

Introduction to Cosmology

Professor Barbara Ryden Department of Astronomy The Ohio State University

ICTP Summer School on Cosmology 2016 June 6

Danger: Astronomers at work!

Time: 1 Gyr = 10^9 yr $\approx 3.2 \times 10^{16}$ s $\sim 10^{60}$ t_{planck} age of the Sun = 4.57 Gyr time since Big Bang = 13.7 Gyr

Distance: 1 Mpc = 10^6 parsecs $\approx 3.1 \times 10^{22}$ m $\sim 10^{57}$ d_{planck} distance to Andromeda Galaxy ≈ 0.75 Mpc distance to Coma Cluster of galaxies ≈ 100 Mpc

$$\label{eq:Mass: 1 M_{\odot}} \begin{split} \text{Mass: 1 M}_{\odot} &\approx 2.0 \times 10^{30} \, \text{kg} \sim 10^{38} \, \text{m}_{\text{planck}} \\ \text{mass of Milky Way Galaxy} &\approx 10^{12} \, \text{M}_{\odot} \\ \text{mass of Coma Cluster} &\approx 10^{15} \, \text{M}_{\odot} \end{split}$$

1923: Arthur Eddington compiles a list of 41 galaxy wavelength shifts (mostly measured by Vesto Slipher).

N.G.C.	R.A.	Dec.	Rad. Vel.	N.G.C.	R.A.	Dec.	Rad. V
	h m	• /	km. per sec.	1	h m	• •	km. per
221	0 38	+4026	- 300	4151*	12 6	+3951	+ 98
224*	0 38	+4050	- 300	4214	12 12	+36 46	+ 30
$278 \pm$	0 47	+47 7	+ 650	4258	$12 \ 15$	+47 45	+ 50
404	1 5	$+35\ 17$	- 25	4382†	12 21	+18 38	+ 50
584^{+}	1 27	- 7 17	+1800	4449	12 24	+44 32	+ 20
598*	1 29	+30 15	- 260	4472	12 25	+ 8 27	+ 85
936	2 24	- 1 31	+1300	4486†	12 27	+1250	+ 80
1023	2 35	+38 43	+ 300	4526	12 30	+89	+ 58
1068*	2 39	- 0 21	+1120	4565†	12 32	+26 26	+110
2683	8 48	+33 43	+ 400	4594*	$12 \ 36$	- 11 11	+110
2841 +	9 16	+51 19	+ 600	4649	$12 \ 40$	+12 0	+109
3031	9 49	+69 27	- 30	4736	12 47	+41 33	+ 29
3034	9 49	+70 5	+ 290	4826	12 53	+22 7	+ 15
3115^{+}	10 1	- 7 20	+ 600	5005	13 7	+3729	+ 90
3368	10 42	+12 14	+ 940	5055	$13 \ 12$	+42 37	+ 45
3379*	10 43	+13 0	+780	5194	13 26	+47 36	+ 27
3489^+	10 56	+14 20	+ 600	5195+	$13 \ 27$	+47 41	+ 24
3521	11 2	+ 0 24	+ 730	5236†	13 32	-29 27	+ 50
3623	11 15	+13 32	+ 800	5866	15 4	+56 4	+ 65
3627	11 16	+13 26	+ 650	7331	22 33	+33 23	+ 50
4111^+	12 3	+43 31	+ 800	1			

36 redshifts, **5** blueshifts. Assuming classical Doppler shift, the mean radial velocity is $v_r = c \ z = +540 \ \text{km s}^{-1}$

Eddington: 'The great preponderance of positive (receding) velocities is very striking.'

Hubble's Law:

$$cz = H_0 r$$

 $H_0 = \text{`Hubble constant'} = 68 \pm 2 \text{ km s}^{-1} \text{ Mpc}^{-1}$
 $1/H_0 = \text{`Hubble time'} = 14.4 \pm 0.4 \text{ Gyr}$
 $v_r = H_0 r$
 $t = r/v_r = 1/H_0$
independent of r
 $c/H_0 = \text{`Hubble distance'} = 4400 \pm 100 \text{ Mpc}$

Hubble's law is consistent with a Big Bang model, but does not require it.					
Hot Big Bang	Steady State (Bondi, Gold, & Hoyle 1948)				
Cosmological principle: universe is spatially homogeneous & isotropic (on large scales), but changes with time, becoming cooler & less dense.	Perfect cosmological principle: universe is spatially homogeneous & isotropic (on large scales), and its global properties are constant with time.				

Steady state model:
Hubble constant
$$H_0$$
 is constant with time.

$$\frac{dr}{dt} = H_0 r \implies r \propto e^{H_0 t} \quad \text{exponential growth} \\ r \neq 0 \text{ as } t \neq -\infty \text{ Mean density } \rho_0 \text{ is constant with time.}$$

$$V \propto r^3 \propto e^{3H_0 t} \implies \dot{M} = \rho_0 \dot{V} = \rho_0 3H_0 V$$

$$\frac{\dot{M}}{V} = \rho_0 3H_0 \sim 6 \times 10^{-28} \text{ kg m}^{-3} \text{Gyr}^{-1}$$

6/6/16

Olbers' paradox+Hubble's law+CMB → A universe described by a Hot Big Bang model (began in a hot, dense state a finite time ago).

The cosmological principle (*homogeneous & isotropic*) applies only on large scales today (>100 Mpc). In the past, the universe was more nearly homogeneous & isotropic.

Expansion of a homogeneous & isotropic universe is described by the Robertson-Walker metric and the Friedmann equation.

The curvature of spacetime is related to its energy content by Einstein's field equation: $8\pi G$

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

If space is homogeneous & isotropic, this reduces to the Friedmann equation:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\varepsilon(t) - \frac{\kappa c^2}{R_0^2}\frac{1}{a(t)^2}$$

$$H(t)^{2} = \frac{8\pi G}{3c^{2}}\varepsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}}\frac{1}{a(t)^{2}}$$

Александр Фридман