

AN OVERVIEW

GAMMA-RAY CONSTRAINTS ON AXION-LIKE PARTICLES

MANUEL MEYER ON BEHALF OF THE FERMI-LAT COLLABORATION MAY 4, 2016 PERSPECTIVES ON THE EXTRAGALACTIC FRONTIER ICTP TRIESTE MANUEL.MEYER@FYSIK.SU.SE

OUTLINE

1. Axions and Axion-like Particles and their detection with γ rays

2. Hints, Future and Current constraints

3. Summary

AXIONS AND AXION-LIKE PARTICLES

- QCD: has CP violating term with strength θ , measurement: $|\theta| < 10^{-10}$
- Introduce symmetry, θ is a dynamical field, relaxes to zero in potential
- Symmetry broken at scale f_a ⇒ new particle: the axion! (similar to Higgs mechanism)
- Axion mass $m_a \sim f_a^{-1}$
- Oscillations around minimum: act like **cold dark matter**
- Axion-like particles (ALPs):
 - arise in similar way, also **dark-matter candidate**
 - plethora of ALPs predicted in string theory (axiverse) and other standard model extensions
 - ALP mass independent of f_a

[Peccei & Quinn 77; Wilczek 78; Weinberg 78; Preskill et al. 83; Abbott & Sikivie 83; Witten 84; e.g. Arvanitaki et al. 09; Cicoli et al. 12; Arias et al. 2012]

DETECTING AXIONS/ALPs WITH PHOTONS

$$\mathcal{L}_{a\gamma} = -\frac{1}{4}g_{a\gamma}F_{\mu\nu}\tilde{F}^{\mu\nu}a = g_{a\gamma}\mathbf{E}\mathbf{B}a$$

QCD Axion:
$$m_a \approx 0.3 \,\mathrm{eV} \frac{g_{a\gamma}}{10^{-10} \,\mathrm{GeV}^{-1}} = 0.3 \,\mathrm{eV} g_{10}$$

DETECTING AXIONS/ALPs WITH PHOTONS

$$\mathcal{L}_{a\gamma} = -\frac{1}{4}g_{a\gamma}F_{\mu\nu}\tilde{F}^{\mu\nu}a = g_{a\gamma}\mathbf{E}\mathbf{B}a$$

QCD Axion: $m_a \approx 0.3 \,\mathrm{eV} \frac{g_{a\gamma}}{10^{-10} \,\mathrm{GeV}^{-1}} = 0.3 \,\mathrm{eV} g_{10}$

DETECTING AXIONS/ALPs WITH PHOTONS

PHOTON-AXION/ALP MIXING IN A COHERENT MAGNETIC FIELD

PHOTON-AXION/ALP MIXING IN A COHERENT MAGNETIC FIELD

PHOTON-AXION/ALP MIXING

PHOTON-AXION/ALP MIXING

1st Observable: axions/ALPs do not get absorbed during propagation, might lead to a boost in photon flux

[[]De Angelis et al. 2007,2011; Simet et al. 2008; Mirizzi & Montanino 2009; Sánchez-Conde et al. 2009; Domínguez & Sánchez-Conde 2011; MM et al. 2013; MM & Conrad 2014]

PHOTON-AXION/ALP MIXING

[Östman & Mörtsell 2005; Hooper & Serpico 2007; Mirizzi et al 2007; Hochmuth & Sigl 2007; De Angelis et al. 2008; Wouters & Brun 2012,2013; Abramowski et al. 2013; Ajello et al. 2016]

PHOTON-ALP PROPAGATION

14

γ

B

а

Razzague 2013; Abramowski et al. 2013; MM et al. 2014, MM & Conrad 2014; Galanti et al. 2015]

EXAMPLE: MIXING IN GALAXY CLUSTER & MILKY WAY

SEARCHES FOR REDUCED OPACITY

- Expectations if opacity lower than EBL model predictions:
 - We should detect γ rays from blazars at energies corresponding to high values of τ and positive residuals at highest energies

SEARCHES FOR REDUCED OPACITY

- Expectations if opacity lower than EBL model predictions:
 - We should detect γ rays from blazars at energies corresponding to high values of τ and positive residuals at highest energies
 - Correcting measured blazar spectra for EBL absorption should give a spectral hardening at high values of τ — or very hard intrinsic spectra

SEARCHES FOR REDUCED OPACITY

- Expectations if opacity lower than EBL model predictions:
 - 1. We should detect γ rays from blazars at energies corresponding to high values of τ and positive residuals at highest energies
 - Correcting measured blazar spectra for EBL absorption should give a spectral hardening at high values of τ — or very hard intrinsic spectra
 - 3. Absorption corrected spectral indices should become harder (lower) with increasing redshift
 ⇔ Difference in Spectral Indices at low and high energies should be > 0 and evolve with redshift

$$\Delta \Gamma = \Gamma_{\log E} - \Gamma_{\operatorname{high} E}^{\operatorname{int}} \sim mz + b > 0$$

- De Angelis et al. (2009,2011,2015):
 - Observed spectral indices better described w/ ALPs (if all sources emit with same index)

- De Angelis et al. (2009,2011,2015):
 - Observed spectral indices better described w/ ALPs (if all sources emit with same index)
 - Absorption corrected spectra get harder with redshift

- De Angelis et al. (2009,2011,2015):
 - Observed spectral indices better described
 w/ ALPs (if all sources emit with same index)
 - Absorption corrected spectra get harder with redshift
- Essey & Kusenko (2012): evolution of $\Delta\Gamma$ changes with redshift (interpret this as evidence for UHECR cascades)

- De Angelis et al. (2009,2011,2015):
 - Observed spectral indices better described
 w/ ALPs (if all sources emit with same index)
 - Absorption corrected spectra get harder with redshift
- Essey & Kusenko (2012): evolution of $\Delta \Gamma$ changes with redshift (interpret this as evidence for UHECR cascades)
- Horns & MM (2012): evolution of spectral residuals / flux with optical depth, significant at ~4σ level

- De Angelis et al. (2009,2011,2015):
 - Observed spectral indices better described w/ ALPs (if all sources emit with same index)
 - Absorption corrected spectra get harder with redshift
- Essey & Kusenko (2012): evolution of $\Delta\Gamma$ changes with redshift (interpret this as evidence for UHECR cascades)
- Horns & MM (2012): evolution of spectral residuals / flux with optical depth significant at ${\sim}4\sigma$ level
- Rubtsov & Troitsky (2014): find spectral breaks at τ = 1 and evolution with redshift significant at 12σ

- De Angelis et al. (2009,2011,2015):
 - Observed spectral indices better described w/ ALPs (if all sources emit with same index)
 - Absorption corrected spectra get harder with redshift
- Essey & Kusenko (2012): evolution of $\Delta \Gamma$ changes with redshift (interpret this as evidence for UHECR cascades)
- Horns & MM (2012): evolution of spectral residuals / flux with optical depth significant at ${\sim}4\sigma$ level
- Rubtsov & Troitsky (2014): find spectral breaks at τ = 1 and evolution with redshift significant at 12 σ

RECENT ANALYSES DO NOT FIND HINT

- Biteau & Williams (2015):
 - Used large set γ-ray observations + direct observations to derive EBL intensity
 - Do not find evolution of flux / residuals with au

RECENT ANALYSES DO NOT FIND HINT

28

- Biteau & Williams (2015):
 - Used large set γ-ray observations + direct observations to derive EBL intensity
 - Do not find evolution of flux / residuals with au
- Sanchez et al. (2013):
 - Use Fermi and IACT data
 - Bayesian analysis: data consistent with EBL expectations

RECENT ANALYSES DO NOT FIND HINT

29

- Biteau & Williams (2015):
 - Used large set γ-ray observations + direct observations to derive EBL intensity
 - Do not find evolution of flux / residuals with au
- Sanchez et al. (2013):
 - Use Fermi and IACT data
 - Bayesian analysis: data consistent with EBL expectations
- Domínguez & Ajello (2015):
 - Derive intrinsic spectra for 2FHL sources
 - Do not find evolution of spectral break with redshift
 - Consistent with expectations from EBL only, tested with simulations

FUTURE: COMBINED LIKELIHOOD ANALYSIS WITH ALL IACTs?

- Analyses so far relied on published data points difficult to assess possible pile up at highest energies
- Release of likelihood curves to easy combine results

POTENTIAL WITH CTA

- CTA will have ~10 times the sensitivity of current IACTs [see David's talk tomorrow]
- Wide energy range allows to probe intrinsic spectrum and attenuated spectrum simultaneously
- Would detect ALPs that could explain low opacity hints

PHOTON-ALP MIXING IN FSRQs

- ALPs would also evade pair production in broad line region of FSRQs
- Could help to explain short time variability of PKS1222+216 for γ rays produced close to central engine [Tavecchio et al. 2012]
- ALPs could also explain spectral breaks in FSRQ spectra (could also be caused by yy absorption) [Mena & Razzaque 2013] with spectral irrgularities

32

CONSTRAINTS FROM SEARCHES FOR SPECTRAL IRREGULARITIES

- Searches require high signal-tonoise spectra and good energy resolution
- First constraints from H.E.S.S.
 observations of PKS2155-304 during flare
- Looked for local deviations from power law
- Deviations should be larger if ALPs with certain mass and photon coupling existed

[Abramowski et al. 2013]

33

CONSTRAINTS FROM SEARCHES FOR SPECTRAL IRREGULARITIES

SEARCH FOR IRREGULARITIES WITH FERMI LAT FROM NGC 1275

- Radio galaxy NGC 1275, bright Fermi source [e.g. Abdo et al. 2009]
- In the center of cool-core Perseus cluster
- Rotation measures: central B field ~25µG [Taylor+ 2006]
- B ≥ 2 µG from nonobservation of γ rays [Aleksic et al. 2012]

MODELING PHOTON-ALP CONVERSIONS IN PERSEUS CLUSTER

- Considered *B* fields: Perseus cluster
 & Milky Way
- Conservative estimate of central B field: 10 µG [Aleksić et al. 2012]
- Includes EBL absorption

Gamma-ray Space Telescope

[Ajello et al. 2016]

FERMI-LAT DATA ANALYSIS

- 6 years of Pass 8 Source data
- Split into analysis **EDISP event types**
- Method: log-likelihood ratio test for no-ALP and ALP hypothesis
- Use bin-by-bin likelihood curves, similar to dSph analysis [Ackermann et al. 2014,2015]
- Hypothesis test calibrated with Monte-Carlo simulations

NO ALP OBSERVED: CONSTRAINTS FIT WITH ALPS NOT PREFERRED

LIMITS

LIMITS

LIMITS

LIMITS

10-10

10-2

10-11

LIMITS

SENSITIVITIES 1 1 1 1 1 1 1 1 CAST 10⁻¹⁰ Globul 10 K-rays Hydra A LogParabola Fit H.E.S.S Intrinsic Spectrum w/ALP 5 10 NGC1275 50h SN1987A CTA Point-Source Sensitivity (50h. 5-Cm⁻¹ γ -ray burst dF/dE [MeV o 10⁻¹¹ Fermi LAT $g_{a\gamma}$ (GeV $^{-1}$) 10 0.8 Fractional Residual 0.6 0.4 0.2 10⁻¹² 0.0 -0.2 -0.4-0.6IMINARY -0.8L PR 5.0 5.5 6.5 7.0 6.0 Energy [log, (E/MeV)] (Wood & MM) 10⁻¹³ SKA polarization survey will yield rotation CTA NGC1275 ir **TeV** transparency measures for many Galaxy clusters and CTA opacity reduce uncertainties on B field 10-8 10⁻⁹ 10⁻¹⁰ 10-7 10⁻¹¹ [Bonafede et al. 2015] m_a (eV) $m_a~(eV)$

IO.

44

10-0

10-2

 10^{-4}

CONSTRAINTS & SENSITIVITES POSSIBLE CONSTRAINTS FROM NEXT GALACTIC SN

10-11

 w^{α} (eA)[MM; M. Giannotti; A. Mirizzi; 10_{-10} 10_{-3} 145 10_{-3} 10J. Conrad; M. Sanchez-Conde; in prep.]

Space Telescope

LIMITS

SUMMARY AND CONCLUSIONS

- Axions and ALPs arise in various extensions of the Standard Model
- Well motivated **dark-matter candidates**
- Light ALPs could leave distinct **signatures in γ-ray spectra**
- ALPs evade pair production, could explain (debated) hints for reduced opacity
- Current and future observations with Fermi & CTA have potential to probe parameter space where ALPs constitute entire dark matter

BACKUP SLIDES

THE STRONG CP PROBLEM

- In electroweak interactions: Parity (P) and time-reversal (T) symmetries commonly broken
- However: not observed in QCD But should be there!

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G_{\mu\nu\,a} G_{a}^{\mu\nu} + \sum_{q} i \bar{q} \gamma^{\mu} D_{\mu} q - q m \bar{q} + \frac{\alpha_{s}}{8\pi} \theta G_{\mu\nu\,a} \tilde{G}_{a}^{\mu\nu}$$

$$P, T \text{ CONSERVING}$$

$$P, T \text{ VIOLATING}$$

$$\propto \theta$$

 $\theta \in (-\pi; \pi)$ Infinitely many versions of QCD — all violate P,T

NEUTRON EDM Most important P,T violating observable

[[]Slide adopted from J.Redondo]

NEUTRON EDM

MOST IMPORTANT P,T VIOLATING OBSERVABLE

SOLUTION: MAKE $\theta(t, \mathbf{x})$ A DYNAMICAL FIELD

- If $\theta(t, \mathbf{x})$ is dynamical field, relaxes to its minimum
- Solves strong CP problem [Peccei & Quinn 1977]

AXION-LIKE PARTICLES (ALPs)

- Phenomenology closely related to that of axions
- Predicted in several extensions of the standard model (Majoron, Familon, ...)
 [Chikashige et al. 78; Langacker et al. 86; Wilczek 82]
- Occur whenever additional symmetries are explicitly broken
- Do not solve the strong CP problem
- For instance: occur as Kaluza-Klein zero modes in compactifications in string theory — whole Axiverse predicted!
 [Witten 84; Conlon 06; Arvanitaki et al. 09; Acharya et al. 10; Cicoli et al. 12]

AXIONS/ALPs AS DARK MATTER MISALIGNMENT MECHANISM

- Coherent oscillations = dark matter axions
- Oscillation frequency $\omega = m_a$

• Energy density:
$$ho_{a {
m DM}} \sim rac{1}{2} (75 \, {
m MeV})^4 heta_0^2$$

[e.g. Arias et al. 2012] [Slide adopted from J.Redondo]

SOLUTION: MAKE $\theta(t, \mathbf{x})$ A DYNAMICAL FIELD — AND A NEW PARTICLE IS BORN!

- If $\theta(t, \mathbf{x})$ is dynamical field, relaxes to its minimum
- Solves strong CP problem [Peccei & Quinn 1977]
- Field excitations around the vacuum are particles [Weinberg 1978, Wilczek 1978]

SOLUTION: MAKE $\theta(t, \mathbf{x})$ A DYNAMICAL FIELD — AND A NEW PARTICLE IS BORN!

- If $\theta(t, \mathbf{x})$ is dynamical field, relaxes to its minimum
- Solves strong CP problem [Peccei & Quinn 1977]
- Field excitations around the vacuum are particles [Weinberg 1978, Wilczek 1978]

OPTICAL DEPTH PROBED WITH FERMI LAT

Gamma-ray Space Telescope

OPTICAL DEPTH PROBED WITH IACTS

[Biteau & Williams 2015]

UNDERSTANDING THE LIMITS

UNDERSTAND

X0 Mel

1.0

GeV

10

Energy (G

 10^{-4}

2.0

 $m_{\rm neV} = 0.79$

 $g_{11} = 4.76$

LAST OSCILLATION (BROAD) AT 1 GEV, BUT NOT AS PRONOUNCED ANYMORE,

Energy (GeV)

[Ajello et al. 2016]

nergy

IRREGULARITIES OVER ENTIRE ENERGY RANGE

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

BEST FIT — NOT PREFERRED

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

EXCLUDED AT > 95% C.L.

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

EXCLUDED AT 95% C.L.

SYSTEMATIC UNCERTAINTIES

• B-field modeling:

- Kolmogorov turbulence: Power-law index of turbulence q
- central magnetic field $\sigma_{\scriptscriptstyle B}$
- Maximal spatial extent of B field
 r_{max}
- Increasing σ_B increases excluded area of parameter space by 43%

Energy dispersion:

- Artificially broadened with 5%,10%, 20%
- Reduces excluded parameter space up to 25%

 m_a (neV)

NULL DISTRIBUTION FROM MC WHAT IS THE TS VALUE FOR WHICH WE CAN CLAIM EVIDENCE FOR ALPS?

- Non-linear behaviour of ALP effect, scales with photon-ALP coupling, ALP mass, and magnetic field
- Testing 228 values of ALP mass and photon-ALP coupling introduces trial factor
- ⇒ Derive null distribution from simulations
- For *i*-th B-field realization and *j*-th pseudo experiment the null distribution is formed by the test statistic

$$\mathrm{TS}_{ij} = -2\ln\left(\frac{\mathcal{L}(\boldsymbol{\mu}_0, \hat{\boldsymbol{\theta}} | \mathbf{D}_j)}{\mathcal{L}(\hat{\boldsymbol{\mu}}_i, \hat{\boldsymbol{\theta}} | \mathbf{D}_j)}\right)$$

NULL DISTRIBUTION FROM MC WHAT IS THE TS VALUE FOR WHICH WE CAN CLAIM EVIDENCE FOR ALPS?

SEARCHING FOR AN ALP SIGNAL WITH LOG LIKELIHOOD RATIO TEST

Joint likelihood \forall event types *i* and reconstructed energy bins *k*':

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\theta} | \mathbf{D}) = \prod_{i,k'} \mathcal{L}(\mu_{ik'}(m_a, g_{a\gamma}, \mathbf{B}), \theta_i | D_{ik'})$$

expected number nuisance of counts parameters

Test null hypothesis (no ALP, μ_0) with likelihood ratio test:

$$TS = -2 \ln \left(\frac{\mathcal{L}(\boldsymbol{\mu}_0, \hat{\boldsymbol{\theta}} | \mathbf{D})}{\mathcal{L}(\hat{\boldsymbol{\mu}}_{95}, \hat{\boldsymbol{\theta}} | \mathbf{D})} \right)$$

B FIELD RANDOM: SIMULATE MANY REALIZATIONS AND SELECT 95% QUANTILE OF LIKELIHOOD DISTRIBUTION

Threshold TS value for which we could claim ALP detection **derived from fit to Monte Carlo** simulations (Asymptotic theorems not applicable)

$$TS_{thr} (3\sigma) = 33.1$$

68

FERMI-LAT ENERGY RESOLUTION FOR NGC1275 OBSERVATIONS

Energy Dispersion matrices

Energy resolution

