

The Cherenkov Telescope Array observatory

A SENSITIVE PROBE OF EXTREME UNIVERSE

Mai 5, 2016
David Sanchez (LAPP) for the CTA Consortium

CTA: Next Generation

From 2-5 Tel arrays

To ~ 100 telescopes

- Open observatory
 - Data public after 1 year
- 30 years operations
- √ 2 sites
- 32 nations, ~ €297M (construction costs)

CTA consortium

Time line

first telescopes on site expected in early 2017

Call for

Offers

Site

Negotiations

Begin

International

Agreement

Initial

Evaluation of

Resources

Instrument

Contribution

Expressions of

Interest Received

South and North Sites

South and North Sites

First stone at la Palma October 9th

MPI director Masahiro Teshima

Site characterization instruments on the Armazones site in Chile

Weather station, Wifi router

Array layout

Expected sensitivity

Expected sensitivity

A look at the Inner Galaxy

Small Sized Telescope SST

Science drivers

- Highest energies (> 5 TeV)
- Galactic science, PeVatrons, Fundamental Physics (ALPs, LIV)

Array layout Status

✓ South site: 70 SST

- None in North
- Prototypes in Krakow (SST-1M), Mt. Etna (ASTRI), Paris (GCT)

SST-1M

9 °fov 0.24°SiPM pixels

Davies-Cotton 8.5m² effective mirror area

5.6m focal length

Inauguration of the **SST-1M telescope prototype** for the Cherenkov Telescope Array took place on **June 2, 2014** at the H. Niewodniczański Institute of Nuclear Physics Polish **Academy of Sciences (IFJ PAN) in Kraków**

Astri Telescopes

Schwarzchild-Couder 6m² effective mirror area 2.2m focal length 9.6 °fov 0.17°SiPM pixels

2014 September 24th

Inauguration of the ASTRI SST-2M Prototype

Location: Mt Etna

GCT

Schwarzchild-Couder 6m² effective mirror area 2.3m focal length 8.6 °fov 0.16°SiPM pixels

December 1st, **2015**, l'Observatoire de Paris hosted the inauguration of the Gamma-ray Cherenkov Telescope (GCT) prototype.

First events few days before

Medium Sized Telescope

15

Science drivers

Mid energies (0.1–10 TeV) DM, AGN, SNR, PWN, binaries, starbursts, EBL, IGM

Array layout

South site: 25 MST North site: 15 MST

Characteristics

Modified Davies-Cotton design 12 m diameter, 90 m² effective mirror area 1.2 m mirror facets 16 m focal length 8° field of view with 0.18° PMT pixels

MST prototype

Status

Telescope prototyped (Berlin-Adlershof)
Prototype cameras under construction (2 types: NectarCAM & FlashCam)

Large Sized Telescope

Science drivers

Lowest energies (< 200 GeV) Transient phenomena, DM, AGN, GRB, pulsars

Characteristics

23m diameter parabolic design 370 m² effective mirror area 28 m focal length 1.5 m mirror facets with active mirror control 4.5° field of view composed of 0.11° PMT pixels Carbon-fibre arch structure (fast repointing)

Array layout

South site: 4 LST North site: 4 LST

Status

Some elements prototyped

Prototype telescope under construction in La Palma (to become first full LST)

Large Sized Telescope

Production of the arch @ LORIMA

Courtesy of A. Fiasson (LAPP)

Large Sized Telescope

View of the camera field of view of 4.5 degrees Weight below 2000 kg

3 clusters: PMTs + electronics

Data Management

Challenges ahead

40 Pb per year of data ~2000 CPU cores to analyse data

From Site to Data Centers From Data Centers to you

Data Management

Observation modes

Observation modes

Observation modes

Key Science Projects

Key Science Projects (executed by consortium)

Ensure that important science questions for CTA are addressed in a coherent fashion and with a well-defined strategy

Conceived to provide legacy data sets for the entire

community

Proposal-driven User Programme

Deep investigation of known sources

Follow-up of KSP discovered sources

Multi-wavelength campaigns

Follow-up of ToOs from other wavebands or messengers

Search for new sources ...

Science Topics with CTA

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Particle acceleration in relativistic jets, winds and explosions?
- Exploring cosmic voids

Theme 3: Physics Frontiers – beyond the SM

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high energy photons?
- Do axion-like particles exist?

Science with CTA

GRBs, ToO, etc..

—— Blazars —

EBL

Transients, GRBs, GW

Gamma-ray bursts

Galactic Transients
High Energy Neutrino transients

GW transients
Optical and radio transients

Serendipitous VHE transients

- Alerter system
- Real Time Analysis

► LST : Fast slewing on target

GRBs simulation

Second Fermi-LAT GRB Catalog [in prep.]

→ ~100 GRBs, 6 yrs, 30 MeV – 300 GeV

Extremely long GRB 130427A

- 1)10 min @ 1 ks post trigger
- 2)1 hour @ 10 ks post trigger

Simulation with ctools

Simulated CTA gamma-ray burst light curve, based on the Fermi-LAT-detected GRB 080916C at z =4.3

Blazar Variablity

Short term variation:

- Duty cycle?
- Size, location of the emission Region?

Follow up of external triggers Regular monitoring of 80 AGNs of different classes and different redshifts

Long term variation:

- Quasi periodicity?
- Acceleration and cooling mechanisms?
- Break in the power spectra?

Regular observation of 15 VHE AGN of different classes Light curves over 10 years minimum and time resolved spectra

Extragalactic Background light

Extragalactic Background light

Extragalactic Background Light:

- ✓ measurement of EBL at z=0 with precision of 20%
- characterize the evolution up to z=1

Strategy:

- Steady blazars at low z
- At high z, AGN flare programm

Inter-Galactic Magnetic Fields

Inter-galactic magnetic fields:

- Lower limit or detection?
- Imaging analysis:
 - "pair halos" (IGMF > 10 -16 G)
- Time resolved spectra:
 - "pair echoes" (IGMF < 10 -16 G)</p>

Simulation D. Mazin (CTA Science Case)

pair echoes

The arrival directions of primary and secondary gamma-rays (black circles) from a source at a distance D=120 Mpc with an IGMF strength of 10 14 G.

AGN spectra

High-frequency peaked blazars:

- Leptonic or hadronic origin of the Emission?
- Signature of the interaction of gamma-ray with the photon fields?

 Separate intrinsic features from propagation effects (wide range of redshift and source classes)

PKS 2155-304 : Exposure time assumed for the simulations (33 hr)

Extragalactic Survey

Blind survey of 25% of the sky with sensibility ~ 5mCrab. 1000h in 3 years

Aims:

- unbiased determination of log N-log S of the gamma-ray AGNs
- Measurement of the nearby (z<0.2) BL Lacs luminosity function</p>
- Probing the AGN unification scheme and the Blazar sequence
- ✓ Discovery of extreme blazars peaking in the ←100 GeV 1 TeV region
- Serendipitous detection of fast flaring sources
- New sources classes such as Seyfert galaxies
- Dark sources with no astrophysical counterpart
- Study of large scale anisotropies in the electron spectrum at energies between 100 GeV and few TeV.

Extragalactic Survey

Proposed region of the extragalactic survey in Galactic coordinates

Simulated log N - log S distribution 5 mCrab sensitivity → around 100 sources in 10,000 deg²

30-150 foreseen detections from Fermi or UV-Xray extrapolations

Shallow survey vs deep survey

observing a four times narrower field for, consequently, four times longer time would result in a detection of about 50% less sources.

Synergies with CTA

Conclusions

CTA Status

- 2 sites (South and North) selected for discussion
- Telescope prototypes being build
- First telescopes (LST @ Lapalma) expect to take data in 2017

Key Science Projects

- Extragalactic KSPs explore CTA science themes in a coherent manner
- Data release to public after proprietary time (1 year)
- Strong Guest Observer program with ~50% of observing time over the first 10 years
- Legacy of use for the entire astronomical community
 - Catalogues, Maps, Light curve

Conclusions II

Acces of DATA

- CTA is an observatory
- Open to Proposal
- Propriatary period of 1 year
- Data public after + IRFs + Science tools

Thanks

