

In terms of the fractional ionization X,

$$\frac{1-X}{X} = n_p \left(\frac{m_e kT}{2\pi\hbar^2}\right)^{-3/2} \exp\left(\frac{Q}{kT}\right)$$
To get rid of the factor of n_p , recall that the baryon-to-photon ratio $\eta \approx 6 \times 10^{-10}$ is constant.

$$n_p = X n_{\text{bary}} = X \eta n_\gamma = X \eta \left[2.44 \left(\frac{kT}{\hbar c}\right)^3\right]$$

$$\frac{1-X}{X^2} = 3.84 \eta \left(\frac{kT}{m_e c^2}\right)^{3/2} \exp\left(\frac{Q}{kT}\right)$$
Solve for $X(\eta,T)$

Deuterium synthesis:
$$p + n \rightleftharpoons D + \gamma$$
 [2,220,000 eV]
Recombination: $p + e^- \rightleftharpoons H + \gamma$ [13.6 eV]
Rough estimate: If recombination takes place at $T_{rec} = 3760$ K, then deuterium synthesis takes place at a temperature
 $T_{nuc} \approx \left(\frac{2,220,000}{13.6}\right) 3760$ K $\approx 6 \times 10^8$ K
(This corresponds to t ≈ 270 sec.)

Deuterium is not the end of the line for BBN. The next steps make light helium (³He) and tritium (³H).

For instance:

 $D + p \rightleftharpoons^{3}He + \gamma$ $D + n \rightleftharpoons^{3}H + \gamma$

³H decays to ³He, but with $\tau = 18$ yr >> 3 minutes.

The next steps make helium (⁴He).

For instance: ${}^{3}\text{H} + p \rightleftharpoons {}^{4}\text{He} + \gamma$ ${}^{3}\text{He} + n \rightleftharpoons {}^{4}\text{He} + \gamma$

⁴He is *almost* the end of the line for BBN. There are no stable nuclei with atomic mass A=5 or A=8.

Lya for H: 121.567 nm Lya for D: 121.534 nm Best fit: D/H = $(2.53\pm0.04)\times10^{-5}$, yielding η = $(6.0\pm0.1)\times10^{-10}$

15