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Interpreting other “null results”: 
the absence of new flavor sources  

beyond the SM



After many years,  
no clear progress on the origin of flavor in the SM: 

Many ideas, but without sharp predictions

… contrary to gauge couplings → predictions from GUTs 

                            Higgs quartic → predictions from SUSY or Composite Higgs

Localizat
ion in ex

tra dimensions

gauge flavor symmetries
Froggatt

-Nielsen

Masses from loops
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In BSMs for the hierarchy problem things are even worse (or more 

interesting), as generically predict new sources of flavor…

(f̄i�
µfj)(f̄l�µfk)

not serious deviation seen!

ϵK, ϵ’/ϵ, ΔMB, B→Xll, …



“Cheap” way to avoid them: 

but global symmetries are accidental

☛ Demand similar BSM flavor-structure as in the SM:

Flavor under control for new physics scale at ~TeV

Minimal Flavor Violation (MFV)

So, why/how they arise?



Symmetries from dynamics!



SUSY: Gauge Mediated Susy Breaking (GMSB)

soft-masses through gauge interactions (flavor blind)

Beyond minimal models… EDMs are sizable!
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But only few examples known:

Q Q~ ~
x

but today minimal GMSB highly tuned to reproduce mh~125 GeV

Symmetries from dynamics!



Composite Higgs:

But only few examples known:

More difficult, as we must address the origin of Yukawas:

Higgs associated to a composite operator: OH ⇠  ̄ 

As dimension of OH is larger than 1 (dH>1) 
Yukawas, ffOH, are irrelevant couplings! 

We cannot push their origin to Planck-physics!

Symmetries from dynamics!



Yukawas from linear mixing to operators of the strong sector:

1 Introduction

An attractive solution to the hierarchy problem is to require that the Higgs is not an elementary
particle, but a composite state arising from some strongly-coupled sector at TeV energies. This
possibility has important implications for the theory of flavor. Contrary to models with an elemen-
tary Higgs in which the structure of Yukawa couplings can have its origin at very high energies, as
large as the Planck scale, in composite Higgs models the origin of flavor must be addressed at much
lower energies. This is because the Higgs is associated with a composite operator of the strong
sector OH whose dimension dH must be larger than one to avoid the hierarchy problem,1 implying
that f̄LOHfR has dimension larger than 4, that is to say that the Yukawa couplings are irrelevant
at low energies. Therefore, if f̄LOHfR are generated at very high energies, e.g. the Planck scale,
fermion masses will be too small at the electroweak scale.

Di↵erent approaches to flavor in composite Higgs models have been considered. The most
popular one is partial compositeness, in which the SM fermions fi get masses by mixing linearly
with an operator of the strong sector:

L
lin

= ✏fi f̄i Ofi . (1.1)

At the strong scale ⇤
IR

⇠ TeV, which determines the mass-gap of the model, and at which the
Higgs emerges as a composite state, the fermion Yukawa couplings are generated with a pattern

Yf ⇠ g⇤✏fi✏fj , (1.2)

where 1 < g⇤ . 4⇡ characterizes the coupling in the strong sector. The appealing feature of
these scenarios, usually called “anarchic partial compositeness” [2], is the fact that the smallness of
the mixing ✏fi can simultaneously explain the smallness of the fermion masses and mixing angles.
Nevertheless, this approach also predicts flavor-violating higher-dimensional operators of order [3]

g2⇤
16⇡2

g⇤v

⇤2

IR

✏fi✏fj f̄i�µ⌫fj gFµ⌫ ,
g2⇤
⇤2

IR

✏fi✏fj ✏fk✏fl f̄i�
µfj f̄k�µfl , (1.3)

where v ' 174 GeV. The operators in Eq. (1.3) lead for ⇤
IR

⇠ TeV to large contributions to
the electron and neutron electric dipole moment (EDM), µ ! e� and ✏K , above the experimental
bounds [4] (see also Refs. [5–8]), as shown in Table 3. Taking ⇤

IR

above the TeV is possible, but
at the price of fine-tuning the electroweak scale.2

An interesting alternative to the above approach is to consider the right-handed quarks to be
fully composite [11]. If the strong sector has an accidental SU(3) flavor symmetry and CP symmetry
(something not di�cult to envisage as it occurs in QCD), the flavor bounds can be easily satisfied.
Indeed, in this case the whole flavor structure comes only from the linear mixing of the left-handed
fermions with the strong sector that must then be proportional to the SM Yukawas Yf , as in

1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†
H is larger

than ⇠ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N expansion this implies
dH � 2, but this is not true in general. Nevertheless, bounds from conformal bootstrap [1] indicate that it is not
possible to have dH ⇠ 1 together with Dim[OHO†

H ] & 4. Being conservative, we will be considering here dH & 2.
2Alternative constructions have been recently proposed based on composite Twin Higgs in which the scale of

compositeness can be pushed up without introducing additional tuning in the Higgs potential [9]. It is also possible
to reduce some bounds by taking smaller g⇤, but this implies reducing the UV cuto↵ (see for example Ref. [10]).

2

⤷ depending on the dimension of Of, we can have  
relevant or irrelevant couplings

(portal of fi to the strong sector)

Most interesting possibility:

Composite Higgs:

But only few examples known:

Symmetries from dynamics!

☛ large or small mixings ϵf
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Explicit example (for the top): arXiv:1502.00390

dimension at weak coupling:  9/2
dimension needed at strong coupling:  5/2 (γ= 2)

Possible? lattice could tell us!

II. FERRETTI’S MODEL

In Ref. [10], several requirements were put forward for a class of composite Higgs models
based on a hypercolor gauge theory as a UV completion. We begin by listing these require-
ments. The gauge group is assumed to be simple, and the dynamical symmetry breaking
pattern, G → H , to be such that

H ⊃ SU(3)color × SU(2)L × SU(2)R × U(1)X (2.1)

⊃ SU(3)color × SU(2)L × U(1)Y ,

with the SM gauge group in the last line. The group SU(2)R is the familiar custodial sym-
metry of the SM, and the hypercharge is Y = T 3

R+X . The SM Higgs doublet, with quantum
numbers (1, 2, 2)0 under SU(3)color×SU(2)L×SU(2)R×U(1)X , should be contained in the
NGB multiplet associated with the symmetry breaking G → H . In order to accommodate
a partially composite top quark [7], i.e., for the top quark to acquire its mass through lin-
ear couplings to hyperbaryons, there must exist hyperbaryons with quantum numbers that
match those of the SM quarks. This includes a set of right-handed, spin-1/2 hyperbaryons
with quantum numbers (3, 2)1/6 of the SM gauge group SU(3)color×SU(2)L×U(1)Y , which
serve as partners of the SM quark doublet qL; and left-handed, spin-1/2 hyperbaryons with
the quantum numbers (3, 1)2/3, to serve as partners of the SM quark singlet tR. Finally, the
hypercolor theory should be asymptotically free, and both the hypercolor gauge group and
the SM gauge group should be free of anomalies.

The hypercolor model with the smallest gauge group that satisfies all these require-
ments is an SU(4) gauge theory [10]. The hyperfermion content consists of five Majorana
fermions χi, i = 1, . . . , 5, transforming in the six-dimensional two-index antisymmetric irrep
of hypercolor, which is a real representation; and three Dirac fermions ψa, a = 1, 2, 3, in
the fundamental representation. The Majorana field χ can be written in terms of a Weyl
fermion Υ as

χABi =

(

ΥABi

1
2ϵABCD ϵ (ῩCD

i )T

)

, (2.2a)

χAB
i =

1

2
ϵABCDχT

CDi C =
(

−1
2ϵ

ABCD(ΥCDi)T ϵ ῩAB
i

)

. (2.2b)

We use capital letters for the SU(4) hypercolor indices, with lower indices for the fundamen-
tal irrep, and upper indices for the anti-fundamental irrep. Several lower or upper indices
will always be fully antisymmetrized. A Dirac fermion ψ in the fundamental irrep can be
written in terms of two right-handed Weyl fermions, Ψ in the fundamental irrep and Ψ̃ in
the anti-fundamental, as

ψAa =

(

ΨAa

ϵ ¯̃ΨT
Aa

)

, ψ
A
a =

(

−(Ψ̃A
a )

T ϵ Ψ̄A
a

)

. (2.3)

We suppress spinor indices. C is the charge-conjugation matrix, ϵ = iσ2 is the two-
dimensional ϵ-tensor acting on the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work in euclidean space, choosing
our Dirac matrices to be hermitian and using the chiral representation, see App. A.

The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)

4

b) five               ∈ 6 (antisym. matrix)

 L,Ra) three             ∈ 4 (fundamental) 

SU(4) strong sector 

Operator that can  
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The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)

4

with quantum numbers (5, 1, 1)(0,−1) for Υ; (1, 3̄, 1)(1/3,5/3) for Ψ; and (1, 1, 3)(−1/3,5/3) for
Ψ̃.4

We assume that dynamical symmetry breaking takes place, generating a condensate
⟨χiχj⟩ ∝ δij that breaks SU(5) → SO(5). Consistent with the general considerations of
Ref. [6], the Majorana bilinear χiχj is antisymmetric on its spinor indices and symmetric
on its hypercolor indices, and so it is symmetric on its flavor indices. In addition, there is
a condensate ⟨ψaψb⟩ ∝ δab that breaks SU(3)× SU(3)′ to its diagonal subgroup, which we
identify with SU(3)color. Both condensates also break U(1)′. The unbroken group is

H = SO(5)× SU(3)color × U(1)X . (2.5)

For heuristic arguments supporting this pattern of symmetry breaking, see Refs. [6, 8]. Of
course, whether this is the actual symmetry breaking pattern is something that can be
investigated on the lattice. Indeed the symmetry breaking pattern of the Dirac fermions,
with SU(3)×SU(3)′ breaking to the diagonal SU(3) subgroup, is consistent with all known
lattice results. A first study of the real-irrep symmetry breaking pattern, in a similar theory
except with four, instead of five, Majorana fermions, has recently appeared in Ref. [16].

The effective theory at energy scales much below the hypercolor scale ΛHC thus contains
NGBs parametrizing the U(1)′ group manifold, and the cosets SU(3) × SU(3)′/SU(3)color
and SU(5)/SO(5), amounting to 1, 8 and 14 NGBs for each of these factors, respectively.
These NGBs are massless when all couplings of the hypercolor theory to the SM are turned
off. A non-trivial effective potential is induced both by the SM gauge bosons, as we briefly
review in Sec. III, and by the coupling to the third-generation quarks. The latter, which is
the main subject of this paper, will be studied in Sec. IV.

The Higgs doublet is a subset of the NGBmultiplet parametrizing the coset SU(5)/SO(5).
In more detail, the 14 NGBs corresponding to the generators in this coset are described
by a non-linear field Σ ∈ SU(5) obtained by considering fluctuations around the vacuum
⟨Σ⟩ = Σ0 = 1,

Σ = uΣ0 u
T = exp(iΠ/f)Σ0 exp(iΠ/f)

T = exp(2iΠ/f) , (2.6)

with5

Σ = ΣT ⇒ Π = ΠT . (2.7)

Under g ∈ SU(5), Σ transforms as Σ → gΣgT .
At the level of the algebra, SU(2)L × SU(2)R in Eq. (2.1) is equivalent to the SO(4) ⊂

SO(5) associated with the first four rows and columns. The explicit form of the generators
is given in the appendix. With this choice, the field Π can be written as

Π = Θ+Θ† + Φ0 + Φ+ + Φ†
+ + η , (2.8)

with Θ containing the Higgs doublet H = (H+, H0)T ,

Θ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 −iH+/
√
2

0 0 0 0 H+/
√
2

0 0 0 0 iH0/
√
2

0 0 0 0 H0/
√
2

−iH+/
√
2 H+/

√
2 iH0/

√
2 H0/

√
2 0

⎞

⎟

⎟

⎟

⎟

⎠

. (2.9)

4 Compare Table 1 of Ref. [8].
5 Note that in Ref. [8], the notation Σ is used for the field u of Eq. (2.6).
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Flavor & CP-violation constraints

1 Introduction
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particle, but a composite state arising from some strongly-coupled sector at TeV energies. This
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1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†
H is larger

than ⇠ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N expansion this implies
dH � 2, but this is not true in general. Nevertheless, bounds from conformal bootstrap [1] indicate that it is not
possible to have dH ⇠ 1 together with Dim[OHO†

H ] & 4. Being conservative, we will be considering here dH & 2.
2Alternative constructions have been recently proposed based on composite Twin Higgs in which the scale of

compositeness can be pushed up without introducing additional tuning in the Higgs potential [9]. It is also possible
to reduce some bounds by taking smaller g⇤, but this implies reducing the UV cuto↵ (see for example Ref. [10]).
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particle, but a composite state arising from some strongly-coupled sector at TeV energies. This
possibility has important implications for the theory of flavor. Contrary to models with an elemen-
tary Higgs in which the structure of Yukawa couplings can have its origin at very high energies, as
large as the Planck scale, in composite Higgs models the origin of flavor must be addressed at much
lower energies. This is because the Higgs is associated with a composite operator of the strong
sector OH whose dimension dH must be larger than one to avoid the hierarchy problem,1 implying
that f̄LOHfR has dimension larger than 4, that is to say that the Yukawa couplings are irrelevant
at low energies. Therefore, if f̄LOHfR are generated at very high energies, e.g. the Planck scale,
fermion masses will be too small at the electroweak scale.

Di↵erent approaches to flavor in composite Higgs models have been considered. The most
popular one is partial compositeness, in which the SM fermions fi get masses by mixing linearly
with an operator of the strong sector:
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⇠ TeV, which determines the mass-gap of the model, and at which the
Higgs emerges as a composite state, the fermion Yukawa couplings are generated with a pattern

Yf ⇠ g⇤✏fi✏fj , (1.2)

where 1 < g⇤ . 4⇡ characterizes the coupling in the strong sector. The appealing feature of
these scenarios, usually called “anarchic partial compositeness” [2], is the fact that the smallness of
the mixing ✏fi can simultaneously explain the smallness of the fermion masses and mixing angles.
Nevertheless, this approach also predicts flavor-violating higher-dimensional operators of order [3]
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where v ' 174 GeV. The operators in Eq. (1.3) lead for ⇤
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⇠ TeV to large contributions to
the electron and neutron electric dipole moment (EDM), µ ! e� and ✏K , above the experimental
bounds [4] (see also Refs. [5–8]), as shown in Table 3. Taking ⇤
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above the TeV is possible, but
at the price of fine-tuning the electroweak scale.2

An interesting alternative to the above approach is to consider the right-handed quarks to be
fully composite [11]. If the strong sector has an accidental SU(3) flavor symmetry and CP symmetry
(something not di�cult to envisage as it occurs in QCD), the flavor bounds can be easily satisfied.
Indeed, in this case the whole flavor structure comes only from the linear mixing of the left-handed
fermions with the strong sector that must then be proportional to the SM Yukawas Yf , as in

1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†
H is larger

than ⇠ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N expansion this implies
dH � 2, but this is not true in general. Nevertheless, bounds from conformal bootstrap [1] indicate that it is not
possible to have dH ⇠ 1 together with Dim[OHO†

H ] & 4. Being conservative, we will be considering here dH & 2.
2Alternative constructions have been recently proposed based on composite Twin Higgs in which the scale of

compositeness can be pushed up without introducing additional tuning in the Higgs potential [9]. It is also possible
to reduce some bounds by taking smaller g⇤, but this implies reducing the UV cuto↵ (see for example Ref. [10]).
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models with minimal flavor violation (MFV) [12]. Therefore flavor bounds are easily satisfied for
⇤
IR

⇠ TeV. Nevertheless, due to the compositeness of the right-handed quarks, 4-fermion contact
interactions, as for example,

g2⇤
⇤2

IR

(ūR�µuR)2 , (1.4)

lead to large deviation in dijets distributions, pp ! jj, at high energies, and sizable production
cross sections for composite resonances in the multi-TeV mass range are predicted [13–15]. All these
e↵ects have not been observed at the LHC and severely constrain these models. Similar results can
be found in variations of these ideas with other composite SM fermions [16].

Wrapping up, composite Higgs models must address the SM flavor structure at low energies,
giving then unequivocal predictions for flavor observables. The models proposed so far seem to
clash with some experimental data. Although extra flavor and CP symmetries could be imposed,
for example in the mixing terms ✏fi , to avoid certain experimental bounds, it is unclear how
these symmetries could emerge in the model. One needs to specify the dynamics of the model to
understand whether flavor and CP symmetries can arise accidentally at low energies.

Here we would like to put forward a deviation from the anarchic paradigm that can avoid
these severe flavor and CP-violating constraints. The idea is to assume that the operators Ofi of
Eq. (1.1), that mediate the mixing between the SM fermions and the Higgs, get an e↵ective mass
at some energy scale ⇤fi � ⇤

IR

⇠ TeV, and then decouple from the strong sector. This implies
that Yukawa-like couplings

L
bil

⇠ f̄iOHfj , (1.5)

are generated at scales larger than ⇤
IR

, avoiding in this way sizable contributions to flavor and
CP-violating observables. The hierarchies in the fermion spectrum of the SM and the small flavor
mixing angles could be now explained by the di↵erent scales ⇤fi instead of the small ✏fi . The larger
the ⇤fi , the smaller the Yukawa coupling for fi. Without imposing any extra symmetry in the
model, we will derive by simple power-counting which are the strongest flavor and CP-violating
constraints, independently of the details of the models. We find that top-mediated processes give the
largest contribution to flavor-violating observables. These are characterized by only two operators.
One operator generates the �F = 2 processes ✏K , �MBd

and �MBs at a level close to the present
experimental constraints for ⇤

IR

⇠ few TeV. The second operator leads to flavor-violating Z-
couplings, contributing simultaneously to K ! µ+µ�, ✏0/✏, B ! (X)`` and Z ! bb̄ with a size also
close to the experimental bounds. There are also important contributions arising from the scale at
which the charm and strange masses are generated, 107 � 108 GeV, leading also to sizable e↵ects
to ✏K , and forcing dH . 2. Contributions to the neutron EDM are dominated by the top EDM,
being not far from the present experimental bound. On the other hand, in the lepton sector we find
that the dominant contribution to the electron EDM comes at the two-loop level from Barr-Zee
type diagrams [17], and is around the experimental bound, while µ ! e� is found to be very small.
Therefore these scenarios provide realistic examples where the flavor and hierarchy problem can
be dynamically solved without contradicting the present experimental data, and which near future
experiments could be able to explore. Having proposed a di↵erent origin for fermion masses, we
also analyze the expected deviations in Higgs couplings.

Our approach to the small fermion masses is a reminiscent of the old Extended-Technicolor
idea [18], in which masses from Eq. (1.5) were generated from an extended gauge sector, or from
integrating heavy fermions [19]. Earlier attempts along these lines were considered recently in
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cross sections for composite resonances in the multi-TeV mass range are predicted [13–15]. All these
e↵ects have not been observed at the LHC and severely constrain these models. Similar results can
be found in variations of these ideas with other composite SM fermions [16].

Wrapping up, composite Higgs models must address the SM flavor structure at low energies,
giving then unequivocal predictions for flavor observables. The models proposed so far seem to
clash with some experimental data. Although extra flavor and CP symmetries could be imposed,
for example in the mixing terms ✏fi , to avoid certain experimental bounds, it is unclear how
these symmetries could emerge in the model. One needs to specify the dynamics of the model to
understand whether flavor and CP symmetries can arise accidentally at low energies.

Here we would like to put forward a deviation from the anarchic paradigm that can avoid
these severe flavor and CP-violating constraints. The idea is to assume that the operators Ofi of
Eq. (1.1), that mediate the mixing between the SM fermions and the Higgs, get an e↵ective mass
at some energy scale ⇤fi � ⇤
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⇠ TeV, and then decouple from the strong sector. This implies
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, avoiding in this way sizable contributions to flavor and
CP-violating observables. The hierarchies in the fermion spectrum of the SM and the small flavor
mixing angles could be now explained by the di↵erent scales ⇤fi instead of the small ✏fi . The larger
the ⇤fi , the smaller the Yukawa coupling for fi. Without imposing any extra symmetry in the
model, we will derive by simple power-counting which are the strongest flavor and CP-violating
constraints, independently of the details of the models. We find that top-mediated processes give the
largest contribution to flavor-violating observables. These are characterized by only two operators.
One operator generates the �F = 2 processes ✏K , �MBd

and �MBs at a level close to the present
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⇠ few TeV. The second operator leads to flavor-violating Z-
couplings, contributing simultaneously to K ! µ+µ�, ✏0/✏, B ! (X)`` and Z ! bb̄ with a size also
close to the experimental bounds. There are also important contributions arising from the scale at
which the charm and strange masses are generated, 107 � 108 GeV, leading also to sizable e↵ects
to ✏K , and forcing dH . 2. Contributions to the neutron EDM are dominated by the top EDM,
being not far from the present experimental bound. On the other hand, in the lepton sector we find
that the dominant contribution to the electron EDM comes at the two-loop level from Barr-Zee
type diagrams [17], and is around the experimental bound, while µ ! e� is found to be very small.
Therefore these scenarios provide realistic examples where the flavor and hierarchy problem can
be dynamically solved without contradicting the present experimental data, and which near future
experiments could be able to explore. Having proposed a di↵erent origin for fermion masses, we
also analyze the expected deviations in Higgs couplings.

Our approach to the small fermion masses is a reminiscent of the old Extended-Technicolor
idea [18], in which masses from Eq. (1.5) were generated from an extended gauge sector, or from
integrating heavy fermions [19]. Earlier attempts along these lines were considered recently in
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1 Introduction

An attractive solution to the hierarchy problem is to require that the Higgs is not an elementary
particle, but a composite state arising from some strongly-coupled sector at TeV energies. This
possibility has important implications for the theory of flavor. Contrary to models with an elemen-
tary Higgs in which the structure of Yukawa couplings can have its origin at very high energies, as
large as the Planck scale, in composite Higgs models the origin of flavor must be addressed at much
lower energies. This is because the Higgs is associated with a composite operator of the strong
sector OH whose dimension dH must be larger than one to avoid the hierarchy problem,1 implying
that f̄LOHfR has dimension larger than 4, that is to say that the Yukawa couplings are irrelevant
at low energies. Therefore, if f̄LOHfR are generated at very high energies, e.g. the Planck scale,
fermion masses will be too small at the electroweak scale.

Di↵erent approaches to flavor in composite Higgs models have been considered. The most
popular one is partial compositeness, in which the SM fermions fi get masses by mixing linearly
with an operator of the strong sector:
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= ✏fi f̄i Ofi . (1.1)

At the strong scale ⇤
IR

⇠ TeV, which determines the mass-gap of the model, and at which the
Higgs emerges as a composite state, the fermion Yukawa couplings are generated with a pattern

Yf ⇠ g⇤✏fi✏fj , (1.2)

where 1 < g⇤ . 4⇡ characterizes the coupling in the strong sector. The appealing feature of
these scenarios, usually called “anarchic partial compositeness” [2], is the fact that the smallness of
the mixing ✏fi can simultaneously explain the smallness of the fermion masses and mixing angles.
Nevertheless, this approach also predicts flavor-violating higher-dimensional operators of order [3]
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where v ' 174 GeV. The operators in Eq. (1.3) lead for ⇤
IR

⇠ TeV to large contributions to
the electron and neutron electric dipole moment (EDM), µ ! e� and ✏K , above the experimental
bounds [4] (see also Refs. [5–8]), as shown in Table 3. Taking ⇤

IR

above the TeV is possible, but
at the price of fine-tuning the electroweak scale.2

An interesting alternative to the above approach is to consider the right-handed quarks to be
fully composite [11]. If the strong sector has an accidental SU(3) flavor symmetry and CP symmetry
(something not di�cult to envisage as it occurs in QCD), the flavor bounds can be easily satisfied.
Indeed, in this case the whole flavor structure comes only from the linear mixing of the left-handed
fermions with the strong sector that must then be proportional to the SM Yukawas Yf , as in

1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†
H is larger

than ⇠ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N expansion this implies
dH � 2, but this is not true in general. Nevertheless, bounds from conformal bootstrap [1] indicate that it is not
possible to have dH ⇠ 1 together with Dim[OHO†

H ] & 4. Being conservative, we will be considering here dH & 2.
2Alternative constructions have been recently proposed based on composite Twin Higgs in which the scale of

compositeness can be pushed up without introducing additional tuning in the Higgs potential [9]. It is also possible
to reduce some bounds by taking smaller g⇤, but this implies reducing the UV cuto↵ (see for example Ref. [10]).
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1 Introduction

An attractive solution to the hierarchy problem is to require that the Higgs is not an elementary
particle, but a composite state arising from some strongly-coupled sector at TeV energies. This
possibility has important implications for the theory of flavor. Contrary to models with an elemen-
tary Higgs in which the structure of Yukawa couplings can have its origin at very high energies, as
large as the Planck scale, in composite Higgs models the origin of flavor must be addressed at much
lower energies. This is because the Higgs is associated with a composite operator of the strong
sector OH whose dimension dH must be larger than one to avoid the hierarchy problem,1 implying
that f̄LOHfR has dimension larger than 4, that is to say that the Yukawa couplings are irrelevant
at low energies. Therefore, if f̄LOHfR are generated at very high energies, e.g. the Planck scale,
fermion masses will be too small at the electroweak scale.

Di↵erent approaches to flavor in composite Higgs models have been considered. The most
popular one is partial compositeness, in which the SM fermions fi get masses by mixing linearly
with an operator of the strong sector:
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At the strong scale ⇤
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⇠ TeV, which determines the mass-gap of the model, and at which the
Higgs emerges as a composite state, the fermion Yukawa couplings are generated with a pattern

Yf ⇠ g⇤✏fi✏fj , (1.2)

where 1 < g⇤ . 4⇡ characterizes the coupling in the strong sector. The appealing feature of
these scenarios, usually called “anarchic partial compositeness” [2], is the fact that the smallness of
the mixing ✏fi can simultaneously explain the smallness of the fermion masses and mixing angles.
Nevertheless, this approach also predicts flavor-violating higher-dimensional operators of order [3]
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where v ' 174 GeV. The operators in Eq. (1.3) lead for ⇤
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⇠ TeV to large contributions to
the electron and neutron electric dipole moment (EDM), µ ! e� and ✏K , above the experimental
bounds [4] (see also Refs. [5–8]), as shown in Table 3. Taking ⇤

IR

above the TeV is possible, but
at the price of fine-tuning the electroweak scale.2

An interesting alternative to the above approach is to consider the right-handed quarks to be
fully composite [11]. If the strong sector has an accidental SU(3) flavor symmetry and CP symmetry
(something not di�cult to envisage as it occurs in QCD), the flavor bounds can be easily satisfied.
Indeed, in this case the whole flavor structure comes only from the linear mixing of the left-handed
fermions with the strong sector that must then be proportional to the SM Yukawas Yf , as in

1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†
H is larger

than ⇠ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N expansion this implies
dH � 2, but this is not true in general. Nevertheless, bounds from conformal bootstrap [1] indicate that it is not
possible to have dH ⇠ 1 together with Dim[OHO†

H ] & 4. Being conservative, we will be considering here dH & 2.
2Alternative constructions have been recently proposed based on composite Twin Higgs in which the scale of

compositeness can be pushed up without introducing additional tuning in the Higgs potential [9]. It is also possible
to reduce some bounds by taking smaller g⇤, but this implies reducing the UV cuto↵ (see for example Ref. [10]).
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models with minimal flavor violation (MFV) [12]. Therefore flavor bounds are easily satisfied for
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⇠ TeV. Nevertheless, due to the compositeness of the right-handed quarks, 4-fermion contact
interactions, as for example,
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lead to large deviation in dijets distributions, pp ! jj, at high energies, and sizable production
cross sections for composite resonances in the multi-TeV mass range are predicted [13–15]. All these
e↵ects have not been observed at the LHC and severely constrain these models. Similar results can
be found in variations of these ideas with other composite SM fermions [16].

Wrapping up, composite Higgs models must address the SM flavor structure at low energies,
giving then unequivocal predictions for flavor observables. The models proposed so far seem to
clash with some experimental data. Although extra flavor and CP symmetries could be imposed,
for example in the mixing terms ✏fi , to avoid certain experimental bounds, it is unclear how
these symmetries could emerge in the model. One needs to specify the dynamics of the model to
understand whether flavor and CP symmetries can arise accidentally at low energies.

Here we would like to put forward a deviation from the anarchic paradigm that can avoid
these severe flavor and CP-violating constraints. The idea is to assume that the operators Ofi of
Eq. (1.1), that mediate the mixing between the SM fermions and the Higgs, get an e↵ective mass
at some energy scale ⇤fi � ⇤

IR

⇠ TeV, and then decouple from the strong sector. This implies
that Yukawa-like couplings
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are generated at scales larger than ⇤
IR

, avoiding in this way sizable contributions to flavor and
CP-violating observables. The hierarchies in the fermion spectrum of the SM and the small flavor
mixing angles could be now explained by the di↵erent scales ⇤fi instead of the small ✏fi . The larger
the ⇤fi , the smaller the Yukawa coupling for fi. Without imposing any extra symmetry in the
model, we will derive by simple power-counting which are the strongest flavor and CP-violating
constraints, independently of the details of the models. We find that top-mediated processes give the
largest contribution to flavor-violating observables. These are characterized by only two operators.
One operator generates the �F = 2 processes ✏K , �MBd

and �MBs at a level close to the present
experimental constraints for ⇤

IR

⇠ few TeV. The second operator leads to flavor-violating Z-
couplings, contributing simultaneously to K ! µ+µ�, ✏0/✏, B ! (X)`` and Z ! bb̄ with a size also
close to the experimental bounds. There are also important contributions arising from the scale at
which the charm and strange masses are generated, 107 � 108 GeV, leading also to sizable e↵ects
to ✏K , and forcing dH . 2. Contributions to the neutron EDM are dominated by the top EDM,
being not far from the present experimental bound. On the other hand, in the lepton sector we find
that the dominant contribution to the electron EDM comes at the two-loop level from Barr-Zee
type diagrams [17], and is around the experimental bound, while µ ! e� is found to be very small.
Therefore these scenarios provide realistic examples where the flavor and hierarchy problem can
be dynamically solved without contradicting the present experimental data, and which near future
experiments could be able to explore. Having proposed a di↵erent origin for fermion masses, we
also analyze the expected deviations in Higgs couplings.

Our approach to the small fermion masses is a reminiscent of the old Extended-Technicolor
idea [18], in which masses from Eq. (1.5) were generated from an extended gauge sector, or from
integrating heavy fermions [19]. Earlier attempts along these lines were considered recently in
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The larger the scale of decoupling, 
                                                                   the smaller the fermion mass!

⤷ Operator of the strong sector that at ΛIR 
projects into the Higgs:

Ofi , which are the portals of the SM fermions to the strong sector, decouple at some scale ⇤fi ,
generating the Yukawa terms f̄LOHfR at that scale instead of at ⇤

IR

as in the anarchic case. The
decoupling of the operator Ofi can be due to the fact that some of the constituents of Ofi get a mass
⇠ ⇤fi , or that a dynamically generated mass-gap makes heavy all composite states created by Ofi

(those | i with h0|Ofi | i 6= 0). Using the AdS/CFT correspondence, we can easily visualize this
type of scenarios by warped extra-dimensional models with several branes, as the example shown
in Fig. 5 of Appendix A. In what follows we will estimate the flavor structure of these scenarios
without restricting to any specific UV realization.

The scale at which the Yukawa coupling for the SM fermion f = u, d, e, ... is generated is
determined by the scale ⇤f at which either OfR or OfL decouple from the strong sector. We choose
these scales following Fig. 1. This is our dynamical assumption. No further symmetries will be
imposed. Other options could also be possible, and we will consider later more economical models
with fewer scales ⇤f . Under the assumption of Fig. 1, the Yukawa structure will be the following.
Let us consider first the down-type quark sector. At the lowest scale ⇤b, we have only one pair of
operators OQL3 and ObR , to which only one linear combination of SM left-handed and right-handed
quarks can respectively mix with. We name these linear combinations the 3rd family left-handed
quark, QL3, and right-handed bottom, bR:

L(3)

lin

= ✏(3)bL
Q̄L3 OQL3 + ✏(3)bR

b̄R ObR . (2.1)

Below ⇤b, after integrating out ObR , the following Yukawa-like operator is expected to be generated

L(3)

bil

=
1

⇤dH�1

b

(✏(3)bL
Q̄L3)OH(✏(3)bR

bR) , (2.2)

where OH corresponds to the lowest-dimensional operator that at ⇤
IR

projects into the Higgs,
h0|OH |Hi 6= 0, and dH is its energy dimension. At a larger scale ⇤s � ⇤b, we have another pair
of operators OQL2 and OsR present, coupled to a di↵erent linear combination of SM fermions. By
an SU(3) rotation that does not a↵ect Eq. (2.2) we can always go to the basis where this linear
combination contains only two quarks, QL3 and QL2 (this latter is identified with the second family
left-handed quark), and similarly for the right-handed sector, bR and sR:

L(2)

lin

= (✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2) OQL2 + (✏(2)bR
bR + ✏(2)sR

sR) OsR , (2.3)

that below ⇤s, after integrating OsR , leads to

L(2)

bil

=
1

⇤dH�1

s

(✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2)OH(✏(2)bR
bR + ✏(2)sR

sR) . (2.4)

Finally, at ⇤d, after integrating OQL1 and OdR , we expect the most general form

L(1)

bil

=
1

⇤dH�1

d

(✏(1)bL
Q̄L3 + ✏(1)sL

Q̄L2 + ✏(1)dL
Q̄L1)OH(✏(1)bR

bR + ✏(1)sR
sR + ✏(1)dR

dR) . (2.5)

Now, at ⇤
IR

we identify the matrix elements of OH with those of the SM Higgs H, which implies
the replacement 3

OH ! g⇤⇤
dH�1

IR

H , (2.6)

3For simplicity we are assuming a single coupling g⇤, but in principle the couplings at the scales ⇤f could be
di↵erent.
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Figure 1: Energy scale at which the fermionic operators Ofi decouple from the strong sector.

Refs. [20] for composite Higgs models. In these models, however, Yukawa-like couplings were
generated at a single energy scale, and the light quark families were connected by potentially large
mixing angles. This leads to additional sizable new-physics e↵ects and to bounds typically more
stringent than the ones we find here. Furthermore, the lepton sector, where the experimental
bounds are the most di�cult to satisfy, was not considered.

The attempt of this work is to show that flavor bounds can be satisfied in composite Higgs
models without the need of imposing flavor symmetries. We do not provide an explanation for the
hierarchies in the fermion masses, as these are just traded for the scales ⇤fi . Nevertheless, it is not
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We would like to close this section by stressing that in most scenarios beyond the SM (BSM)
that address the hierarchy problem, including supersymmetry, one generically finds large EDMs.
This is because fermions have linear couplings to BSM fields. For example, in supersymmetric
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way to avoid these large contributions is to restrict the SM fermions to have bilinear couplings
to the BSM states, as the scenarios proposed here. In this case the dominant contributions to
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II. FERRETTI’S MODEL
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We use capital letters for the SU(4) hypercolor indices, with lower indices for the fundamen-
tal irrep, and upper indices for the anti-fundamental irrep. Several lower or upper indices
will always be fully antisymmetrized. A Dirac fermion ψ in the fundamental irrep can be
written in terms of two right-handed Weyl fermions, Ψ in the fundamental irrep and Ψ̃ in
the anti-fundamental, as
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)
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We suppress spinor indices. C is the charge-conjugation matrix, ϵ = iσ2 is the two-
dimensional ϵ-tensor acting on the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work in euclidean space, choosing
our Dirac matrices to be hermitian and using the chiral representation, see App. A.

The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)
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hard to imagine a possible mechanism that explains the largeness of ⇤fi , thus providing a reason
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where the ⇤fi could be generated from dimensional transmutation, explaining in this way the size
of the fermion masses as a function of O(1) couplings. We will not pursue further the origin of ⇤fi ,
but assume that they have the correct values to fit the SM fermion masses.

We would like to close this section by stressing that in most scenarios beyond the SM (BSM)
that address the hierarchy problem, including supersymmetry, one generically finds large EDMs.
This is because fermions have linear couplings to BSM fields. For example, in supersymmetric
models fermions couple linearly to sfermions and gauginos, leading generically to sizable EDMs at
the one-loop level. Therefore, unless ad hoc symmetries are imposed in the BSM sector, the only
way to avoid these large contributions is to restrict the SM fermions to have bilinear couplings
to the BSM states, as the scenarios proposed here. In this case the dominant contributions to
EDMs arise at the two-loop level (see diagram Fig. 3) that can be accommodated just below the
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Ofi , which are the portals of the SM fermions to the strong sector, decouple at some scale ⇤fi ,
generating the Yukawa terms f̄LOHfR at that scale instead of at ⇤

IR

as in the anarchic case. The
decoupling of the operator Ofi can be due to the fact that some of the constituents of Ofi get a mass
⇠ ⇤fi , or that a dynamically generated mass-gap makes heavy all composite states created by Ofi

(those | i with h0|Ofi | i 6= 0). Using the AdS/CFT correspondence, we can easily visualize this
type of scenarios by warped extra-dimensional models with several branes, as the example shown
in Fig. 5 of Appendix A. In what follows we will estimate the flavor structure of these scenarios
without restricting to any specific UV realization.

The scale at which the Yukawa coupling for the SM fermion f = u, d, e, ... is generated is
determined by the scale ⇤f at which either OfR or OfL decouple from the strong sector. We choose
these scales following Fig. 1. This is our dynamical assumption. No further symmetries will be
imposed. Other options could also be possible, and we will consider later more economical models
with fewer scales ⇤f . Under the assumption of Fig. 1, the Yukawa structure will be the following.
Let us consider first the down-type quark sector. At the lowest scale ⇤b, we have only one pair of
operators OQL3 and ObR , to which only one linear combination of SM left-handed and right-handed
quarks can respectively mix with. We name these linear combinations the 3rd family left-handed
quark, QL3, and right-handed bottom, bR:

L(3)

lin

= ✏(3)bL
Q̄L3 OQL3 + ✏(3)bR

b̄R ObR . (2.1)

Below ⇤b, after integrating out ObR , the following Yukawa-like operator is expected to be generated

L(3)

bil

=
1

⇤dH�1

b

(✏(3)bL
Q̄L3)OH(✏(3)bR

bR) , (2.2)

where OH corresponds to the lowest-dimensional operator that at ⇤
IR

projects into the Higgs,
h0|OH |Hi 6= 0, and dH is its energy dimension. At a larger scale ⇤s � ⇤b, we have another pair
of operators OQL2 and OsR present, coupled to a di↵erent linear combination of SM fermions. By
an SU(3) rotation that does not a↵ect Eq. (2.2) we can always go to the basis where this linear
combination contains only two quarks, QL3 and QL2 (this latter is identified with the second family
left-handed quark), and similarly for the right-handed sector, bR and sR:

L(2)

lin

= (✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2) OQL2 + (✏(2)bR
bR + ✏(2)sR

sR) OsR , (2.3)

that below ⇤s, after integrating OsR , leads to

L(2)

bil

=
1

⇤dH�1

s

(✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2)OH(✏(2)bR
bR + ✏(2)sR

sR) . (2.4)

Finally, at ⇤d, after integrating OQL1 and OdR , we expect the most general form

L(1)

bil

=
1

⇤dH�1

d

(✏(1)bL
Q̄L3 + ✏(1)sL

Q̄L2 + ✏(1)dL
Q̄L1)OH(✏(1)bR

bR + ✏(1)sR
sR + ✏(1)dR

dR) . (2.5)

Now, at ⇤
IR

we identify the matrix elements of OH with those of the SM Higgs H, which implies
the replacement 3

OH ! g⇤⇤
dH�1

IR

H , (2.6)

3For simplicity we are assuming a single coupling g⇤, but in principle the couplings at the scales ⇤f could be
di↵erent.
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below Λb:

below ΛIR:

in Eq. (2.2), Eq. (2.4) and Eq. (2.5). Then, for the down sector, we have the following “onion”
Yukawa structure

Y
down

= g⇤

0

BB@

✏(1)dL
✏(1)dR

✏(1)dL
✏(1)sR ✏(1)dL

✏(1)bR

✏(1)sL ✏(1)dR

✏(1)bL
✏(1)dR

1

CCA

✓
⇤
IR

⇤d

◆dH�1

+ g⇤

0

B@

0 0 0

0 ✏(2)sL ✏(2)sR ✏(2)sL ✏(2)bR

0 ✏(2)bL
✏(2)sR

1

CA
✓

⇤
IR

⇤s

◆dH�1

+ g⇤

0

B@

0 0 0

0 0 0

0 0 ✏(3)bL
✏(3)bR

1

CA
✓

⇤
IR

⇤b

◆dH�1

, (2.7)

where the entries that are not shown are terms that can be neglected in the limit in which we take
⇤d � ⇤s � ⇤b. Eq. (2.7) leads to the approximate down Yukawa matrix

Y
down

'

0

B@
Yd ↵ds

R Yd ↵db
R Yd

↵ds
L Yd Ys ↵sb

RYs

↵db
L Yd ↵sb

L Ys Yb

1

CA , (2.8)

where

Yf ⌘ g⇤✏
(i)
fLi

✏(i)fRi

✓
⇤
IR

⇤f

◆dH�1

, (2.9)

are approximately the SM Yukawas Yf ' mf/v. The ↵L and ↵R in Eq. (2.8) are ratios of epsilons:

↵ds
L ⇠ ✏(1)sL

/✏(1)dL
, ↵db

L ⇠ ✏(1)bL
/✏(1)dL

, ↵sb
L ⇠ ✏(2)bL

/✏(2)sL
, (2.10)

where L ! R gives us the ↵R. Taking the largest values ✏(i)fLi,Ri
⇠ 1 and g⇤ ⇠ 4⇡, we can obtain

from Eq. (2.9) the largest values of ⇤f that allow to reproduce the SM fermion masses as a function
of dH , that we show in Fig. 2. For the particular case dH = 2, we have

⇤f ⇠ g⇤
Yf

⇤
IR

, (2.11)

that, for ⇤
IR

⇠ 3 TeV and g⇤ ⇠ 4⇡, gives

⇤d ⇠ 3 ⇥ 109 GeV , ⇤s ⇠ 108 GeV , ⇤b ⇠ 3 ⇥ 106 GeV . (2.12)

Eq. (2.8) can be diagonalized by unitary matrices whose structure is approximately

V down

L ⇠

0

B@
1 ↵ds

R
Yd
Ys

↵db
R

Yd
Yb

1 ↵sb
R

Ys
Yb

1

1

CA , V down

R ⇠

0

B@
1 ↵ds

L
Yd
Ys

↵db
L

Yd
Yb

1 ↵sb
L

Ys
Yb

1

1

CA , (2.13)

where we omit some ij-entries as they are of similar size as their transpose ji-entries.
We can proceed in a similar way for the up sector. The large Yukawa coupling of the top implies

that this must arise at ⇤
IR

as in the anarchic case, so we associate ⇤t ⇠ ⇤
IR

. The Yukawa matrix
is expected to have the structure

Y
up

'

0

B@
Yu ↵uc

R Yu ↵ut
R Yu

↵uc
L Yu Yc ↵ct

RYc

↵ut
L Yu ↵ct

LYc Yt

1

CA . (2.14)
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where we omit some ij-entries as they are of similar size as their transpose ji-entries.
We can proceed in a similar way for the up sector. The large Yukawa coupling of the top implies

that this must arise at ⇤
IR

as in the anarchic case, so we associate ⇤t ⇠ ⇤
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. The Yukawa matrix
is expected to have the structure
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CA . (2.14)

6

Down-quark sector

⇤d

⇤s

ObR

OsR

Decoupling  
energy scale Operator

⇤b

OdR ,OQL1

⇤IR

⇤u

⇤d

⇤s

⇤c

⇤t ⇠ ⇤IR

OuR

ObR

OsR

Decoupling scale Operator

⇤b

OcR , OQL2

OtR , OQL3

OdR , OQL1

Figure 1: Energy scale at which the fermionic operators Ofi decouple from the strong sector.

Refs. [20] for composite Higgs models. In these models, however, Yukawa-like couplings were
generated at a single energy scale, and the light quark families were connected by potentially large
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bounds are the most di�cult to satisfy, was not considered.

The attempt of this work is to show that flavor bounds can be satisfied in composite Higgs
models without the need of imposing flavor symmetries. We do not provide an explanation for the
hierarchies in the fermion masses, as these are just traded for the scales ⇤fi . Nevertheless, it is not
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where the ⇤fi could be generated from dimensional transmutation, explaining in this way the size
of the fermion masses as a function of O(1) couplings. We will not pursue further the origin of ⇤fi ,
but assume that they have the correct values to fit the SM fermion masses.

We would like to close this section by stressing that in most scenarios beyond the SM (BSM)
that address the hierarchy problem, including supersymmetry, one generically finds large EDMs.
This is because fermions have linear couplings to BSM fields. For example, in supersymmetric
models fermions couple linearly to sfermions and gauginos, leading generically to sizable EDMs at
the one-loop level. Therefore, unless ad hoc symmetries are imposed in the BSM sector, the only
way to avoid these large contributions is to restrict the SM fermions to have bilinear couplings
to the BSM states, as the scenarios proposed here. In this case the dominant contributions to
EDMs arise at the two-loop level (see diagram Fig. 3) that can be accommodated just below the
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below Λs:

below ΛIR:

Ofi , which are the portals of the SM fermions to the strong sector, decouple at some scale ⇤fi ,
generating the Yukawa terms f̄LOHfR at that scale instead of at ⇤

IR

as in the anarchic case. The
decoupling of the operator Ofi can be due to the fact that some of the constituents of Ofi get a mass
⇠ ⇤fi , or that a dynamically generated mass-gap makes heavy all composite states created by Ofi

(those | i with h0|Ofi | i 6= 0). Using the AdS/CFT correspondence, we can easily visualize this
type of scenarios by warped extra-dimensional models with several branes, as the example shown
in Fig. 5 of Appendix A. In what follows we will estimate the flavor structure of these scenarios
without restricting to any specific UV realization.

The scale at which the Yukawa coupling for the SM fermion f = u, d, e, ... is generated is
determined by the scale ⇤f at which either OfR or OfL decouple from the strong sector. We choose
these scales following Fig. 1. This is our dynamical assumption. No further symmetries will be
imposed. Other options could also be possible, and we will consider later more economical models
with fewer scales ⇤f . Under the assumption of Fig. 1, the Yukawa structure will be the following.
Let us consider first the down-type quark sector. At the lowest scale ⇤b, we have only one pair of
operators OQL3 and ObR , to which only one linear combination of SM left-handed and right-handed
quarks can respectively mix with. We name these linear combinations the 3rd family left-handed
quark, QL3, and right-handed bottom, bR:

L(3)

lin

= ✏(3)bL
Q̄L3 OQL3 + ✏(3)bR

b̄R ObR . (2.1)

Below ⇤b, after integrating out ObR , the following Yukawa-like operator is expected to be generated

L(3)

bil

=
1

⇤dH�1

b

(✏(3)bL
Q̄L3)OH(✏(3)bR

bR) , (2.2)

where OH corresponds to the lowest-dimensional operator that at ⇤
IR

projects into the Higgs,
h0|OH |Hi 6= 0, and dH is its energy dimension. At a larger scale ⇤s � ⇤b, we have another pair
of operators OQL2 and OsR present, coupled to a di↵erent linear combination of SM fermions. By
an SU(3) rotation that does not a↵ect Eq. (2.2) we can always go to the basis where this linear
combination contains only two quarks, QL3 and QL2 (this latter is identified with the second family
left-handed quark), and similarly for the right-handed sector, bR and sR:

L(2)

lin

= (✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2) OQL2 + (✏(2)bR
bR + ✏(2)sR

sR) OsR , (2.3)

that below ⇤s, after integrating OsR , leads to

L(2)

bil

=
1

⇤dH�1

s

(✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2)OH(✏(2)bR
bR + ✏(2)sR

sR) . (2.4)

Finally, at ⇤d, after integrating OQL1 and OdR , we expect the most general form

L(1)

bil

=
1

⇤dH�1

d

(✏(1)bL
Q̄L3 + ✏(1)sL

Q̄L2 + ✏(1)dL
Q̄L1)OH(✏(1)bR

bR + ✏(1)sR
sR + ✏(1)dR

dR) . (2.5)

Now, at ⇤
IR

we identify the matrix elements of OH with those of the SM Higgs H, which implies
the replacement 3

OH ! g⇤⇤
dH�1

IR

H , (2.6)

3For simplicity we are assuming a single coupling g⇤, but in principle the couplings at the scales ⇤f could be
di↵erent.
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in Eq. (2.2), Eq. (2.4) and Eq. (2.5). Then, for the down sector, we have the following “onion”
Yukawa structure

Y
down

= g⇤

0

BB@

✏(1)dL
✏(1)dR

✏(1)dL
✏(1)sR ✏(1)dL

✏(1)bR

✏(1)sL ✏(1)dR

✏(1)bL
✏(1)dR

1

CCA

✓
⇤
IR

⇤d

◆dH�1

+ g⇤

0

B@

0 0 0

0 ✏(2)sL ✏(2)sR ✏(2)sL ✏(2)bR

0 ✏(2)bL
✏(2)sR

1

CA
✓

⇤
IR

⇤s

◆dH�1

+ g⇤

0

B@

0 0 0

0 0 0

0 0 ✏(3)bL
✏(3)bR

1

CA
✓

⇤
IR

⇤b

◆dH�1

, (2.7)

where the entries that are not shown are terms that can be neglected in the limit in which we take
⇤d � ⇤s � ⇤b. Eq. (2.7) leads to the approximate down Yukawa matrix

Y
down

'

0

B@
Yd ↵ds

R Yd ↵db
R Yd

↵ds
L Yd Ys ↵sb

RYs

↵db
L Yd ↵sb

L Ys Yb

1

CA , (2.8)

where

Yf ⌘ g⇤✏
(i)
fLi

✏(i)fRi

✓
⇤
IR

⇤f

◆dH�1

, (2.9)

are approximately the SM Yukawas Yf ' mf/v. The ↵L and ↵R in Eq. (2.8) are ratios of epsilons:

↵ds
L ⇠ ✏(1)sL

/✏(1)dL
, ↵db

L ⇠ ✏(1)bL
/✏(1)dL

, ↵sb
L ⇠ ✏(2)bL

/✏(2)sL
, (2.10)

where L ! R gives us the ↵R. Taking the largest values ✏(i)fLi,Ri
⇠ 1 and g⇤ ⇠ 4⇡, we can obtain

from Eq. (2.9) the largest values of ⇤f that allow to reproduce the SM fermion masses as a function
of dH , that we show in Fig. 2. For the particular case dH = 2, we have

⇤f ⇠ g⇤
Yf

⇤
IR

, (2.11)

that, for ⇤
IR

⇠ 3 TeV and g⇤ ⇠ 4⇡, gives

⇤d ⇠ 3 ⇥ 109 GeV , ⇤s ⇠ 108 GeV , ⇤b ⇠ 3 ⇥ 106 GeV . (2.12)

Eq. (2.8) can be diagonalized by unitary matrices whose structure is approximately

V down

L ⇠

0

B@
1 ↵ds

R
Yd
Ys

↵db
R

Yd
Yb

1 ↵sb
R

Ys
Yb

1

1

CA , V down
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0

B@
1 ↵ds

L
Yd
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↵db
L

Yd
Yb

1 ↵sb
L
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Yb

1

1

CA , (2.13)

where we omit some ij-entries as they are of similar size as their transpose ji-entries.
We can proceed in a similar way for the up sector. The large Yukawa coupling of the top implies

that this must arise at ⇤
IR

as in the anarchic case, so we associate ⇤t ⇠ ⇤
IR

. The Yukawa matrix
is expected to have the structure

Y
up

'

0

B@
Yu ↵uc

R Yu ↵ut
R Yu

↵uc
L Yu Yc ↵ct

RYc

↵ut
L Yu ↵ct

LYc Yt

1

CA . (2.14)
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Down-quark sector
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Refs. [20] for composite Higgs models. In these models, however, Yukawa-like couplings were
generated at a single energy scale, and the light quark families were connected by potentially large
mixing angles. This leads to additional sizable new-physics e↵ects and to bounds typically more
stringent than the ones we find here. Furthermore, the lepton sector, where the experimental
bounds are the most di�cult to satisfy, was not considered.

The attempt of this work is to show that flavor bounds can be satisfied in composite Higgs
models without the need of imposing flavor symmetries. We do not provide an explanation for the
hierarchies in the fermion masses, as these are just traded for the scales ⇤fi . Nevertheless, it is not
hard to imagine a possible mechanism that explains the largeness of ⇤fi , thus providing a reason
for the smallness of the light-generations masses. For example, it is possible to envisage scenarios
where the ⇤fi could be generated from dimensional transmutation, explaining in this way the size
of the fermion masses as a function of O(1) couplings. We will not pursue further the origin of ⇤fi ,
but assume that they have the correct values to fit the SM fermion masses.

We would like to close this section by stressing that in most scenarios beyond the SM (BSM)
that address the hierarchy problem, including supersymmetry, one generically finds large EDMs.
This is because fermions have linear couplings to BSM fields. For example, in supersymmetric
models fermions couple linearly to sfermions and gauginos, leading generically to sizable EDMs at
the one-loop level. Therefore, unless ad hoc symmetries are imposed in the BSM sector, the only
way to avoid these large contributions is to restrict the SM fermions to have bilinear couplings
to the BSM states, as the scenarios proposed here. In this case the dominant contributions to
EDMs arise at the two-loop level (see diagram Fig. 3) that can be accommodated just below the
experimental constraint.

2 Multiple flavor scales in composite Higgs models

Our framework for flavor shares many features of previous composite Higgs models with partly-
composite fermions via Eq. (1.1). The main crucial di↵erence is the assumption that the operators
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where the entries that are not shown are terms that can be neglected in the limit in which we take
⇤d � ⇤s � ⇤b. Eq. (2.7) leads to the approximate down Yukawa matrix

Y
down

'

0

B@
Yd ↵ds

R Yd ↵db
R Yd

↵ds
L Yd Ys ↵sb

RYs

↵db
L Yd ↵sb

L Ys Yb

1

CA , (2.8)

where

Yf ⌘ g⇤✏
(i)
fLi

✏(i)fRi

✓
⇤
IR

⇤f

◆dH�1

, (2.9)

are approximately the SM Yukawas Yf ' mf/v. The ↵L and ↵R in Eq. (2.8) are ratios of epsilons:
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where L ! R gives us the ↵R. Taking the largest values ✏(i)fLi,Ri
⇠ 1 and g⇤ ⇠ 4⇡, we can obtain

from Eq. (2.9) the largest values of ⇤f that allow to reproduce the SM fermion masses as a function
of dH , that we show in Fig. 2. For the particular case dH = 2, we have

⇤f ⇠ g⇤
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, (2.11)

that, for ⇤
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⇠ 3 TeV and g⇤ ⇠ 4⇡, gives

⇤d ⇠ 3 ⇥ 109 GeV , ⇤s ⇠ 108 GeV , ⇤b ⇠ 3 ⇥ 106 GeV . (2.12)
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where we omit some ij-entries as they are of similar size as their transpose ji-entries.
We can proceed in a similar way for the up sector. The large Yukawa coupling of the top implies

that this must arise at ⇤
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as in the anarchic case, so we associate ⇤t ⇠ ⇤
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● Smaller Yukawas for large decoupling scale!

● Mixing angles suppressed by Yukawas:  𝛉ij~Yi/Yj

CKM mostly the rotation in the down-quark sector!

Arising flavor structure
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⇤d � ⇤s � ⇤b. Eq. (2.7) leads to the approximate down Yukawa matrix

Y
down

'

0

B@
Yd ↵ds

R Yd ↵db
R Yd

↵ds
L Yd Ys ↵sb

RYs

↵db
L Yd ↵sb

L Ys Yb

1

CA , (2.8)

where

Yf ⌘ g⇤✏
(i)
fLi

✏(i)fRi

✓
⇤
IR

⇤f

◆dH�1

, (2.9)

are approximately the SM Yukawas Yf ' mf/v. The ↵L and ↵R in Eq. (2.8) are ratios of epsilons:

↵ds
L ⇠ ✏(1)sL

/✏(1)dL
, ↵db

L ⇠ ✏(1)bL
/✏(1)dL

, ↵sb
L ⇠ ✏(2)bL

/✏(2)sL
, (2.10)

where L ! R gives us the ↵R. Taking the largest values ✏(i)fLi,Ri
⇠ 1 and g⇤ ⇠ 4⇡, we can obtain

from Eq. (2.9) the largest values of ⇤f that allow to reproduce the SM fermion masses as a function
of dH , that we show in Fig. 2. For the particular case dH = 2, we have

⇤f ⇠ g⇤
Yf

⇤
IR

, (2.11)

that, for ⇤
IR

⇠ 3 TeV and g⇤ ⇠ 4⇡, gives

⇤d ⇠ 3 ⇥ 109 GeV , ⇤s ⇠ 108 GeV , ⇤b ⇠ 3 ⇥ 106 GeV . (2.12)

Eq. (2.8) can be diagonalized by unitary matrices whose structure is approximately

V down

L ⇠

0

B@
1 ↵ds

R
Yd
Ys

↵db
R

Yd
Yb

1 ↵sb
R

Ys
Yb

1

1

CA , V down

R ⇠

0

B@
1 ↵ds

L
Yd
Ys

↵db
L

Yd
Yb

1 ↵sb
L

Ys
Yb

1

1

CA , (2.13)

where we omit some ij-entries as they are of similar size as their transpose ji-entries.
We can proceed in a similar way for the up sector. The large Yukawa coupling of the top implies

that this must arise at ⇤
IR

as in the anarchic case, so we associate ⇤t ⇠ ⇤
IR

. The Yukawa matrix
is expected to have the structure

Y
up

'

0

B@
Yu ↵uc

R Yu ↵ut
R Yu

↵uc
L Yu Yc ↵ct

RYc

↵ut
L Yu ↵ct

LYc Yt

1

CA . (2.14)
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Similarly for the up-quark sector (and lepton sector)

⇤u

⇤d

⇤s

⇤c

⇤t ⇠ ⇤IR

OuR

ObR

OsR

Decoupling scale Operator

⇤b

OcR ,OQL2

OtR ,OQL3

OdR ,OQL1
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Figure 2: Upper bound on the scale ⇤f (for f = e, u, d, s, µ, c, ⌧, b, t from top to down) at which

the fermion Yukawas can originate from a bilinear term (Eq. (2.9) with ✏(i)fLi,Ri
⇠ 1, g⇤ ⇠ 4⇡ and

for ⇤
IR

= 3 TeV) as a function of dH , the dimension of the Higgs composite operator OH . To
derive the numerical results we identified the fermion masses with the running masses at 1 TeV [4],
neglecting the e↵ect of running mf from TeV to ⇤f .

We must point out however that there can be extra contributions coming from ⇤d,s,b. The most
important ones come from ⇤d where it is possible to generate

�L(1)

bil

=
1

⇤dH�1

d

✏(1)dL
Q̄L1ÕH(✏̃(1)tR

tR + ✏̃(1)cR
cR) , (2.15)

that leads to contributions to the entries (Y
up

)
13

⇠ (Y
up

)
12

⇠ Yd that can be slightly larger than
those in Eq. (2.14) since Yd > Yu. We absorb these contributions in Eq. (2.14) by a redefinition
of ↵uc,ut

R . Similarly, Y
down

can receive extra contributions from ⇤u,c,t. The largest expected one is
from ⇤c where we can have

1

⇤dH�1

c

Q̄L2OHbR , (2.16)

that leads to (Y
down

)
23

⇠ Yc that is parametrically a factor Yc/Ys ⇠ 10 larger than the corresponding
entry in Eq. (2.8). Again, we absorb this contribution in a redefinition of ↵sb

R . We must add
however that if the strong sector had an SU(3) flavor symmetry, the contributions in Eq. (2.15)
and Eq. (2.16) would be zero, as they originate from the o↵-diagonal interactions in the strong
sector, OQL1ÕHOtR,cR and OQL2OHObR respectively.

Since the mass hierarchies in the up sector are larger than in the down sector, we have that the
CKM matrix V

CKM

is mainly dominated by the down rotation:

V
CKM

⇠ (V down

L )† , (2.17)

7

Scales of decoupling:

dimension of the Higgs operator 

(               )OH ⇠ ⌥̄⌥



��-����
����-����
�������

��� ����

��� ����

��� ����

��� ��� ��� ��� ��� ���

���

���

���

���

��

Λ
�

[�
��

]

Figure 2: Upper bound on the scale ⇤f (for f = e, u, d, s, µ, c, ⌧, b, t from top to down) at which

the fermion Yukawas can originate from a bilinear term (Eq. (2.9) with ✏(i)fLi,Ri
⇠ 1, g⇤ ⇠ 4⇡ and

for ⇤
IR

= 3 TeV) as a function of dH , the dimension of the Higgs composite operator OH . To
derive the numerical results we identified the fermion masses with the running masses at 1 TeV [4],
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can receive extra contributions from ⇤u,c,t. The largest expected one is
from ⇤c where we can have
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that leads to (Y
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⇠ Yc that is parametrically a factor Yc/Ys ⇠ 10 larger than the corresponding
entry in Eq. (2.8). Again, we absorb this contribution in a redefinition of ↵sb

R . We must add
however that if the strong sector had an SU(3) flavor symmetry, the contributions in Eq. (2.15)
and Eq. (2.16) would be zero, as they originate from the o↵-diagonal interactions in the strong
sector, OQL1ÕHOtR,cR and OQL2OHObR respectively.

Since the mass hierarchies in the up sector are larger than in the down sector, we have that the
CKM matrix V

CKM

is mainly dominated by the down rotation:

V
CKM

⇠ (V down

L )† , (2.17)
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Scales of decoupling:

dimension of the Higgs operator 

(               )OH ⇠ ⌥̄⌥dH~2 needed to pass FCNC

 (“walking TC”: dH~2 instead of ~3)



Flavor and CP-violating effects



Different effects at different scales:

Effects from the top

impliying the following conditions on the ↵L’s of the down-Yukawa matrix:

↵ds
R

md

ms
' (V

CKM

)
21

' �c , ↵sb
R

ms

mb
' (V

CKM

)
32

' �2

c , ↵db
R

md

mb
' (V

CKM

)
31

' �3

c , (2.18)

where �c ' 0.22 is the Cabibbo angle. From the estimate

md

ms
⇠ ms

mb
⇠ �2

c , (2.19)

we obtain using Eq. (2.18) that ↵ds,db
R must be slightly larger than one, in particular,

↵ds
R ⇠ ↵db

R ⇠ 1/�c , ↵sb
R ⇠ 1 . (2.20)

This can be easily accommodated by having ✏(1)sR,bR
slightly smaller than one (and a suppression of

Eq. (2.16)). On the other hand, the ↵L are not constrained at all by the CKM angles, and could even

be very small if some mixings are zero. For example, this could be the case if ✏(1)sL,bL
⇡ 0 due to some

accidental discrete symmetry at ⇤d, as discussed in Appendix B. Notice that in the limit ✏(1)sL,bL
! 0

the rotation matrix V down

R is not anymore given by Eq. (2.13) but by Eq. (B.1). Nevertheless, we
emphasize that the framework for flavor proposed here does not need any accidental symmetry to
pass the phenomenological constraints, as we discuss below.

3 Implications in flavor and CP-violation physics

At each scale ⇤f we have potentially new flavor-violating contributions, arising from higher-
dimensional operators made of SM fermions. We can estimate these e↵ects using power-counting
arguments, since no flavor symmetries are assumed in our scenarios. The most important higher-
dimensional operators are 4-quark operators, that contribute to �F = 2 transitions, 2-quark-2-
Higgs operators that generate �F = 1 e↵ects, and dipole operators contributing to processes such
as µ ! e� or EDMs. We collect the most important experimental bounds in Table 1.

3.1 �F = 2 transitions

We start considering 4-quark operators arising at the lowest scale ⇤t ⇠ ⇤
IR

. These are operators
containing only top components, QL3 and tR, namely 4

Y 2

t x2

t

⇤2

IR

(QL3�
µQL3)

2 ,
Y 2

t

⇤2

IR

(QL3tR)(tRQL3) ,
Y 2

t /x2

t

⇤2

IR

(tR�µtR)2 , (3.1)

where we defined xt = ✏(3)tL
/✏(3)tR

.
Let us first look at the implications in the down sector, whose flavor constraints are the strongest.

These are only coming from the first operator of Eq. (3.1) that, after rotating to the physical basis

4These estimates are valid even if ⇤t > ⇤IR and the top partners are heavier than ⇤IR. Nevertheless, for top
partners lighter than ⇤IR, as could be needed in these scenarios to obtain a viable Higgs mass and minimize the
amount of tuning [21,22], the 4-fermion operators get enhanced. For a discussion see Ref. [8].
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⇤u

⇤d

⇤s

⇤c

⇤t ⇠ ⇤IR

⇤b

⇠ Y 2
t

⇤2
IR

physical basis

ϵK, ΔMBd, ΔMBs

rotation ~ VCKM

using Eq. (2.17),5 gives a contribution to the operators Qsd
1

, Qbd
1

and Qbs
1

, as defined in Table 1,
with a coe�cient

C(Qsd
1

) ' Y 2

t x2

t

⇤2

IR

h
(V †

CKM

)
23

(V
CKM

)
31

i
2

' 10�7

x2

t

⇤2

IR

ei✓CKM , (3.2)

where ✓
CKM

denotes the complex phase appearing in the product of the CKM elements, and

C(Qbd
1

)

[(V †
CKM

)
33

(V
CKM

)
31

]2
=

C(Qbs
1

)

[(V †
CKM

)
33

(V
CKM

)
32

]2
=

C(Qsd
1

)

[(V †
CKM

)
23

(V
CKM

)
31

]2
. (3.3)

Eq. (3.3) leads to interesting consequences. It predicts no new phases in K � K̄ and B � B̄ mixing
beyond the SM one. Furthermore, it implies that the contributions to the three observables ✏K ,
�MBd

and �MBs are all of the order of the present experimental sensitivity. Indeed, by looking
at the constraints on �F = 2 operators reported in Table 1, we find that the three observables
✏K , �MBd

and �MBs give roughly the same bound. The correlation Eq. (3.3) also arises in MFV
scenarios, and a bound has been derived on the size of these e↵ects (see Table 1) that leads in our
case to

⇤
IR

& 5xt TeV . (3.4)

For xt ⇠ 1/2 we can accommodate Eq. (3.4) for values of ⇤
IR

as low as those needed to pass
EWPT, ⇤

IR

& 3 TeV [8,27]. The correlations in Eq. (3.3) are an interesting smoking gun for these
scenarios of flavor, that could be tested in the future with a better determination of the observables.
In particular, we must observe a di↵erent value of �MBd,s

from the SM one, with the ratio fixed:

�MBd

�MBs

' �MBd

�MBs

����
SM

. (3.5)

The impact in the up sector is negligible, since the mixing angles (/ Yu,c/Yt) are much smaller
than in the down sector. The largest e↵ect comes from the third operator in Eq. (3.1), which gives
a contribution

C(Qcu
4

) ' Y 2

t

⇤2

IR

(V up

R )⇤
32

(V up

L )
31

(V up

L )⇤
32

(V up

R )
31

⇠ Y 2

u Y 2

c /Y 2

t

⇤2

IR

' 10�15

1

⇤2

IR

, (3.6)

where we have taken ↵L,R ⇠ 1. This is many orders of magnitude below the experimental bound
for ⇤

IR

⇠ TeV.
Let us now move to the e↵ects at the scales ⇤f � ⇤

IR

. It is clear that contributions at ⇤b are
smaller than those of Eq. (3.1), as they are suppressed by a larger scale ⇤b � ⇤

IR

. Contributions
from ⇤c and ⇤s can however be sizable as they involve second family quarks. The most relevant
contributions are 6

g2⇤✏
(2) 4

cL

⇤2

c

(QL2�
µQL2)

2 ,
g2⇤✏

(2) 3

cL ✏(2)tL

⇤2

c

(QL2�
µQL3)(QL2�µQL2) ,

g2⇤(✏
(2)

sL ✏(2)sR )2

⇤2

s

(QL2sR)(sRQL2) . (3.7)

5In an abuse of notation we will be using the same notation for the quarks in the physical and interaction basis.
6Notice that contributions to the Q2 and eQ2 operators require two Higgs insertions and are thus highly suppressed.
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Different effects at different scales:

Effects from the top
⇤u

⇤d

⇤s

⇤c

⇤t ⇠ ⇤IR

⇤b

physical basis

K→μμ, ϵ’/ϵ, B→Xll, Z→bb

rotation ~ VCKM

correlated and all close  

to the experimental value for ΛIR~4-5 TeV 

which gives

cb
edm

' g2⇤
16⇡2

mb

⇤2

b

. (3.17)

This is much smaller than present bounds unless ⇤b ⇠ ⇤
IR

.

3.3 �F = 1 transitions

Similarly to EDMs, contributions to flavor dipole transitions can also be present, the most relevant
ones being sR,L�µ⌫eFµ⌫bL,R that contributes to b ! s�, and sR,L�µ⌫gsGµ⌫dL,R that contributes
to ✏0/✏. The estimates of these e↵ects are similar to the ones for the neutron EDM in Eq. (3.16),
leading to small contributions to these observables.

There are also non-dipole contributions to �F = 1 transitions arising from operators like

s̄L�µdLH† !D µH that on the EWSB vacuum give flavor-changing Z-couplings, which are severely

constrained by KL ! µ+µ� and ✏0/✏, or equivalent operators with the bottom, s̄L�µbLH† !D µH,
which give contributions to the processes B ! `+`�, X`+`�. The largest contribution arises from
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similarly to the anarchic case. Interestingly, Eq. (3.18) shows that the contributions to KL ! µ+µ�

(and ✏0/✏), B ! (X)`` and corrections to Zb̄LbL are correlated and all are close to the experimental
bounds; we obtain respectively the constraints
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We must point out however that there is another dimension-six operator contributing to these

observables, Q̄L3�a�µQL3H†�a !D µH, that in the case of a custodial PLR symmetry in the strong
sector cancels the contribution from Eq. (3.18) [31]. This symmetry is present in simple models of
composite Higgs and for this reason these e↵ects could be further suppressed.

Finally, there can be also contributions to operators like s̄L�µdLD⌫F
µ⌫
Z , where Fµ⌫

Z is the field-
strength of the Z. These operators, however, are suppressed by a factor g2/g2⇤ with respect to those
in Eq. (3.18).

3.4 Electron EDM, µ ! e� and ⌧ ! µ�

Assuming that the origin of the lepton masses is the same one as for the down-type quark masses
described above, we expect Y

lepton

and the rotation matrices to have the same structure as Eq. (2.8)
and Eq. (2.13) respectively, with the obvious replacement d, s, b! e, µ, ⌧ . The corresponding ↵L,R

for the lepton sector are free parameters, that we will take to be order one for our estimates.
The main experimental constraints on possible e↵ective operators induced at the scales ⇤e,µ,⌧

are the electron EDM, µ! e� and ⌧ ! µ�, that come from similar dipole structures:
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in Eq. (3.18).

3.4 Electron EDM, µ ! e� and ⌧ ! µ�

Assuming that the origin of the lepton masses is the same one as for the down-type quark masses
described above, we expect Y

lepton

and the rotation matrices to have the same structure as Eq. (2.8)
and Eq. (2.13) respectively, with the obvious replacement d, s, b! e, µ, ⌧ . The corresponding ↵L,R

for the lepton sector are free parameters, that we will take to be order one for our estimates.
The main experimental constraints on possible e↵ective operators induced at the scales ⇤e,µ,⌧

are the electron EDM, µ! e� and ⌧ ! µ�, that come from similar dipole structures:

ce
edm

eL�µ⌫eFµ⌫eR , c
meg

eL�µ⌫eFµ⌫µR , c
tmg

µL�µ⌫eFµ⌫⌧R , (3.20)

13

⇠ g⇤Yt

⇤2
IR

Suppressed if l
eft↔

right symmetry



Different effects at different scales:
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where �c ' 0.22 is the Cabibbo angle. From the estimate
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we obtain using Eq. (2.18) that ↵ds,db
R must be slightly larger than one, in particular,
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R ⇠ 1/�c , ↵sb
R ⇠ 1 . (2.20)

This can be easily accommodated by having ✏(1)sR,bR
slightly smaller than one (and a suppression of

Eq. (2.16)). On the other hand, the ↵L are not constrained at all by the CKM angles, and could even

be very small if some mixings are zero. For example, this could be the case if ✏(1)sL,bL
⇡ 0 due to some

accidental discrete symmetry at ⇤d, as discussed in Appendix B. Notice that in the limit ✏(1)sL,bL
! 0

the rotation matrix V down

R is not anymore given by Eq. (2.13) but by Eq. (B.1). Nevertheless, we
emphasize that the framework for flavor proposed here does not need any accidental symmetry to
pass the phenomenological constraints, as we discuss below.

3 Implications in flavor and CP-violation physics

At each scale ⇤f we have potentially new flavor-violating contributions, arising from higher-
dimensional operators made of SM fermions. We can estimate these e↵ects using power-counting
arguments, since no flavor symmetries are assumed in our scenarios. The most important higher-
dimensional operators are 4-quark operators, that contribute to �F = 2 transitions, 2-quark-2-
Higgs operators that generate �F = 1 e↵ects, and dipole operators contributing to processes such
as µ ! e� or EDMs. We collect the most important experimental bounds in Table 1.

3.1 �F = 2 transitions

We start considering 4-quark operators arising at the lowest scale ⇤t ⇠ ⇤
IR

. These are operators
containing only top components, QL3 and tR, namely 4
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where we defined xt = ✏(3)tL
/✏(3)tR

.
Let us first look at the implications in the down sector, whose flavor constraints are the strongest.

These are only coming from the first operator of Eq. (3.1) that, after rotating to the physical basis

4These estimates are valid even if ⇤t > ⇤IR and the top partners are heavier than ⇤IR. Nevertheless, for top
partners lighter than ⇤IR, as could be needed in these scenarios to obtain a viable Higgs mass and minimize the
amount of tuning [21,22], the 4-fermion operators get enhanced. For a discussion see Ref. [8].
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Eq. (3.3) leads to interesting consequences. It predicts no new phases in K � K̄ and B � B̄ mixing
beyond the SM one. Furthermore, it implies that the contributions to the three observables ✏K ,
�MBd

and �MBs are all of the order of the present experimental sensitivity. Indeed, by looking
at the constraints on �F = 2 operators reported in Table 1, we find that the three observables
✏K , �MBd

and �MBs give roughly the same bound. The correlation Eq. (3.3) also arises in MFV
scenarios, and a bound has been derived on the size of these e↵ects (see Table 1) that leads in our
case to
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For xt ⇠ 1/2 we can accommodate Eq. (3.4) for values of ⇤
IR

as low as those needed to pass
EWPT, ⇤
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& 3 TeV [8,27]. The correlations in Eq. (3.3) are an interesting smoking gun for these
scenarios of flavor, that could be tested in the future with a better determination of the observables.
In particular, we must observe a di↵erent value of �MBd,s

from the SM one, with the ratio fixed:
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The impact in the up sector is negligible, since the mixing angles (/ Yu,c/Yt) are much smaller
than in the down sector. The largest e↵ect comes from the third operator in Eq. (3.1), which gives
a contribution
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where we have taken ↵L,R ⇠ 1. This is many orders of magnitude below the experimental bound
for ⇤

IR

⇠ TeV.
Let us now move to the e↵ects at the scales ⇤f � ⇤

IR

. It is clear that contributions at ⇤b are
smaller than those of Eq. (3.1), as they are suppressed by a larger scale ⇤b � ⇤
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. Contributions
from ⇤c and ⇤s can however be sizable as they involve second family quarks. The most relevant
contributions are 6
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5In an abuse of notation we will be using the same notation for the quarks in the physical and interaction basis.
6Notice that contributions to the Q2 and eQ2 operators require two Higgs insertions and are thus highly suppressed.
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IR

h
(V †

CKM

)
23

(V
CKM

)
31

i
2

' 10�7

x2

t

⇤2

IR

ei✓CKM , (3.2)

where ✓
CKM

denotes the complex phase appearing in the product of the CKM elements, and

C(Qbd
1

)

[(V †
CKM

)
33

(V
CKM

)
31

]2
=

C(Qbs
1

)

[(V †
CKM

)
33

(V
CKM

)
32

]2
=

C(Qsd
1

)

[(V †
CKM

)
23

(V
CKM

)
31

]2
. (3.3)

Eq. (3.3) leads to interesting consequences. It predicts no new phases in K � K̄ and B � B̄ mixing
beyond the SM one. Furthermore, it implies that the contributions to the three observables ✏K ,
�MBd

and �MBs are all of the order of the present experimental sensitivity. Indeed, by looking
at the constraints on �F = 2 operators reported in Table 1, we find that the three observables
✏K , �MBd

and �MBs give roughly the same bound. The correlation Eq. (3.3) also arises in MFV
scenarios, and a bound has been derived on the size of these e↵ects (see Table 1) that leads in our
case to

⇤
IR

& 5xt TeV . (3.4)

For xt ⇠ 1/2 we can accommodate Eq. (3.4) for values of ⇤
IR

as low as those needed to pass
EWPT, ⇤

IR

& 3 TeV [8,27]. The correlations in Eq. (3.3) are an interesting smoking gun for these
scenarios of flavor, that could be tested in the future with a better determination of the observables.
In particular, we must observe a di↵erent value of �MBd,s

from the SM one, with the ratio fixed:

�MBd

�MBs

' �MBd

�MBs

����
SM

. (3.5)

The impact in the up sector is negligible, since the mixing angles (/ Yu,c/Yt) are much smaller
than in the down sector. The largest e↵ect comes from the third operator in Eq. (3.1), which gives
a contribution

C(Qcu
4

) ' Y 2

t

⇤2

IR

(V up

R )⇤
32

(V up

L )
31

(V up

L )⇤
32

(V up

R )
31

⇠ Y 2

u Y 2

c /Y 2

t

⇤2

IR

' 10�15

1

⇤2

IR

, (3.6)

where we have taken ↵L,R ⇠ 1. This is many orders of magnitude below the experimental bound
for ⇤

IR

⇠ TeV.
Let us now move to the e↵ects at the scales ⇤f � ⇤

IR

. It is clear that contributions at ⇤b are
smaller than those of Eq. (3.1), as they are suppressed by a larger scale ⇤b � ⇤

IR

. Contributions
from ⇤c and ⇤s can however be sizable as they involve second family quarks. The most relevant
contributions are 6

g2⇤✏
(2) 4

cL

⇤2

c

(QL2�
µQL2)

2 ,
g2⇤✏

(2) 3

cL ✏(2)tL

⇤2

c

(QL2�
µQL3)(QL2�µQL2) ,

g2⇤(✏
(2)

sL ✏(2)sR )2

⇤2

s

(QL2sR)(sRQL2) . (3.7)

5In an abuse of notation we will be using the same notation for the quarks in the physical and interaction basis.
6Notice that contributions to the Q2 and eQ2 operators require two Higgs insertions and are thus highly suppressed.
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Figure 2: Upper bound on the scale ⇤f (for f = e, u, d, s, µ, c, ⌧, b, t from top to down) at which

the fermion Yukawas can originate from a bilinear term (Eq. (2.9) with ✏(i)fLi,Ri
⇠ 1, g⇤ ⇠ 4⇡ and

for ⇤
IR

= 3 TeV) as a function of dH , the dimension of the Higgs composite operator OH . To
derive the numerical results we identified the fermion masses with the running masses at 1 TeV [4],
neglecting the e↵ect of running mf from TeV to ⇤f .

We must point out however that there can be extra contributions coming from ⇤d,s,b. The most
important ones come from ⇤d where it is possible to generate

�L(1)

bil

=
1

⇤dH�1

d

✏(1)dL
Q̄L1ÕH(✏̃(1)tR

tR + ✏̃(1)cR
cR) , (2.15)

that leads to contributions to the entries (Y
up

)
13

⇠ (Y
up

)
12

⇠ Yd that can be slightly larger than
those in Eq. (2.14) since Yd > Yu. We absorb these contributions in Eq. (2.14) by a redefinition
of ↵uc,ut

R . Similarly, Y
down

can receive extra contributions from ⇤u,c,t. The largest expected one is
from ⇤c where we can have

1

⇤dH�1

c

Q̄L2OHbR , (2.16)

that leads to (Y
down

)
23

⇠ Yc that is parametrically a factor Yc/Ys ⇠ 10 larger than the corresponding
entry in Eq. (2.8). Again, we absorb this contribution in a redefinition of ↵sb

R . We must add
however that if the strong sector had an SU(3) flavor symmetry, the contributions in Eq. (2.15)
and Eq. (2.16) would be zero, as they originate from the o↵-diagonal interactions in the strong
sector, OQL1ÕHOtR,cR and OQL2OHObR respectively.

Since the mass hierarchies in the up sector are larger than in the down sector, we have that the
CKM matrix V

CKM

is mainly dominated by the down rotation:

V
CKM

⇠ (V down

L )† , (2.17)
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EDMs

● Largest constraint from the top EDM:

● EDM of u,d,e suppressed by Λd,u,e>109 GeV 
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3FIG. 1: Diagrams generating the contribution to the Wein-
berg operator at the top threshold. The grey blob denotes
the insertion of the chromo-electric dipole operator [9–11].

at a time. Consequently, the derived constraints will ap-
ply in absence of cancellations among several conspiring
operator contributions.

Indirect constraints

We first consider the present indirect constraints on
the top CEDM d̃t. The operators in Eq. (2) run
and mix under QCD renormalization group (RG) evo-
lution. At present, these e↵ects are known to NLL accu-
racy [8]. In particular the Weinberg operator mixes into
the (C)EDMs of quarks, but not vice versa. Nevertheless,
it has been known for some time [9, 10] that the CEDMs
induce a finite threshold correction to the Weinberg op-
erator when a heavy quark is integrated out, as shown in
Fig. 1,

�w(q) =
g3s

32⇡2

d̃q
mq

, (3)

where gs andmq are evaluated at the heavy quark thresh-
old scale. In the case of the top quark, the combined
e↵ects of the finite shift in w and the subsequent RG
evolution to the hadronic scale will induce non-zero con-
tributions also for the (C)EDMs of the light quarks.
Performing the QCD evolution of the Weinberg op-

erator at NLL accuracy down to the hadronic scale
µH ⇠ 1 GeV, taking into account the relevant mb and
mc thresholds, we thus obtain du,d(µH), d̃u,d(µH) and
w(µH) in terms of d̃t(mt)

du = �3.1 · 10�9 e d̃t , dd = 3.5 · 10�9 e d̃t ,

d̃u = 8.9 · 10�9 d̃t , d̃d = 2.0 · 10�8 d̃t ,

w = 1.0 · 10�5 GeV�1 d̃t , (4)

where we have used mt = 173.3 GeV [12],

mMS
d (2 GeV) = (4.7 ± 0.1) MeV, mMS

u (2 GeV) =

(2.1± 0.1) MeV [13] and ↵MS
s (mZ) = 0.1184 [14].

Presently, the most sensitive observables are the
atomic EDMs of mercury (dHg < 3.1 · 10�29 e cm at
90%C.L. [15]) and of the neutron (dn < 2.9 · 10�26 e cm

at 90%C.L. [16]). Following [17], we evaluate the relevant
contributions as

dHg =� 1.8 · 10�4 GeV�1 e ḡ
(1)
⇡NN , (5a)

dn =(1± 0.5) [1.1 e (d̃d + 0.5 d̃u) + 1.4 (dd � 0.25 du)]

+ (22± 10) · 10�3 GeV ew , (5b)

where g(1)⇡NN = 4+8
�2 (d̃u�d̃d)GeV. All quantities are eval-

uated at the scale µH ⇠ 1 GeV. The values and uncer-
tainty estimates for the relevant matrix elements, partic-
ularly for the Weinberg operator contribution to dn, have
been evaluated using QCD sum rule techniques [18].
Inserting (4) into the above expressions and treating all

the relevant theoretical uncertainties as flat distributions
within the stated errors, we find that the neutron EDM
constrains the top CEDM to be

|d̃t| < 2.1 · 10�19 cm (90%C.L.) , (6)

i.e. |d̃t mt| < 1.9 · 10�3. The constraint from the neutron
EDM is dominated by the contribution to the Weinberg
operator, which amounts to roughly 85% of the total ef-
fect of d̃t in dn, even though the light quark (C)EDM
contributions are not totally negligible. Furthermore, the
constraint from dHg provides a (two orders of magnitude)
weaker bound on d̃t, since it is not sensitive to the Wein-
berg operator and also comparatively weaker than dn for
the light quark CEDMs. We note in passing the a simi-
lar constraint on the EDM of the b quark has previously
been obtained [10].
The indirect constraints on the other top dipole mo-

ments in Eq. (2) are considerably weaker. The EDM
of the top, dt, induces light quark EDMs only through
weak interactions and is suppressed by flavor mixing fac-
tors [19] resulting in dd = 2.4 ⇥ 10�12 dt , and conse-
quently we find a weak bound of

|dt| < 1.7⇥ 10�14 e cm (90%C.L.) . (7)

A stronger limit comes from b ! s� and b ! s`+`�

processes, since the leading SM contribution carries the
same loop and flavor suppressions. Following [20], we
obtain

�C7�(mW ) = 6.5 · 10�2 (µt � 2.65i dt)mt/e , (8)

where we have included the e↵ects of the top MDM
which is also constrained. �C7� is the new contribu-
tion to the Wilson coe�cient of the magnetic operator
mediating the b ! s transition. Using the results of a
global fit to radiative and rare semileptonic B decays [21],
we obtain the allowed region in the (µt, dt) plane in
Fig. 2. The most sensitive observables are Br(B ! Xs�),
hAFBi(B ! K⇤`+`�)[1GeV2 < q2 < 6GeV2] and
hFLi(B ! K⇤`+`�)[1GeV2 < q2 < 6GeV2] (all defined
in Ref. [21]). Marginalizing over one of the moments, we

Weinberg operator

dNtoptop

�

�h
e e

tL hhi

Figure 3: A representative two-loop contribution to the electron EDM. The double-line represents
a resonance from the strong sector.

and analogous ones obtained interchanging the chiralities, L $ R. In the anarchic case the first
two operators in Eq. (3.20) put the most severe constraints (see Table 3). In our scenarios, however,
we find that these contributions are very small for the same reason as for the neutron EDM. The
largest contribution arises at ⇤⌧ , and give for dH = 2

ce
edm

'
⇣ g⇤

4⇡

⌘
2

(V lepton

L )⇤
31

(V lepton

R )
31

g⇤v⇤
IR

⇤3

⌧

⇠
⇣ g⇤

4⇡

⌘
2 YeY⌧

g2⇤

me

⇤2

IR

, (3.21)

which is extremely small. Similarly, for µ ! e� and ⌧ ! µ�, we get at ⇤⌧ :

c
meg

'
⇣ g⇤

4⇡

⌘
2

(V lepton

L )⇤
32

(V lepton

R )
31

g⇤v⇤
IR

⇤3

⌧

⇠
⇣ g⇤

4⇡

⌘
2 YeY⌧

g2⇤

mµ

⇤2

IR

, (3.22)

c
tmg

'
⇣ g⇤

4⇡

⌘
2

(V lepton

L )⇤
32

g⇤v⇤
IR

⇤3

⌧

⇠
⇣ g⇤

4⇡

⌘
2 YµY⌧

g2⇤

m⌧

⇤2

IR

, (3.23)

that are several orders of magnitude below the experimental bound.
Additional contributions to the electron EDM can come from Barr–Zee-type 2-loop diagrams [17]

as shown in Fig. 3. These involve CP-violating one-loop induced vertices such as H†D2

⇢HF̃µ⌫Fµ⌫

arising from the strong sector, mainly from a loop of top resonances.8 The estimate of the size of
these couplings are very model dependent. In the particular motivated case of a pseudo-Nambu–
Goldstone boson (PNGB) Higgs these couplings cannot be generated from the strong sector alone,
as they are protected by the global symmetry under which the Goldstone Higgs transforms. There-
fore we need a SM particle to be involved in the loop. We can take as an estimate the con-
tribution involving the tL (see Fig. 3) that induces the vertex H†D2

⇢HF̃µ⌫Fµ⌫ with a coe�cient
⇠ e2xtYtg⇤/(16⇡2) (omitting powers of ⇤

IR

). Using the results of Ref. [32], in which the Barr–Zee
contribution to the electron EDM is computed in the presence of CP-violating Higgs interactions
to the top, �ietYt(t�5t)h/

p
2, and found |et| < 0.01, we have, after the proper rescaling for our

case,
xtYtg⇤
⇤2

IR

. 0.01
Y 2

t

m2

t

, (3.24)

8There is also the possibility to have a vertex involving a Z, but this contribution to the EDM is suppressed as
a consequence of C invariance that makes only the (very small) vector part of the Z coupling to the electron to
contribute [17].
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● Two-loop Barr-Zee-like diagrams to de:

☛ dN & de around the present bound 

 for ΛIR ~ TeV

Always EDM!



If only one scale for each family:

OuR

ObR

OsR

Decoupling scale Operator
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OtR ,OQL3
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⇤c ⇠ ⇤s ⇠ ⇤µ

⇤t ⇠ ⇤b ⇠ ⇤⌧

Only main difference:  μ→eγ gets close to the exp. bound    

Splittings within a given family must be  
explained by different mixings (ϵfi) at the respective scales



Other issues:

● Neutrino masses:

that is much below the present limit BR(h ! µ⌧) < 1.51% from CMS [36] (1.85% from ATLAS
[37]). A larger e↵ect is found if µ is partly composite at ⇤

IR

:

BR(h ! µ⌧) '
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g2⇤v
2

⇤2

IR

r
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◆
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BR(h ! ⌧⌧) ⇠ 4 ⇥ 10�3

✓
g⇤v

⇤
IR

◆
4

. (5.3)

This result is very close to the experimental bound, but we must in this case face the large contri-
bution to µ ! e� discussed above.

6 Neutrino masses

In this section we would like to comment on the possible origin of the neutrino masses in these
scenarios. In principle, the origin of neutrino masses could be the same as the one discussed above
for the other fermions, if right-handed neutrinos are introduced in the SM. Nevertheless, a simpler
option is to assume that lepton number is broken at some UV scale ⇤⌫ by higher-dimensional
operators:

1

⇤2dH�1

⌫

L̄cOHOHL , (6.1)

where L generically denotes a left-handed lepton. Eq. (6.1) leads to neutrino masses of order

m⌫ ' g2⇤v
2

⇤
IR

✓
⇤
IR

⇤⌫

◆
2dH�1

. (6.2)

For dH = 2, g⇤ ⇠ 4⇡ and ⇤
IR

⇠ 3 TeV, Eq. (6.2) gives

m⌫ ⇠ 0.1 � 0.01 eV for ⇤⌫ ⇠ 0.8 � 1.5 ⇥ 108 GeV . (6.3)

This scale ⇤⌫ could be related to the scale at which other fermion masses are generated, for example,
to ⇤s or ⇤d. On the other hand, large mixing angles in the neutrino sector between two families
can be easy obtained by requiring the corresponding neutrino masses to be generated at the same
scale ⇤⌫ .

7 Conclusions

In this work we have proposed a new realization of the flavor structure in composite Higgs scenarios.
The new construction is based on a departure from the usual partial compositeness framework for
the light (i.e. not the top quark) SM fermions, both in the quark and lepton sector. The main idea is
to assume that the light SM fermions get their mass through e↵ective interactions involving fermion
bilinears, namely operators of the form f̄LOHfR, where OH is a composite operator associated
with the Higgs field. These Yukawa-like operators for the various fermion species are generated at
hierarchically di↵erent energy scales ⇤f , thus e↵ectively giving rise to the hierarchy of SM fermion
masses and to the structure of the CKM matrix.

The only field that does not follow this construction is the top quark, whose large Yukawa
coupling points towards a partial-compositeness origin at ⇤

IR

⇠ TeV, the scale at which the Higgs
emerges as a composite state. The left-handed and right-handed top components are thus linearly
mixed with suitable composite operators, ✏fi f̄iOfi , following the usual anarchic flavor structure.
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● Modifications to Higgs couplings:

Similar effects as with linear mixing
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mixed with suitable composite operators, ✏fi f̄iOfi , following the usual anarchic flavor structure.
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Majorana:

Dirac: 1

⇤dH�1
⌫

OH L̄⌫R for dH~2,  
dimension-5 operator as in the SM

for dH~2,  
dimension-7 operator



Λ
��

(�
��

)

�������� �����
������

��� ������
������ �����

��� ������
������ �����

��������

Δ��

ϵ�
�� → μ+μ-

������� ���
�������� ���
μ → � γ��

��
��
���

�

�

��

��

Figure 4: Lower bounds on ⇤
IR

on the various flavor scenarios. The first set of bounds corresponds
to our scenario with multiple flavor scales, the second and third sets assume partial compositeness
at ⇤

IR

for the whole third and second family respectively, while the last set gives the bounds for the
anarchic flavor scenario. To derive the numerical values we have taken g⇤ ' 3, xt ' xc ' 0.5, and
set all free ↵L,R parameters to one.

still be below (or better say, saturating) the present bounds, providing then a motivation for an
experimental improvement in the near future.
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A Warped five-dimensional models with multiple flavor scales

For AdS/CFT practitioners it can be useful to depict warped five-dimensional models which, by
means of the AdS/CFT correspondence, lead to the scenarios of flavor considered above.

As an example, we consider a model for the down-type quark sector and Higgs of the SM.
This is shown in Fig. 5. It corresponds to a warped extra dimension with 3 branes located at
di↵erent positions and therefore associated with 3 di↵erent energy scales ⇤d,s,b. We assume that
only one left-handed and right-handed quark can propagate up to the brane at ⇤b, what we call
the bottom quark, while two can propagate up to the brane at ⇤s. On the other hand, the three
quarks can be present on the brane at ⇤d. The warped extra dimension extends up to the brane at
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Summary

many observables around the corner!

Buys you more time to dream…

Flavor from dynamical scales (bilinear mixing) 
consistent with BSM TeV physics


