare of November 2010

3C454.3

Time-dependent leptonic model

Best-fit variation of

- electron injection power
- B-field

Stochastic acceleration timescale

Poor fit to flarestate X-ray spectrum!

3C454.3 Flare of November 2010

<u>Time-dependent</u> <u>lepto-hadronic</u> <u>model</u>

Best-fit variation of

- electron injection power
- B-field
- Stochastic acceleration timescale
- Proton injection spectral index

Both quiescent and flare state well represented!

(Diltz & Böttcher 2016)

Neutrino Emission

Most hadronic / lepto-hadronic models of blazars are proton-synchrotron dominated => Very low expected neutrino flux

Normalized Lightcurves (t_{acc} Perturbation) :

Distinguishing Diagnostic: Polarization

<u>Synchrotron Polarization</u>

For synchrotron radiation from a power-law distribution of electrons with ne (γ) ~ $\gamma^{-p} \rightarrow F_{\nu} \sim \nu^{-\alpha}$ with $\alpha = (p-1)/2$

$$\Pi_{\mathsf{PL}}^{\mathsf{sy}} = \frac{p+1}{p+7/3} = \frac{\alpha+1}{\alpha+5/3}$$

$$p = 2 \rightarrow \Pi = 69 \%$$

 $p = 3 \rightarrow \Pi = 75 \%$

Compton Polarization

Compton cross section is polarization-dependent:

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{4} \left(\frac{\epsilon'}{\epsilon}\right)^2 \left(\frac{\epsilon}{\epsilon'} + \frac{\epsilon'}{\epsilon} - 2 + 4\left[\overrightarrow{e} \cdot \overrightarrow{e'}\right]^2\right)$$

Thomson regime: $\varepsilon \approx \varepsilon'$ $\Rightarrow d\sigma/d\Omega = 0$ if $\overrightarrow{e} \cdot \overrightarrow{e}' = 0$

 \Rightarrow Scattering preferentially in the plane perpendicular to $\vec{e!}$

Preferred polarization direction is preserved; polarization degree reduced to $\sim \frac{1}{2}$ of target-photon polarization.

X-Ray and Gamma-Ray Polarization: FSRQs

3C279

Hadronic model: Synchrotron dominated => High Π, generally increasing with energy (SSC contrib. in X-rays).

Leptonic model: X-rays SSC dominated: $\Pi \sim 20 - 40$ %; γ -rays EC dominated => Negligible Π .

X-Ray and Gamma-Ray **Polarization: IBLs**

3C66A

Hadronic model: Synchrotron dominated = High Π , throughout X-rays and γ -rays

Leptonic model: X-rays sy. Dominated => High ∏, rapidly decreasing with energy; γ-rays SSC/EC dominated \Rightarrow Small Π .

(Zhang & Böttcher, 2013)

Observational Strategy

- Results shown here are <u>upper limits</u> (perfectly ordered magnetic field perpendicular to line of sight)
- Scale results to actual B-field configuration from known synchrotron polarization (e.g., optical for FSRQs/LBLs) => Expect 10 - 20 % X-ray $_{3C279}$ and γ -ray polarization in hadronic models!
- X-ray and γ-ray polarization values substantially below synchrotron polarization will favor leptonic models, measurable γ-ray polarization clearly favors hadronic models!

(Zhang & Böttcher 2013)

So far, only Spherical-Cow Models

Inhomogeneous Jet Models

- Internal Shocks (Marscher & Gear 1985, Spada et al. 2001, Sokolov et al. 2004, Dermer & Böttcher 2010, Joshi & Böttcher 2011, Chen et al. 2011, 2012)
- Radially stratified jets (spine-sheath model, Ghisellini et al. 2005, Ghisellini & Tavecchio 2008)
- Decelerating Jet Model (Georganopoulos & Kazanas 2003)
- Mini-jets-in-jet (magnetic reconnection Giannios et al.)
- Extended-jet models (e.g., Potter & Cotter 2012, 2013; Richter & Spanier 2015)

Polarization Angle Swings

- Optical + γ-ray variability of LSP blazars often correlated
- Sometimes O/γ flares correlated with increase in optical polarization and multiple rotations of the polarization angle (PA)

Previously Proposed Interpretations:

- Helical magnetic fields in a bent jet
- Helical streamlines, guided by a helical magnetic field
- Turbulent Extreme Multi-Zone Model (Marscher 2014)

Tracing Synchrotron Polarization in the Internal Shock Model

Light Travel Time Effects

Shock positions at equal photon-arrival times at the observer

Simultaneous optical + γ -ray flare, correlated with a 180° polarizationangle rotation.

Application to 3C279

Simultaneous fit to SEDs, light curves, polarization-degree and polarization-angle swing

vF $_{\rm v}$ (erg cm $^{-2}$ s $^{-1}$)

11

10

9

Flux

3-day Bin Data

Application to 3C279

Requires particle acceleration and reduction of magnetic field, as expected in magnetic reconnection!

Coupling to Realistic MHD Simulations

- Ideal RMHD Simualtions (LA-COMPASS [LANL]) of relativistic shocks
- Jets initially pervaded by purely helical B-fields with magnetization parameter

$$\sigma = \frac{E_{em}}{h} \qquad E_{em} = \frac{E^2 + B^2}{8\pi} \qquad h = \rho c^2 + \frac{\gamma p}{\gamma - 1}$$

- Fixed fraction of liberated energy converted to the injection of power-law non-thermal electrons
- Follow particle evolution, radiation, and time-dependent polarization signatures using 3DPol.

(Zhang et al. 2016)

Simulation Setup

(Zhang et al. 2016)

B-Field Evolution

High / moderate magnetization

- Weak shock
- velocity field strongly disturbed
- B-field restored to its original topology after passage of the shock

B-Field Evolution

(Zhang et al. 2016)

Low magnetization

- Strong shock
- velocity field almost undisturbed
- B-field topology significantly altered after passage of the shock

Polarization Signatures

- PA swings with PD recovering to its preflare level require high / moderate magnetization ($\sigma \ge 1$) otherwise B-field is not restored to its original topology
- Significant flares require strong shocks, i.e., moderate / high shock speed and moderate / low magnetization

<u>Summary</u>

- 1. Both leptonic and hadronic models can generally fit blazar SEDs well. Possible distinguishing diagnostics: Variability, polarization, neutrinos
- 2. Simultaneous SED + MW-light-curve fitting of 3C454.3 (Nov. 2010) favours a lepto-hadronic model (but requires large jet power, $L_p \sim L_{Edd}$)
- 3. Significant high-energy polarization is a signature of hadronic models.
- 4. Polarization-angle swings correlated with MW flares are possible in a straight jet, pervaded by a helical magnetic field, in an internal shock model. This requires fast (strong) shocks in a moderately magnetized ($\sigma \sim 1$) plasma.

Happy Star Wars Day!

<u>Blazars</u>

Class of AGN consisting of BL Lac objects and gammaray bright quasars
Rapidly (often intra-day) variable

Quasar 30175 YLA 6cm image (c) NRAO 1996

Blazar Variability: Example: The Quasar 3C279

Blazar Variability: Variability of PKS 2155-304

VHE γ-ray and X-ray variability often closely correlated

VHE γ -ray variability on time scales as short as a few minutes!

<u>Blazars</u>

 Class of AGN consisting of BL Lac objects and gammaray bright quasars
 Rapidly (often intra-day) variable

Strong gamma-ray sources

Quasar 3C175 YLA 6cm image (c) NRAO 1996

Blazar Spectral Energy Distributions (SEDs)

Superluminal Motion

(The MOJAVE Collaboration)

Apparent motion at up to ~ 40 times the speed of light!

Superluminal Motion

Spectral modeling results along the Blazar Sequence: Leptonic Models

Constraints from Observations

If energy-dependent (spectral) time lags are related to energy-dependent synchrotron cooling time scale:

 $d\gamma/dt = -v_0\gamma^2$ with $v_0 = (4/3) c \sigma_T u'_B (1 + k)$

and $k = u'_{ph}/u'_{B}$ (Compton Dominance Parameter)

 $t_{cool} = \gamma / |d\gamma/dt| = 1 / (v_0 \gamma)$

 $v_{sy} = 3.4^{*}10^{6} (B/G) (\delta/(1+z)) \gamma^{2} Hz$

=>
$$\Delta t_{cool} \sim B^{-3/2} (\delta/(1+z))^{1/2} (1+k)^{-1} (v_1^{-1/2} - v_2^{-1/2})$$

=> Measure time lags between frequencies v_1 , v_2 → estimate Magnetic field (modulo $\delta/[1+z])!$

(Takahashi et al. 1996)

Distinguishing Diagnostic: Variability

 Time-dependent leptonic one-zone models produce correlated synchrotron + gamma-ray variability (Mastichiadis & Kirk 1997, Li & Kusunose 2000, Böttcher & Chiang 2002, Moderski et al. 2003, Diltz & Böttcher 2014)

SED 3C 273: Lightcurve Acceleration Time Scale

<u>Correlated Multiwavelength Variability</u> in Leptonic One-Zone Models

Example: Variability from short-term increase in 2ndorder-Fermi acceleration efficiency

X-rays anti-correlated with radio, optical, γ -rays;

delayed by ~ few hours.

(Diltz & Böttcher, 2014, JHEAp)

Distinguishing Diagnostic: Variability

 Time-dependent hadronic models can produce uncorrelated variability / orphan flares

(Diltz et al. 2015)

Diagnosing the Location of the Blazar Zone

(Dotson et al. 2012)

Calculation of X-Ray and Gamma-Ray Polarization in Leptonic and Hadronic Blazar Models

• Synchrotron polarization:

Standard Rybicki & Lightman description

• SSC Polarization:

Bonometto & Saggion (1974) for Compton scattering in Thomson regime

• External-Compton emission: Unpolarized.

Upper limits on high-energy polarization, assuming perfectly ordered magnetic field perpendicular to the line of sight (Zhang & Böttcher 2013)