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What do we know about the properties of dark matter?
- the kinetic temperature is encoded

in the power spectrum
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Hlozek et al. 2012
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What do we know about the properties of dark matter?
- kinetic temperature must be cold(ish)

- best constraints from 
Ly-α forest (e.g. Viel 
et al. 2013) >~ 5keV 

- constrains WDM
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So, what is Dark Matter?

microscopic

negligible cross-section

cold (or at most lukewarm)

continuum limit

vthermal ≪ vbulk

σDM ≪ σem 
collisionless

proton = 1GeV, WIMP 100GeV? -> 1021/g

e.g. thermally produced at very early times, cooled since then

weak-scale or even weaker

for our macroscopic purposes it suffices to assume that

(but in principle any of these can be dropped)

self-gravitating
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Kinetic description in terms of Vlasov-Poisson

f(x,v, t)

Density of particles in phase space

= distribution function
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Kinetic description of dark matter

f(x,v, t)

Density of particles in phase space given by

= distribution function

⇢(x) = m�

Z
f(x,v, t) dnv

p(
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x)

velocity v

mass density is zeroth-moment

p(v|x) = f(x,v, t)/n(x)

velocity distribution function
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Kinetic description of dark matter

f(x,v, t)

Density of particles in phase space given by

= distribution function

⇢(x) = m�

Z
f(x,v, t) dnv

p(
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x)

velocity v

mass density is zeroth-moment

p(v|x) = f(x,v, t)/n(x)

velocity distribution function

generally,  
f is truly 2n-dimensional

in cold limit,  
f is only n-dimensional 

= monokinetic

phase space of n+n dim:
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What is special about a cold-collisionless system?

Fig. from Shandarin&Zeldovich 1989

Vanishing collision-term  
⇒ not in hydro limit 
⇒ velocity can be multi-valued 
⇒ cannot stop at low order moments 
⇒ have to discretize distribution function 
⇒ singular caustics emerge (see later)

The 1D structure winds up  
but never tears or mixes! 

(neighbours stay neighbours!) 
topologically preserved
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Lagrangian description

Lagrangian description, evolution of fluid element
Q ⇢ R3 ! R6 : q 7! (xq(t),vq(t))

density 
constant

density

⇢ = mDM

����
@xi

@qj

����
�1

For DM, motion of any point q depends only on gravity
(ẋq, v̇q) = (vq,�r�)

�� = 4⇡G⇢

So the quest is to solve Poisson’s equation

unlike hydro, no internal  
temperature, entropy, pressure
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How to solve these systems: the N-body approach…
The N-body approximation:  
cover distribution function with N ‘coarse-graining’ particles

⇒ EoM are just Hamiltonian N-body eq. (method of characteristics) 

hope that as N->very large numbers, approach collisionless continuum, 
but always ad hoc choice of W

i 2 {1 . . . N} 7! (xi,vi)

⇢ = mp

X
�D(x� xi)⌦W

for small N, density field is poorly estimated, 

continuum structure is given up, but ‘easy’ to solve for forces
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Huge successes! 
Predicting the distribution of matter of the Universe

Angulo et al. 2012 

Input: 
Powerspectrum of perturbations 

+cosmological model

mass functions of clusters 
distributions of galaxies 

evolution of structure over time 
abundance of satellites 

density profiles 
…

the workhorse 
of computational  

cosmology

a lot is owed to this method!
10
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Can we break it?
there is a regime where this method doesn’t do well at all! 
Universes with smooth primordial density fields (always at SOME scale)

Most obvious for non-CDM simulations!
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(e.g. Centrella&Melott 1983, Melott&Shandarin 1989, Wang&White 2007)

large softening needed.

these are no ‘clumps’,

just convergent points!

but want small softening

to get small scale structure!

it should not collapse 
along vertical direction! 
this info is not local!
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Evolving the fine-grained distribution function
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N-body just have particles

now: connect particles by interpolating functions

density = 1 / projected length
put mass not at particles, but in-between

But need to split
elements, when

structure of distribution
function becomes 

complicated -> costly!
Hahn&Angulo 2016 

Sousbie&Colombi 2016
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With refinement, it is possible to track very 
complicated orbits

movie by T. Sousbie, using ColDICE code (Sousbie&Colombi 2016)

orbit of square in chaotic potential…

13
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So what do we gain for structure formation?

The real space density, velocity field, etc., at any given point can 
then be determined from all elements that contain that point (see 
also Shandarin et al. 2012). 

time

particle locations

Structure formation is like high-dimensional origami: 
folding a n-dimensional sheet in 2n-dimensional space
(See also Neyrinck 2014, for the connection to mathematical origami). 

each fold is a caustic

14
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So what do we gain in 3+3D?

Same simulation data! (Abel, Hahn, Kaehler 2012)

rendering points for particles. rendering tetrahedral phase space cells.
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Angulo, Hahn & Abel 2013

If one uses this approach self-consistently,
it cures the fragmentation problem of N-body

First determination
of WDM halo mass function
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Angulo, Hahn & Abel 2013

Structure formation in WDM very different than in CDM

Mass=evolutionary stage,

no progenitors below some mass
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Hahn & Paranjape 2013

Incorporating this into mass-function calculations

a)

4.5
3.8
2.6

δ =

b)

3.5
2.9
1.9

δ =

c)

3.2
2.8
1.9

δ =

From peaks in the initial density field to mass functions
non-trivial with cut-off, requires more careful treatment of collapse 
than vanilla perfectly cold CDM
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It is possible to 
investigate 
moments 

of the  
Boltzmann 
hierarchy 

a-posteriori

Measurements 
impossible 

from N-body 

New insights
into DM dynamics

New insights from mean field dynamics
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Structure formation in WDM very different than in CDM

collapse from initially 
smooth field 

no progenitors  
below certain mass 

caustics 
everywhere
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⇢(r) =
⇢0

r
rs

⇣
1 + r
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Navarro, Frenk & White (1995,1996)

Navarro 2009

Mass distribution in halos follows very simple functional form
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How do the first CDM micro halos form?

Angulo, OH et al. 2016

23kpc
“zoom simulations” of 5 haloes, effective resolution 131 0723  
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Angulo, OH et al. 2016

collapse from 
smooth field

phase rapid mass growth by many major mergers

How do the first CDM micro halos form?
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Do microhaloes become slowly NFW-like as they grow? How?

Ishiyama 2014

How do the profiles of first haloes evolve?

(see also e.g. Ishiyama et al. 2010, Anderhalden & Diemand 2013)
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Good evidence that violent relaxation (Lynden-Bell 1967) is driving this 
this is a collective relaxation process (much like Landau damping)

Evidence that mergers drive a transformation towards NFW

Angulo, OH et al. 2016
see also Ogiya et al. 2016
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Why do we always see NFW in most simulations?

Hernquist/NFW 
shows no evolution 

in slope
before quintuple 

merger!

Angulo, OH et al. 2016

for power law
profiles, result 

depends
on slope

NFW/Hernquist
particularly resilient

to perturbations

see also work by El 
Zant, claiming that 
perturbations are 
efficiently spread 

through such haloes

How many of these steep haloes survive? 
What is the contribution to an annihilation signal?

Do all of the microhaloes form like single power law profiles?

26
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Summary

Dark matter is collisionless and 
rather cold -> challenges for 

modelling
New tessellation methods 

overcome important limitations 
of N-body method 

(virtually noise-free but more 
costly) 

Allow to study wealth 
of additional properties 
of collisionless systems 

New angle on 
studying small scale 

properties of dark matter 
(improved constraints on 

particle nature..) 


