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 B → K* μμ angular analysis: discrepancy in one combination of the 
                                                 angular expansion coefficients, known as P'
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LHCb and B factories  measured several key  b → s  and b → c modes.  
Agreement with the SM is less than perfect.

 RK =
BR (B+→K +μμ)[1,6]

BR (B+→K + ee)[1,6 ]

= 0.745⋅(1±13 %)

muons are among the most  reliable
objects within LHCb



the electron channel would be an
obvious culprit (brems + low stats).

But disagreement is rather in muons



➊ (+ ➋ + ➌) ⇒ There seems to be BSM LFNU

and the effect is in µµ, not ee
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➋  BR(B
s
 → φ μμ): >3 below SM prediction.     Same kinematical region m2

μμ
 ∈ [1, 6 ] GeV2

Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

 B → K* μμ angular analysis: discrepancy in P'
5
    Again same region m2

μμ
 ∈ [1, 6 ] GeV2

Compatibility between 1/fb and 3/fb LHCb analyses.    Supported also by recent Belle analysis.

Significance of the effect is debated.



  

D. Guadagnoli, Status of flavor anomalies

There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)

  Recap of flavor anomalies: b → c



  

D. Guadagnoli, Status of flavor anomalies

There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)



  Recap of flavor anomalies: b → c

adapted from Y. Sato, talk at ICHEP16R(D*) state-of-the-art

ICHEP '16 updates



  

D. Guadagnoli, Status of flavor anomalies

There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)

  Recap of flavor anomalies: b → c



First discrepancy found
by BaBar in 2012

in both R(D) and R(D*)
adapted from Y. Sato, talk at ICHEP16R(D*) state-of-the-art

ICHEP '16 updates



  

D. Guadagnoli, Status of flavor anomalies

There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)



  Recap of flavor anomalies: b → c



First discrepancy found
by BaBar in 2012

in both R(D) and R(D*)


2015: BaBar's R(D*)
confirmed by LHCb

adapted from Y. Sato, talk at ICHEP16R(D*) state-of-the-art

ICHEP '16 updates



  

D. Guadagnoli, Status of flavor anomalies

There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)



  Recap of flavor anomalies: b → c



First discrepancy found
by BaBar in 2012

in both R(D) and R(D*)


2015: Belle finds a 
more SM-like R(D*)

(hadronic tau's)

2015: BaBar's R(D*)
confirmed by LHCb

adapted from Y. Sato, talk at ICHEP16R(D*) state-of-the-art

ICHEP '16 updates



  

D. Guadagnoli, Status of flavor anomalies

There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)



  Recap of flavor anomalies: b → c



First discrepancy found
by BaBar in 2012

in both R(D) and R(D*)


2015: Belle finds a 
more SM-like R(D*)

(hadronic tau's)

2015: BaBar's R(D*)
confirmed by LHCb

Early 2016: Belle also
sees an R(D*) excess

(semi-lep. tau's)



adapted from Y. Sato, talk at ICHEP16R(D*) state-of-the-art

ICHEP '16 updates



  

D. Guadagnoli, Status of flavor anomalies

There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)



  Recap of flavor anomalies: b → c



First discrepancy found
by BaBar in 2012

in both R(D) and R(D*)


2015: Belle finds a 
more SM-like R(D*)

(hadronic tau's)

2015: BaBar's R(D*)
confirmed by LHCb

Early 2016: Belle also
sees an R(D*) excess

(semi-lep. tau's)





adapted from Y. Sato, talk at ICHEP16R(D*) state-of-the-art

Summer '16: 
SM-like R(D*) in new 
had.-tag Belle analysis

ICHEP '16 updates



  

D. Guadagnoli, Status of flavor anomalies

There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)



  Recap of flavor anomalies: b → c



First discrepancy found
by BaBar in 2012

in both R(D) and R(D*)


2015: Belle finds a 
more SM-like R(D*)

(hadronic tau's)

2015: BaBar's R(D*)
confirmed by LHCb

Early 2016: Belle also
sees an R(D*) excess

(semi-lep. tau's)





adapted from Y. Sato, talk at ICHEP16R(D*) state-of-the-art

Summer '16: 
SM-like R(D*) in new 
had.-tag Belle analysis

ICHEP '16 updates

All in all:
Simultaneous fit to R(D) & R(D*) about 4σ away from SM
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 Each of the mentioned effects needs confirmation from Run II 
to be taken seriously

Q1:   Can we (easily) make theoretical sense of data?

Q2:   What are the most immediate signatures to expect ?

 Yet, focusing for the moment on the b → s discrepancies
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If R
K
 is signaling LFNU at a non-SM level,  we may also expect  LFV at a non-SM level.

In fact:

 Consider a new, LFNU interaction above the EWSB scale, e.g. with

ℓ Z'ℓnew vector bosons: ℓ φ  qor            leptoquarks:

 In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis. 
(This basis doesn't yet even exist. We are above the EWSB scale.)



 Rotating q and ℓ to the mass eigenbasis generates LFV interactions.
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Take the SM with zero ν masses.

 Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis
(hence no LFV)

Bottom line: in the  SM+ν  there is LFNU, but LFV is nowhere to be seen (in decays)

But nobody ordered that the reason (=tiny mν) behind the above conclusion  

be at work also beyond the SM


So, BSM LFNU         BSM LFV (i.e. not suppressed by mν )⇒

Or more generally, take the SM plus a minimal mechanism for ν masses.

 Physical LFV will appear in W couplings, but it's suppressed by powers of  ( mν / mW )
2
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 Advocating the same (V –  A) x (V – A) structure also for the corrections to C
9,10

SM 

(in the µµ-channel only!) would account for:

R
K
 lower than 1

B → K µµ  & B
s
 → µµ    BR data below predictions

 A fully quantitative test requires a global fit.

 [Altmannshofer, Straub, EPJC '15]
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partial-compositeness 
frameworks 

Fields are in the “gauge” basis (= primed)
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Note as well

0.77±0.20 =
BR (Bs→μμ)exp

BR (Bs→μμ)SM

=
BR (B s→μμ)SM+NP

BR(B s→μμ)SM

=
|C10

SM+δC10|
2

|C10
SM|2

implying (within our model) the correlations

BR (Bs→μμ)exp

BR (Bs→μμ)SM

≃ RK ≃
BR(B+→K+μμ)exp

BR(B+→K+μμ)SM

Another good reason 
to pursue accuracy in

the B
s  → µµ measurement

See also
 Hiller, Schmaltz, PRD 14
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As mentioned: if R
K
  is signaling BSM LFNU, then expect BSM LFV as well

LFV model signatures
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BR (B+→K+μμ)

=
|δC10|

2
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|(U L

ℓ)31|
2
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2
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☑ would be even more promising, as it scales with BR (B+→K +μ τ) |(U L
ℓ)33 /(U L

ℓ)32|
2

= 0.1592 
according to R

K

☑ An analogous argument holds for purely leptonic modes
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More on LFV model signatures

The most suppressed of the above modes is most likely B
s
 → μ e.

(The lepton combination is the farthest from the 3rd generation, and it's chirally suppressed.)

What about  B
s
 → μ e γ ?

Chiral-suppression factor, of O(m
μ
 / m

Bs
)2   

replaced by  α
em 

/ π suppression

DG, Melikhov, Reboud, PLB 16





☞

BR(B
s
 → μ e γ)

BR(B
s
 → μ e)γ = “hard” photon

(hard = outside of the di-lepton 
Invariant-mass signal window)

Enhancement by ~ 30%

Inclusion of the radiative mode more-than-
doubles statistics of the non-radiative



  

  
More signatures

 Being defined above the EWSB scale, 

our assumed operator 

G b̄ ' L γ
λb ' L τ̄ 'L γλ τ ' L

must actually be made invariant 

under  SU(3)
c
 x SU(2)

L
 x U(1)

Y
 

See: 
Bhattacharya, Datta, London, 

Shivashankara, PLB 15
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SU(2)
L

inv.

☞

 But this coin has a flip side.

Through RGE running, one gets also LFU-breaking effects in τ → ℓ v v  

                                                                      (tested at per mil accuracy)

Such effects  “strongly disfavour an explanation of the R(D(*)) anomaly model-independently”

Feruglio, Paradisi, Pattori, 2016

and
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Conclusions

 In flavor physics there are by now several persistent discrepancies with respect to the SM.

Data vs. theory: Discrepancies go in a consistent direction.
                            A BSM explanation is already possible within an EFT approach.

Experiments: Results are consistent between LHCb and B factories.

 Early to draw conclusions. But Run II will provide a definite answer

 Timely to propose further tests.  One promising direction is that of LFV. 
Plenty of channels, many of which largely untested.

Their most convincing aspects are the following:

Data: Deviations concern two independent sets of data:  b → s  and  b → c  decays.
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