Flavor without symmetries

Alex Pomarol, UAB (Barcelona)

Flavor without symmetries

Alex Pomarol, UAB (Barcelona)

Apologízes: I am not going to talk on glances at the energy frontier

Flavor without symmetries

Alex Pomarol, UAB (Barcelona)

Apologízes: I am not going to talk on glances at the energy frontier

Interpreting other "null results": the absence of new flavor sources beyond the SM

After many years, no clear progress on the origin of flavor in the SM: Many ideas, but without sharp predictions

Localization in extra dimensions

Jauge flavor symmetries

Froggatt-Nielsen

Gops

... contrary to gauge couplings \rightarrow predictions from GUTS Higgs quartic \rightarrow predictions from SUSY or Composite Higgs

After many years, no clear progress on the origin of flavor in the SM: Many ideas, but without sharp predictions

Localization in extra dimensions

9auge flavor symmetries

Froggatt-Nielsen

9ops

... contrary to gauge couplings → predictions from GUTS

Higgs quartic → predictions from SUSY or Composite Higgs

In <u>BSMs</u> for the hierarchy problem things are even worse (or more interesting), as generically predict new sources of flavor...

$$(\bar{f}_i \gamma^{\mu} f_j)(\bar{f}_l \gamma_{\mu} f_k)$$
 \longleftarrow $\epsilon_{\rm K}, \epsilon'/\epsilon, \Delta M_{\rm B}, B \rightarrow XII, ...$

not serious deviation seen!

"Cheap" way to avoid them:

→ Demand similar BSM flavor-structure as in the SM:

Minimal Flavor Violation (MFV)

Flavor under control for new physics scale at ~TeV

but global symmetries are accidental

So, why/how they arise?

But only few examples known:

SUSY: Gauge Mediated Susy Breaking (GMSB)

soft-masses through gauge interactions (flavor blind)

but today minimal GMSB highly tuned to reproduce $m_h\sim$ 125 GeV

Beyond minimal models... EDMs are sizable!

$$d_e \sim 10^{-28} \text{cm e} \left(\frac{M_S}{10 \text{ TeV}}\right)^2 \tan \beta$$

But only few examples known:

Composite Higgs:

More difficult, as we must address the origin of Yukawas:

Higgs associated to a composite operator: $\mathcal{O}_H \sim ar{\psi} \psi$

As dimension of O_H is larger than 1 ($d_H > I$) Yukawas, ffO_H , are irrelevant couplings!

We cannot push their origin to Planck-physics!

But only few examples known:

Composite Higgs:

Most interesting possibility:

Yukawas from linear mixing to operators of the strong sector:

$$\mathcal{L}_{ ext{lin}} = \epsilon_{f_i} \, ar{f_i} \, \mathcal{O}_{f_i}$$
 (portal of $m{f_i}$ to the strong sector)

 \rightarrow depending on the dimension of O_f , we can have relevant or irrelevant couplings

r large or small mixings ef

O(1) numbers (anomalous dimensions Y_i of O_{f_i}) can lead to large hierarchies:

From the RGE:

$$\epsilon_{f_i}(\Lambda_{IR}) \sim \left(\frac{\Lambda_{IR}}{M_P}\right)^{\gamma_i} \qquad \gamma_i = \text{Dim}[\mathcal{O}_{f_i}] - 5/2 > 1$$

➡ small mixings at NIR

The smaller mixing, the smaller the mass:

$$f_i - f_j - f_j - f_j - g_* \epsilon_{f_i} \epsilon_{f_j}$$

Explicit example (for the top):

arXiv:1502.00390

SU(4) strong sector

Fermions:

a) three
$$\Psi_{L,R} \in \mathbf{4}$$
 (fundamental)

b) five
$$\Upsilon \in 6$$
 (antisym. matrix)

$\Psi \Upsilon \Psi = \mathcal{O}_{\mathrm{top}}$

Operator that can be coupled to the top

Global sym.

dimension at weak coupling: 9/2 dimension needed at strong coupling: 5/2 ($\gamma = 2$)

Possible? lattice could tell us!

AdS/CFT perspective

reasier from string theory?

Flavor & CP-violation constraints

$$\frac{g_*^2}{\Lambda_{\rm IR}^2} \epsilon_{f_i} \epsilon_{f_j} \epsilon_{f_k} \epsilon_{f_l} \, \bar{f}_i \gamma^{\mu} f_j \bar{f}_k \gamma_{\mu} f_l$$

> scale of the strong sector: expected ~TeV

 $\epsilon_{\rm K}$ bound: $\Lambda_{\rm IR} > 10~{
m TeV}$

$$\frac{g_*^2}{16\pi^2} \frac{g_* v}{\Lambda_{\rm IR}^2} \epsilon_{f_i} \epsilon_{f_j} \, \bar{f}_i \sigma_{\mu\nu} f_j \, g F^{\mu\nu}$$

EDM bound: $\Lambda_{\rm IR} > 100 \; {
m TeV} \left(rac{{f g}_*}{3}
ight)$

 $\mu \rightarrow e \gamma$ bound: $\Lambda_{IR} > 60 \text{ TeV} \left(\frac{g_*}{3}\right)$

Other alternatives:

arXiv:1203.4220

Consider some SM fermion fully composite:

For example: QR UR, dR

If arise from a strong sector with elementary fermions, it is not unconceivable to be flavor symmetric

All flavor mixings from left-handed:

But also generated: $\frac{g_*^2}{\Lambda_{
m IR}^2}(\bar{u}_R\gamma_\mu u_R)^2$

give deviation in dijets distributions, pp ightarrow jj: $\Lambda_{\rm IR} \gtrsim 20~{
m TeV}\left(rac{{f g}_*}{3}
ight)$

Towards suppressing EDMs:

Avoid linear mixing of light fermions to BSM:

$$\mathcal{L}_{ ext{lin}} = \epsilon_{f_i} \, ar{f_i} \, \mathcal{O}_{f_i}$$
 BSM Bilinear mixing: $\mathcal{L}_{ ext{bil}} \sim ar{f_i} \, \mathcal{O}_H f_i$

Not possible in the MSSM, but possible in composite Higgs models EDM at most at two-loop!

Possibility considered here:

G.Panico, AP 1603.06609

(also related work by Matsedonskyi 15, Cacciapaglia et al 15)

$$\mathcal{L}_{\mathrm{lin}} = \epsilon_{f_i} \, \bar{f}_i \, \mathcal{O}_{f_i}$$

portal decouples at higher energies: E.g. if a constituent get a mass $-\Lambda_f$

$$\mathcal{L}_{ ext{bil}} \sim ar{f_i} \mathcal{O}_H f_j$$
 bilinear mixing generated at Λ_f

 \rightarrow Operator of the strong sector that at Λ_{IR} projects into the Higgs:

$$\langle 0|\mathcal{O}_H|H
angle
eq 0$$

The larger the scale of decoupling,

the smaller the fermion mass!

Down-quark sector

Envisaging from explicit examples:

SU(4) strong sector

Fermions:

a) three $\Psi_{L,R} \in \mathbf{4}$ (fundamental)

b) five $\Upsilon \in 6$ (antisym. matrix)

add more elementary fermions Y with explicit masses

AdS/CFT perspective

AdS/CFT perspective

Down-quark sector

Down-quark sector

$$\mathcal{L}_{\text{lin}}^{(3)} = \epsilon_{b_L}^{(3)} \bar{Q}_{L3} \, \mathcal{O}_{Q_{L3}} + \epsilon_{b_R}^{(3)} \bar{b}_R \, \mathcal{O}_{b_R}$$

below Ab:

$$\mathcal{L}_{\text{bil}}^{(3)} = \frac{1}{\Lambda_b^{d_H - 1}} (\epsilon_{b_L}^{(3)} \bar{Q}_{L3}) \mathcal{O}_H (\epsilon_{b_R}^{(3)} b_R)$$

below AIR:

$$\mathcal{Y}_{\text{down}} = g_* \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \epsilon_{b_L}^{(3)} \epsilon_{b_R}^{(3)} \end{pmatrix} \left(\frac{\Lambda_{\text{IR}}}{\Lambda_b} \right)^{d_H - 1}$$

$$\mathcal{L}_{\text{lin}}^{(2)} = (\epsilon_{b_L}^{(2)} \bar{Q}_{L3} + \epsilon_{s_L}^{(2)} \bar{Q}_{L2}) \mathcal{O}_{Q_{L2}} + (\epsilon_{b_R}^{(2)} b_R + \epsilon_{s_R}^{(2)} s_R) \mathcal{O}_{s_R}$$

below As:

$$\mathcal{L}_{\text{bil}}^{(1)} = \frac{1}{\Lambda_d^{d_H - 1}} (\epsilon_{b_L}^{(1)} \bar{Q}_{L3} + \epsilon_{s_L}^{(1)} \bar{Q}_{L2} + \epsilon_{d_L}^{(1)} \bar{Q}_{L1}) \mathcal{O}_H (\epsilon_{b_R}^{(1)} b_R + \epsilon_{s_R}^{(1)} s_R + \epsilon_{d_R}^{(1)} d_R)$$

below Air:

$$\mathcal{Y}_{\text{down}} = g_* \begin{pmatrix} 0 & 0 & 0 \\ 0 & \epsilon_{s_L}^{(2)} \epsilon_{s_R}^{(2)} & \epsilon_{s_L}^{(2)} \epsilon_{b_R}^{(2)} \\ 0 & \epsilon_{b_L}^{(2)} \epsilon_{s_R}^{(2)} \end{pmatrix} \left(\frac{\Lambda_{\text{IR}}}{\Lambda_s} \right)^{d_H - 1}$$

Down-quark sector

"onion" structure:

$$\mathcal{Y}_{
m down} \simeq egin{pmatrix} Y_d & lpha_R^{ds} Y_d & lpha_R^{db} Y_d \ lpha_L^{ds} Y_d & Y_s & lpha_R^{sb} Y_s \ lpha_L^{db} Y_d & lpha_L^{sb} Y_s & Y_b \end{pmatrix}$$

$$Y_f \equiv g_* \epsilon_{f_{Li}}^{(i)} \epsilon_{f_{Ri}}^{(i)} \left(\frac{\Lambda_{\rm IR}}{\Lambda_f}\right)^{d_H - 1} \simeq m_f / v$$

- Smaller Yukawas for large decoupling scale!
- Mixing angles suppressed by Yukawas: $\theta_{ij} \sim Y_i/Y_j$

CKM mostly the rotation in the down-quark sector!

Similarly for the up-quark sector (and lepton sector)

Scales of decoupling:

Scales of decoupling:

Flavor and CP-violating effects

 $ullet \Lambda_t \sim \Lambda_{
m IR} \left. oxed{\Delta M_{B_d}} \simeq \left. rac{\Delta M_{B_d}}{\Delta M_{B_s}} \simeq \left. rac{\Delta M_{B_d}}{\Delta M_{B_s}}
ight|_{
m SI}$

 $\Lambda_t \sim \Lambda_{
m IR}$

close to the experimental value for $\Lambda_s{\sim}10^5\,\text{TeV}$

Like in "walking" TC, we need large anomalous dimension for OH:

$$\mathcal{O}_H \sim \bar{\psi}\psi$$
 d_H~2 (Y=I)

If so, theory close to an unstable point in the CFT:

For d_H<2, relevant singlet in the theory: $|\mathcal{O}_H|^2$

 $dim[|\mathcal{O}_H|^2] < 4$ (large N)

Like in "walking" TC, we need large anomalous dimension for OH:

$$\mathcal{O}_H \sim \bar{\psi}\psi$$
 d_H~2 (Y=I)

If so, theory close to an unstable point in the CFT:

For d_H<2, relevant singlet in the theory: $|\mathcal{O}_H|^2$

 $dim[|\mathcal{O}_H|^2] < 4$ (large N)

 $d_{H}\sim 2$ \Rightarrow dím $[|\mathcal{O}_{H}|^{2}]\sim 4$ marginal deformation

useful to generate $\Lambda_{IR} \ll M_{P}$: α

Like in "walking" TC, we need large anomalous dimension for OH:

$$\mathcal{O}_H \sim \bar{\psi} \psi$$
 d_H~2 (Y=I)

If so, theory close to an unstable point in the CFT:

For $d_H < 2$, relevant singlet in the theory: $|\mathcal{O}_H|^2$

 $\dim[|\mathcal{O}_H|^2] < 4$ (large N)

 $d_{H}\sim 2$ \rightarrow dim $[|\mathcal{O}_{H}|^{2}]\sim 4$ marginal deformation

useful to generate $\Lambda_{IR} \ll M_{P}$: α

From AdS/CFT:

dim of CFT operator → mass in AdS

5D Higgs mass slightly below the BF-bound: $m^2 = -4 - \epsilon$.

$$n^2 = -4 - \epsilon$$

- EDM of u,d,e suppressed by ∧d,u,e>109 GeV
- Largest constraint from the top EDM:

• Two-loop Barr-Zee-like diagrams to de:

If only one scale for each family:

Splittings within a given family must be explained by different mixings ($\epsilon_{\rm fi}$) at the respective scales

Only main difference: µ rey gets close to the exp. bound

Other issues:

· Modifications to Higgs couplings:

Similar effects as with linear mixing

• Neutrino masses:

Majorana:
$$\frac{1}{\Lambda_{\nu}^{2d_H-1}} \bar{L}^c \mathcal{O}_H \mathcal{O}_H L \longrightarrow m_{\nu} \simeq \frac{g_*^2 v^2}{\Lambda_{\mathrm{IR}}} \left(\frac{\Lambda_{\mathrm{IR}}}{\Lambda_{\nu}}\right)^{2d_H-1}$$

for d_H^2, $m_\nu \sim 0.1-0.01~\rm{eV}~\rm{for}~\Lambda_\nu \sim 0.8-1.5\times 10^8~\rm{GeV}$ dimension-7 operator

Dirac:
$$\frac{1}{\Lambda_{\nu}^{d_H-1}}\mathcal{O}_H \bar{L}\nu_R$$
 for d_H~2, dimension-5 operator as in the SM

Summary

Flavor from dynamical scales (bilinear mixing) consistent with BSM TeV physics

Buys you more time to dream...