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motivation



entanglement and geometry

Hints from holography: emergence of geometry is closely
related to entanglement structure of CFT.

• Entropy and area: S = A
4GN

[Bekenstein-Hawking’80s][Ryu-Takayanagi ’06]

• Entanglement wedge hypothesis: CFT subregion encodes
gravitational EFT in region up to minimal surface

• Consistency of entanglement restricts geometry and
gravitational dynamics

None of these address the qualitative structure of
entanglement shared between many parties, e.g.

|W⟩ ∝ |100⟩+ |010⟩+ |001⟩ vs |GHZ⟩ ∝ |000⟩+ |111⟩
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a simple set of geometries and states

Topologically nontrivial solutions
to pure 3D gravity:
multiboundary black holes [Brill ’95]

Dual to entangled state on several copies of the CFT

|Σ⟩ ∈ H1 ⊗H2 ⊗H3

naturally defined in any theory by the path integral on a
bordered Riemann surface Σ. [Skenderis-van Rees ’11]

AdS dual is connected geometry only for some moduli.

E.g. thermofield double, Hawking-Page phase transition.
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edges of moduli space

‘Cold’ limit [Balasubramanian,Hayden,Maloney,Marolf,Ross ’14]

|ψ⟩ =
∑
ijk

Cijke−β1H1/2e−β2H2/2e−β3H3/2|i⟩1|j⟩2|k⟩3

Dual: disconnected copies of AdS, entanglement is O(c0).

‘Hot’ limit [Marolf,HM,Peach,Ross ’15]

Each region in local TFD, purified by some other region
3
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Entanglement is local and bipartite. Dual: ℓhorizons ≫ ℓAdS 5



phases and partition functions

Wavefunction evaluated on field configuration ϕ computed by

⟨ϕ|Σ⟩ =
∫
Φ(∂Σ)=ϕ

DΦe−IΣ[Φ]

Norm ⟨Σ|Σ⟩ computed by inserting complete set of field
configurations: path integral on Σ and a reflected copy, sewn
along boundaries.

Calculates the partition function on ‘Schottky double’ X of Σ,
so ⟨Σ|Σ⟩ = Z(X) (generalise by inserting operators).

Phases come from dominance of different saddle point
geometries in dual gravitational path integral for Z(X).
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motivations

• Phase structure of geometric states
• Symmetry breaking and non-handlebodies [Yin ’07]

• Computation of Rényi entropies [Faulkner ’13]

• Universal (vacuum module) part of any CFT
• Mathematical: Kähler potential for Weil-Petersson metric on
Teichmüller space [Takhtajan-Zograf ’88]
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problem and solution



background

Partition function: may do the path integral on any geometry

Z(X) =
∫

DΦ e−IX[Φ]

Example: for X = space× S1β , get Z =
∑

E e−βE

For CFT, interesting dependence is on the conformal structure
of X. In 2 dimensions, equivalent to complex structure, so X is
naturally a Riemann surface.

Each CFT gives a function on moduli space of Riemann
surfaces.

Holography: on-shell action of bulk M with boundary ∂M = X.
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pure 3d gravity

Possible to find solutions M with ∂M = X in 3D pure gravity
because it’s locally trivial: M = H3/Γ for Γ ⊆ ISO(H3)

• ISO(H3) = SO(3, 1) ≡ PSL(2,C)
• Acts on boundary ∂H3 = P1 by Möbius maps w 7→ aw+b

cw+d

• Need X ≈ P1/Γ as quotient of Riemann sphere

The appropriate construction is Schottky uniformisation
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schottky uniformisation

Cut 2g holes in the sphere and glue them in pairs with some
Möbius maps L1, . . . , Lg. This makes a genus g surface:
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bounded by hemispheres, identified in pairs. (Handlebodies)

11



schottky uniformisation
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action!

Now evaluate action:

I = −1
16πGN

[∫
M

d3x
√
g(R+ 2) + 2

∫
∂M

d2x√γ(κ− 1) + constant
]

Divergent! Cutoff depends on choice of boundary metric

ds2 = e2ϕ(w,w̄)dwdw̄ =⇒ cutoff at z = ϵ e−ϕ + · · ·

Dependence on choice of metric gives the conformal anomaly:

logZ[e2ωγ] = logZ[γ] +
c

24π

∫
d2x√γ

(
(∇ω)2 +Rω

)
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action!

Canonical choice of metric: constant curvature R = −2.

R = −2e−2ϕ∇2ϕ =⇒ ∇2ϕ = e2ϕ

Metric invariant under quotient group: for L ∈ Γ,

e2ϕ(Lw)d(Lw)d(Lw) = e2ϕ(w)dwdw̄ =⇒ ϕ(Lw) = ϕ(w)− 1
2 log

∣∣L′(w)∣∣2
Multiple solutions for given X: ϕ helps to match moduli
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the recipe

1. Solve ∇2ϕ = e2ϕ on a fundamental region D for Γ
2. With boundary conditions ϕ(Lw) = ϕ(w)− 1

2 log |L
′(w)|2

3. Match moduli by geodesic lengths in canonical metric
4. Evaluate on-shell action

I = − c
24π

∫
D
d2w (∇ϕ)2 + (boundary and constant terms)

Action of [Takhtajan,Zograf ’88], holography by [Krasnov ’00]
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analytic example: the torus



genus 1 schottky groups

A genus 1 Schottky group is generated by a single Möbius map,
which we may choose to be w 7→ qw, for 0 < |q| < 1.

Canonical metric flat: ϕ harmonic, with ϕ(qw) = ϕ(w)− log |q|

Solution: ϕ = − log (2π|w|)

ds2 = e2ϕdwdw̄ =
dwdw̄

(2π)2ww̄ = dzdz̄

where w = exp(2πiz). Now z is identified as z ∼ z+ 1 ∼ z+ τ ,
with q = exp(2πiτ).

Evaluating action is straightforward: get I = c
12 log |q|
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phases for the torus

Different τ related by PSL(2,Z) give the same complex
structure, but different solutions.

As the moduli change smoothly, the dominant solution may
change. First-order phase transitions at large c.

logZ(τ) = 2π c
12 maxℑ

(
aτ + b
cτ + d

)
When τ = iβ

2π is pure imaginary:

logZ =
c
12

β β ≥ 2π vacuum
(2π)2
β β ≤ 2π Cardy

This is the familiar Hawking-Page phase transition.
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numerical solution



numerical solution

We need to solve Liouville’s equation on this domain:
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numerical solution

We need to solve Liouville’s equation on this domain:

Nasty shaped region! Use finite element methods

Approximate domain by triangles. Discretise the equation on
these elements, and solve by Newton’s method.
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numerical solution

Solution for ϕ:
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genus 2



surfaces considered

Solve explicitly for a two-dimensional subspace of genus 2
moduli.

Corresponds to three-boundary wormhole with two equal
horizon sizes λ1 = λ2. Use moduli ℓ12, ℓ3.

Conformal automorphisms Z2 × Z2.

Three phases: connected, disconnected (3×AdS), partially
connected (AdS+BTZ)
[Same family of surfaces: single-exterior black hole with rectangular torus
behind horizon; three different Rényi entropies]
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phase diagram

Disconnected

Connected

Partially Connected

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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ℓSym

ℓ3

ℓSym

Enhanced symmetries: D6 along line
ℓ1 = ℓ2 = ℓ3, and D4 at connected/
disconnected phase boundary.

Modular transformation swaps
connected and disconnected phases.
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action on z3-symmetric line

Connected, disconnected, and symmetry breaking phases.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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-2.0

-1.5

-1.0

-0.5

0.0

ℓ

ℓSym

I/c

I = 0 corresponds to a non-handlebody [Maldacena-Maoz ’04]

Transition point ℓ = ℓSym = 2 log(2+
√
3) at surface of

enhanced symmetry y2 = x6 − 1 (genus 2 analogue of τ = i)
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horizon sizes

Horizon lengths λi easy to calculate from Schottky group data.
(In fact, all geodesic lengths/entanglement entropies [HM ’14])
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At the edges of moduli space, λ → 2π:
pinching reduces to genus one case.
Very good approximation! Useful
perturbation expansion?

Torus wormhole: horizon length at
least λ ≈ 22.3, much larger than
thermal state transition (λ = 2π).
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what we’ve learned



genus 3

Can use genus 2 data to deduce certain genus 3 results in
symmetric situations.

For example Z4-symmetric four boundary wormhole has
transition for horizons λ ≈ 7.62.

Can deduce that ‘ intrinsically 4-party entanglement’ [BHMMR’14]

must exist, if internal moduli unimportant.

But internal moduli become relevant for λ ≳ 2.12!
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conclusions

• Genus 2 phase diagram mapped out
• Some analytic results from symmetries
• No spontaneous (replica) symmetry breaking
• All handlebodies appear to dominate non-handlebodies
• Pinching limits checked
• Perturbation around pinching may be very useful
• Phase transitions put strong constraints on geometries and
possible structure of entanglement
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