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Digging Deep

• Is the SM a complete description of LHC physics?
• No? 

• Yes?

• Don’t know?  Not good…

• Is naturalness a correct principle guiding the TeV scale?
• QFT dynamics controls physics?

• History of the universe confounds QFT expectation?

• Just anthropics in the end?

Both of these require comprehensive search strategy

• Need for efficient strategy, broad approach, high precision
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Where are we?

• SM-like Higgs akin to Michelson-Moreley
• Null experiment – absence of clues

• Flies in face of well-established understanding

• We DO understand QFT and naturalness theoretically

• Naturalness works in QCD

• Naturalness works in condensed matter

• Not obvious if a small problem or a big one

• Not obvious what experiments to do next

• Could this just all be anthropics?
• Could there be a landscape of vacua? Sure.

• Is SM all determined by simply demanding a habitable vacuum?  No.
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No, it’s NOT Anthropics at the LHC

(Or if it is, it’s much more interesting than it would naively seem…)

• Anthropics might explain the cosmological constant.
• Argument is general

• Many fundamental theories might easily satisfy its premises

• But anthropics cannot by itself explain naturalness puzzle
• Required premises strain credulity

• No known fundamental theory would satisfy its premises

• Even hard to imagine how it could, given what we know

• “Artificial Landscape Problem”
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Where I’m going

• Goal of this anthropic argument:
• NOT: predict c.c. or electroweak mass scale within order of magnitude

• ONLY: predict very general features of the universe on very general grounds

• BUT:  claim that anthropics predicts

• A small c.c.

• A large natural hierarchy – not an unnatural one

• THEREFORE: Anthropics does not solve the naturalness problem

• There is something to find! 

• More pheno at LHC (or elsewhere) than just SM

• What about existing anthropic solutions to naturalness problem?
• The premises of these solutions violate the premises of my argument

• The violation introduces a new problem, as bad as the naturalness problem

• “Artificial landscape problem”

• Merely replacing naturalness problem with artificial landscape problem
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Starting assumptions
• A landscape of vacua

• Gravity in all vacua (4d?)

• Some of these vacua have small c.c., most don’t.

• Some of these vacua have hierarchies, most don’t

• Of those that have hierarchies, some are unnatural, most aren’t

Should we accept these premises?
• The naturalness problem: Most hierarchies aren’t natural

• Hierarchies aren’t hard to achieve but aren’t completely generic

• SUSY and SUSY-breaking hierarchies

• Technicolor and other dynamical hierarchies

• Small Yukawas (weakless; flavor hierarchies)

• Vectorlike fermions (technically natural)

• If cc couldn’t be large, there’s no cc problem anyway

• If gravity absent, both problems evaporate
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Anthropic Argument

• (Despite the drawing, this space is a discrete set, not continuous)
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The Argument, Again

• Observers need some space and a lot of time 

 need small cosmological constant

 cosmological constant must be small 

• Observers need complexity 

 need simple objects that are massive but don’t form black holes

 need hierarchy of masses between Mpl and other objects

• Observers need X

 need X’ to assure X

 need hierarchy to arise from a light unprotected scalar to assure X’

What are X and X’?
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To apply the anthropic argument to 
the Higgs naturalness problem, need 

a third criterion!



How Has This Been Evaded?
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• Then yes, only path to mass 
hierarchy is a small Higgs vev.

… avoid “weakless” small-Yukawas
large-vev solutions?

But not in a general landscape!

So if true, requires dynamical 
and/or fundamental explanation!



String Theory and Naturalness

String theory’s landscape of 10XXX vacua

• Ok for solving the cosmological constant problem and 

• Ok for explaining why there is a hierarchy

• But without a 3rd criterion can’t solve the Higgs-naturalness problem…

• Unless you believe (or prove) something amazing about string vacua!

• String theory seems to predict that observers will find themselves in a 
vacuum whose hierarchy is natural… 

• If the unnatural SM continues to survive unscathed at the LHC, string 
theory will become increasingly implausible as a theory of nature
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Non-anthropic historical solutions

• Relaxion
• CC problem remains to be solved
• Anthropics? Problem potentially reappears…

• Why must nature choose a relaxion when it could choose technicolor?
• Unless solving CC problem requires it… extremely baroque

• Nnaturalness
• Picks least natural sector
• But artificial to make all sectors resemble SM

• Reasonable for some sectors to be even less natural than the SM.

• Name TBD - Stanford group
• Link existence of hierarchy to solution of CC problem 

Still a long way from a convincing historical example…
• But still early days
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So we need to dig deep

• Digging Deep Topics
• Buried treasure - resonances hiding in inclusive samples*

• Tiny resonances from bound states^

• Looking for tricky t’ and b’

• Taking ratios of processes at 7/8 vs 13/14 TeV*

• Diboson ratios as example of precision observables*^
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*Presented in SEARCH2016 talk

^Discussed today
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Direct Searches 
at 7-8 TeV for 

constituent particles 
decaying to jets

Note! Not every 
representation can decay 

to every final state!

Spin 0 solid

Spin ½ dashed

Spin 1 dotted

Mass of Constituent (GeV)

Mass of Constituent (GeV)

Kats & MJS ‘12, ‘16



So we need to dig deep

• No point in digging deep yet if we haven’t scratched the surface
• Yes, we are now searching effectively for gluinos

• And anything else with lots of color and/or spin

• Need to check that we are searching effectively for triplet fermions (t’,b’)

• Color triplet scalars – top squark is good target

• Colored particles with simple decays are easy to search for

• Colored particles with more complex decays
• Are decaying to MET or leptons or photons, easy to find

• Are decaying via known or unknown resonances, not too hard to find

• Are decaying to multijets without intermediate resonances – miss?

• But then likely decaying with a delay

• Chance to observe their bound states

• Are confined by another force: bound states
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Diphoton Limits as of Dec. 2015

9/7/2016 M.J. Strassler 23

Scalar: charge -4/3, 5/3
Vector… huge production rate

Fermion: charge -4/3

Mass of Bound State (GeV) Mass of Bound State (GeV)

Guesstimate: Can rule out stabilized scalars and 
spinors with large charge up to at least 700-800 GeV,
with Q=2/3 perhaps up to 500 GeV

July 2016 
estimate

3 ab-1???

Dec 2015

Kats & MJS ‘12, ‘16



Dilepton Limits from 2015

• For bound states of fermions only:

• To make dileptons with high rate, need spin-1 bound state

• This is s-wave for fermions but p-wave for scalars, suppressed rate

9/7/2016 M.J. Strassler 24

Mass of Bound State (GeV) Mass of Bound State (GeV)

Guesstimate: For fermions, dileptons
similar to diphotons at Q=2/3, worse at 
higher Q

Kats & MJS ‘12, ‘16



Dijet Limits from 2015

• From singlet resonances
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Mass of Bound State (GeV) Mass of Bound State (GeV)
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Examples of Enhancements

If any of these particles was a (3,3) of SU(3)xSU(3)twin ,
• Even if no quirk-like confinement…

• Effective a doubles; 
• Bound state wave function Y(0) ~ a3/2

• Total rate grows by 8

• And there are three of them, from QCD point of view

Even if SU(2)xU(1) neutral, dijets could exclude to few hundred GeV

Quirks/Squirks: greater enhancement

• 3 of them, from QCD point of view

• Total pair cross-section converted into resonant cross-section
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Dibosons

Production of any pair of photon, Z, W± (except same sign)

• Discrepancies have shown up – or not…

• What ratios/variables might help?

• Put high-energy SU(2)xU(1) structure to use
• Leading-order (tree-level) partonic-level into nicer form
• Notice useful ratios, show they are still useful in pp collisions

• Proceed to realistic situation for two neutral bosons
• Show corrections beyond leading order are small at high energy

• NLO
• gg-induced NNLO

• Show remaining uncertainties are small

• All results below using MCFM Monte Carlo  Campbell, R.K.Ellis, Williams
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with Chris Frye, Marat Freytsis, Jakub Scholtz ‘15
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SU(2) w a (a=1,2,3), U(1) x
• up to (mZ /E)2 terms
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SU(2) w a (a=1,2,3), U(1) x
• up to (mZ /E)2 terms

s

t,u

s,t,u
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ww3 , φφ onlyNot φφ
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ww3 , φφ onlyNot φφ

a3 vanishes at t = u  (90o)

i.e. at threshold for fixed pT



ZZ, Zγ, γγ at Leading Order (@LO)
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ZZ, Zγ, γγ at Leading Order (@LO)
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Couplings to Z :

Ratios  of  dσ/dm12



ZZ, Zγ, γγ at Leading Order (@LO)
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Couplings to Z :

Ratios  of  dσ/dm12

uu dominates;
PDF uncertainties 

should cancel



Processes with W ±
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Upper signs for q=u
Lower signs for q=d



Charge asymmetries for Wγ ,WZ are related

• Determined by the pdfs for both sym, antisym FB quantities
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Processes with W ±
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Processes with W ±
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Upper signs for q=u
Lower signs for q=d

Some Terms Are Small ( YL, sW, aφ )

But a3 has a radiation zero!

Away from threshold, Wγ / WZ ~ tan2 θW ~ .29 

At (but only very close to) threshold, Wγ / WZ ~ .19



Processes with W ±
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Upper signs for q=u
Lower signs for q=d

Some Terms Are Small ( YL , sW , aφ )
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Processes with W ±
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Upper signs for q=u
Lower signs for q=d

Some Terms Are Small ( YL , sW , aφ )

But a3 has a radiation zero!

for FB-symmetric quantities, WW is related to γγ
for FB-antisym quantities, WW is related to Wγ (WZ too small) 
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Best statistics Best statistics and LO PDF behavior



Beyond Leading Order?
• What about higher-order corrections?

• QCD cancellations?

• How large are the shifts in the ratios? 

• SU(2)xU(1) relations should help -- Where do they fail?

• What uncertainties remain?

• EW corrections - Partial cancellations?

• Big issue: the radiation zero
• Where important, LO SU(2)xU(1) relations may receive large corrections

• Start with γγ, Zγ, ZZ

• No radiation zero

• Events fully reconstructed  (Z  leptons ONLY here)

• Good statistics for first two
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ZZ, Zγ, γγ at LO  NLO

• Must choose observable carefully to avoid large NLO corrections

mT = ½[ mT1 + mT2 ] = min energy at 90o scattering

• Radiation cannot reduce this variable 
• so no region of NLO phase space is secretly LO.
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Ratios  of  dσ/dmT



ZZ, Zγ, γγ at LO  NLO

• Need to choose cuts carefully to avoid large NLO corrections
• Assure cuts select kinematics similar to LO

• i.e. no vector bosons softer than jets (cf. giant K factors)

• But do not impose drastic jet veto

• We take

pT
jet < ½ pT

V|min ; ½ pT
V|min > ½ pT

V|max

Notice these cuts scale –

no large logs at high E
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ZZ, Zγ, γγ at LO  NLO

• QCD corrections treat Z, γ identically, largely cancel…

• …except…
• Collinear quark-boson regime

• Photon has log enhancement

• Z has no enhancement

• Gluon fusion process (formally NNLO but numerically large)

• Both of these driven by gluon pdf
• Both decrease in importance at high energy
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NLO/LO K factors

56

Collinear region cut away Collinear region included



NNLO gg / NLO partial K factor

• To set scale on gg use partial knowledge of NNNLO gg correction
• (backup slide)
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gg gives largest NNLO correction to ratios 



PDF Uncertainties 

• Much smaller in ratios
• 1 – 2 %
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Scale [next-order] uncertainties

• Estimates NNLO corrections to what is already present at NLO

• Does not account for new channels (e.g. q q q q V V ~ 2–3%)
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NLO

NNLO gg



Experimental effects

• Some experimental issues cancel
• Luminosity

• Jet energy scale

• Some don’t:
• Z  leptons – leptons have their own cuts, acceptance

• Or  neutrinos -- other issues

• Can be a substantial effect at low pT

• But can model, measure with low absolute uncertainty

• Z – finite width [experimental definition of “Z”]

• Not large effect

• Can model 
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Uncertainty budget
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Ratio  of  dσ/dmT
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Sensitive to 
• Monte Carlo problems
• EW corrections
• 5% BSM effects at > 650 GeV in EW sector 
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Possible Improvements:
• Use Z  neutrinos?
• Use Z  jets??
• At 3000 fb-1, tens of bins, last bin probes > 1.2 TeV at 5%

Sensitive to 
• Monte Carlo problems
• EW corrections
• 5% BSM effects at > 650 GeV in EW sector 



The other ratios, at 3000 fb-1
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Probably want to include Z  neutrinos at price of higher 
theoretical uncertainty.



Conclusions

• Anthropic arguments alone can’t solve Higgs-naturalness problem
• To do requires making a very special (non-generic) landscape

• Any reasonable landscape has a naturalness problem too. 

• Any landscape with no naturalness problem is itself highly artificial

• Find a fundamental theory that avoids this problem!

• Resonances from QCD bound states
• Useful for particles with stabilized lifetimes

• Discovery for particles of high charge (Q > 2/3) OR complex messy decays

• Need more high-precision variables from theorists
• Exercise: get high precision in diboson ratios

• Ratios: small QCD corrections & uncertainties at high energy

• Certainly good for SM studies, esp. EW effects

• Need to study how/where sensitivity to BSM is improved
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BACKUP SLIDES
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Selection Bias and Naturalness

• Selection bias (alone) does not solve the problem
• Evolution of life  old universe  small cosmological constant

• Evolution of life  complex objects that aren’t black holes
 small mass scales …  hierarchy
… ???  light SM Higgs boson ????

• Small mass scales can easily imply
• Naturalness: SUSY, Technicolor
• Weak-less universe Kribs Harnik Perez

• Assortment of light fundamental nuclei-like particles … , Thaler

• Does not logically require light SM Higgs boson
• … unless dynamics forbids the other options!  

(i.e. “landscape” not enough.)
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Scale setting

• For gg  γγ

• For the other processes
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Processes with W ±
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Upper signs for q=u
Lower signs for q=d

Custodial Limit



Processes with W ±
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Upper signs for q=u
Lower signs for q=d

F-B Antisymmetries Are Equal

~ |a1|2 ~ |a3|2 ~ |aφ|2

Theoretically very robust! 
But experimentally useless 
because WZ effect tiny! 


