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On this talk :

e Fascinating properties and algebra of symmetries of
asymptotically flat spacetimes

@ 4d = 3d = 4d. Many lessons can be drawn from 3d to
help understand 4d physics.

@ Interplay between various concepts : asymptotic
symmetries, gravitational memory, holography, black
holes

@ Tackle classical problems : gravitational collapse, cosmic
censorship, black hole information paradox
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Asymptotically flat spacetimes

No black hole in 3d Einstein-positive matter theory. (s, 2000)
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Preambule : the BMS; and BMS, groups

The space of solutions to Einstein gravity with “reasonable”
asymptotically flat boundary conditions can be expanded
close to null infinity in a fixed gauge.

ds® = —du?—2dudr+r3d*Q+...
= —dv? + 2dvdr + r*d*Quntipodal + - - -

The group of diffeomorphisms which
@ preserve the form of the asymptotic metric, mapping one
metric to another but preserving the gauge,
@ are associated with finite and non-trivial canonical
charges
is the asymptotic symmetry group.

Using “reasonable” boundary conditions, the asymptotic
symmetry group was found to be the BMS, group in 4d (sond,
van der Burg, Metzner, 1962] [sachs, 19621 @d the BMS3 group in 3d (ashtekar, Bicak,

Schmidt, 1996]
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What reasonable boundary conditions may
mean ?

4d e Admit Kerr, gravitational waves and

electromagnetic fields

@ Positive energy

@ Allow to describe memory effects (zeidovicn, Pomnarer,
1974] [Christodoulou, 1991]

@ Allow to describe a semi-classical S-matrix
which obeys all known theorems weinverg, 19651
[Cachazo, Strominger, 2014]

@ Allow for small perturbations to decay
(non-linear stability) (christodoulou, Kiainerman, 1993

3d e Admit “appropriate” matter fields

@ Positive energy
e Flat region can be embedded in AdSs3
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A translation in Minkowski spacetime

° (t,x,y,2)
Oz
e (t,r,0,¢)
cos 0oy — % Sin 60y
@ (u,r,0,¢), retarded timeu=t—-r

—c0s 0oy + cosfor — % sin 00y
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The bms, algebra

bms, ~ so(3,1) ® Supertranslations

Supertranslations are either translations or pure
supertranslations. Pure supertranslations are (abelian)
“higher harmonic angle-dependent translations”

1 1

1
(00T +

T(6, ¢)oy + ivaar -

0sT0g) + ...
sinZg 0T%)

The solutions to VZ(V?2 + 2)T = 0 are the translations. Those
are the ¢ = 0 and ¢ = 1 spherical harmonics, T =1, T = cos¥,
T =sinfcos¢, T = sinfsin .

What are supertranslations in the bulk?
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The extended bms, algebra

[Barnich, Troessaert, 2010]
bms, ~ Superrotations® @ Supertranslations®
where

Superrotations®* =~ Vir* @ Vir*,
Supertranslations® =~ Regular supert. ® Meromorphic supert.

¢

The Lorentz subalgebra
s0(3,1) ~sl(2,R) ®sl(2,R) c Vir* @ Vir*

is generated by global conformal transformations on the
sphere. The rest of the algebra has generators which contain
meromorphic functions, with poles on S2.
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The extended bms, algebra : comments

The algebra is not realized as asymptotic symmetry algebra,
at least in the standard sense :

@ The Kerr black hole has infinite meromorphic
SupertranSIation momenta. [Barnich, Troessaert, 2010]

@ Minkowski acted upon with a finite superrotation
diffeomorphism has negative energy. (c.c. rong, 2016]

The superrotations still have a role to play :
@ Superrotation charges are finite and can be non-trivial

[Barnich, Troessaert, 2011] [Flanagan, Nichols, 2015] [G.C., Long, 2016]

@ The subleading soft graviton theorem has been related to
the Ward identity of the superrotation algebra (xapec, Lysov,

Pasterski, Strominger, 2014] [Campiglia, Laddha, 2015]
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The bms3 algebra

In 3d : Poincaré ~ so(2,1) ® R3. The Poincaré algebra is

l[Rm,Rn] = (m - n)Rm+n7
I[Rm,Tn] = (m - n)Tm+n,
i[Tm,Tn] = 0, mn=-1,0,1.

1+2 Translations Ty = 0¢; T1 +T_1 = 0x, I(Th —T_1) = 0y
1+2 Lorentz transformations Ry = d4; Ry + R_1, i(R1 —R_1)
The algebra can be promoted as an asymptotic symmetry

algebra of asymptotically flat spacetimes, forne Z :
bms; ~ Superrotations (Ry) ® Supertranslations (Ty)

~ Virasoro ® u(l)

[Ashtekar, Bicak, Schmidt, 1996] [Barnich, G.C., 2007]

The BMS3 group is Diff(S1) Vect(Sl) [Barnich, Oblak, 2014].
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The bmss algebra : comments

Limit from Brown-Henneaux In large ¢ — oo limit,
AdS3 — Minks. The exact symmetries are

contracted as so(2,2) — iso(2,1). The asymptotic
symmetries with Brown-Henneaux/Dirichlet
boundary conditions are contracted as

Vir @ Vir — Superrotations ® Supertranslations

[Barnich, G.C., 2007]

Isomorphism The bmsj3 algebra is also isomorphic to the

infinite-dimensional extension of the 2d Galilean
conformal algebra. (sageni, Gopakumar, 2009)
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4d supertranslations and memories

After the passage of either gravitational waves or null matter
between two detectors placed in the asymptotic null region,
the detectors generically acquire a finite relative
displacement and a finite time shift.

This is the memory effect. Historically, it is refered to as the
linear memory effect for null matter (zeiovich, Poinarey, 19741 and the
non-linear memory or Christodoulou effect for gravitational
WaVes |[Christodoulou, 1991].

Memory effects follow from the existence of the
supertranslation field C(6, ¢) which is effectively shifted by a
supertranslation after the passage of radiation as iceroch, winicour,

o 5rC(0,6) = T(6, ).

Memory effects are a 2.5PN General Relativity effect. ipamour,
Blanchet, 1988]
Memory effects cannot be detected by LIGO.
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More precisely, supertranslation memories follow from an
angle-dependent energy conservation law deduced from
Einstein’s equations integrated over a finite retarded time
interval of J7 : (strominger, Zhiboedoy, 2014]

1 t

4 VAT + D)(Cluy — Cluy) = mluy =l + | duTun,
u

1 :

Tuu = yNzN* + 4nG lim [r2Tmatter]

The supertranslation shift can be constructed from the
radiation flux history. It allows to compute the shift of the
geodesic deviation vector s4, A = 0, ¢

1
SA|U2 - SA|U1 ~ FéAaB(Chlz - C’U1)SB

This is a classical effect of Einstein gravity, O(h°).
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What is the supertranslation field in the bulk?
In 3d, part of the answer is the phase space of analytic
solutions to vacuum Einstein gravity with Dirichlet boundary
conditions : (sarnich, Troessaert, 2010]

u
2

The transformation laws of ©(¢) under bmss is

d52::egwduz——Zdudr4—2(EQ@—% a¢@@®)dud¢+42d¢%

5rR® = R0, +20,RO —203R

This is the coadjoint representation of the Virasoro algebra.

We deduce that O(¢) is the superrotation field itself plus a
zero mode. The zero mode is the mass (a conical defect). In
order to concentrate on the supertranslation field, we set

© = -1 (no conical defect).

This sets to the supertranslation charge to 0 (rest frame).
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The transformation law of Z(¢) under a supertranslation is
then

072 = —0,T—03T.

We deduce that =(¢) is a composite field in terms of the
supertranslation field C(¢) plus a zero mode

E(¢) = 4G] —05(1 +03)C,  orC=T.

The zero mode is attributed to the spin of a massless particle.
It creates a dislocation responsible for closed timelike
curves. So we set J = 0. The metric becomes

ds* = —du® — 2dud(r + C(¢) + 05C(¢)) + r’d¢>.
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ds* = —du® — 2dud(r + C(¢) + 05C(¢)) + r’d¢>.

We switch to static coordinates p =r + 0£C(¢) + C(¢) — C(o),
t=u+p.

The shift of C by its zero mode ensures that the space
coordinate p is not affected by time shifts.

The metric becomes (c.c. Long, 2016
ds* = —dt* + dp* + (p — psu(¢))*d¢?.

In the rest frame, supertranslations only act spatially, except
the zero mode which is a time translation.
Coordinates break down at the supertranslation horizon

p = psi(C) = B2C(9) + C(d) — C(o).
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The metric describes Poincaré vacua

The BMS3 conserved charges are

or = 0 (No momenta)
27
Or = 0 d¢R(¢)a¢pSH
2w
= ) deR(@) (aﬁcw) +C(¢)—C(0>)
27

= —| d¢C(4)(@; +1)dsR(¢) (No Lorentz charges).
0

= All Poincaré charges are zero.

Superrotation charges are non-zero and characterize the
supertranslation field 1-to-1.

= Obstruction at shrinking circle. Existence of a defect.
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Finite supertranslation diffeomorphism

The solution with supertranslation field is diffeomorphic to
Minkowski spacetime.

ds? = —dt? + dx2 + dy? = —dt? + dp® + (p — psu(e))>d¢?
The finite diffeomorphism is

Xs = pcos¢— C(p)coseo+ C'(¢)sing,
Vs = psing—C()sine— C/(¢)cos¢.

It is invertible outside of the supertranslation horizon
p > psu(¢) = C"(¢) + C(9)

It generates superrotation charges Qg = g” doR () psu ().
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Supertranslation horizon

C(¢) = Cos(2¢)
Ys

C(¢) = Cos(3¢)
s

C(¢) = Cos(4¢)
¥s

C(¢) = Cos(5¢)

Ys
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Supertranslation horizon

C(¢) = Sum of 10 random harmonics
Ys

60
40
20

-20
-40

The static gauge for the vacua breaks down at the
supertranslation horizon.

The defect which sources superrotation charges lies in the
interior region.
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Finite supertranslation diffeomorphism

ds® = —dt* + dpZ + p2d¢?® = —dt* + dp* + (p — psu(¢))*d¢*
The finite diffeomorphism is
P2 = (p—C)P?+(C)

(p—C)sing — C’'cos ¢

tan ¢s (p—C)cos¢ + C'sing’

For C = ay cos ¢ + by sin ¢, it is exactly the coordinate change
from polar coordinates around the origin to polar coordinates
around a translated origin by (ax, bx). The metric is preserved
(psu = 0).

Supertranslation diffeomorphisms are generalizations of
“changing the origin of coordinates”.
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Limit from AdS5;

The general metric of Einstein gravity with Brown-Henneaux
boundary conditions is

2 - - + +
ds? - 2977 _ (rax - pE0OITY (g L 0N
r r r

[Bafiados, 10981 It Tepresents AdS3/BTZ/ ... with holographic
gravitons generated by the holographic stress-tensor
T..=L,(x"), T,_=0,T__=L_(x") of adual CFT,.

The flat limit ¢ — oo is well-defined in Null Gaussian
coordinates (samich, Gomberofi, Gonzalez, 20121 . After canceling the
superrotation field and angular momentum (L, = L_) and
taking ¢ — o, L (¢) ~ dypsu(¢) and we find the vacua

ds? = —dt? +dp? + (p — psu(9))2de?

with zero Poincaré charges as a limiting solution of AdSs.
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The finite 4d vacuum supertranslation
We can generalize to 4d. c.c. Long 2016)

After a long analysis, the finite BMS supertranslation
diffeomorphism of Minkowski spacetime is found to be

ts =t +C,0),

Xs = (p— C+ C,0)) sSinf cos ¢ + csc 0 sin $po4C — cos ¢ cos ¢dyC,
Vs = (p—C+Cg,0))sinfsin¢ — csc cos ¢posC — cos ¢ sin pdyC,
Zs = (p—C+Co,0))cosb +sinfdyC.

At past or future null infinity, the infinitesimal version

matches with BMS supertranslations after using the mapping
rule

¢(BMS:)

( _ g(Tstat) Xt 0

(BMS:) aXI(ABMS )
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The Poincaré vacua of Einstein gravity
The resulting metric is
ds? = —dt? + dx? + dy? + dz? = —dt? + dp? + gapd?®*do®,
where 64 =0, ¢ and
daB = (p — C)*vap — 2(p — C)DaDpC + DADCDD"C,
= (p1ac — DaDcC — vacC)7“P (pyps — DpDEC — 1pEC)

We checked that the 10 Poincaré charges are zero. The
superrotation charges are finite and non-trivial.

The metric models the degenerate Poincaré vacuum which
encodes memory effects in Einstein gravity.

Maybe our universe is patched with such vacua, originating
from a pregeometric phase.
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Isometric embedding of the
horizon

C(8,¢) = Ypa.0)(6,8) = 143 Cos(26)
T T

/|

supertranslation

C(6,9) = Y(3,0)(6,

00 1

- | L Y L
. ‘ CERT- z 9ac
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Memories from 4d Gravitational Collapse

The final static (J = 0) metric after spherical gravitational
collapse, if analytic, is diffeomorphic to the Schwarzschild
metric. [No hair theorems]

[Carter, Hawking, Robinson, 1971-1975] [Chrusciel, Costa, 2008] [Alexakis, Ionescu, Klainerman, 2009]

But memory effects accumulate before and during collapse,
so the final metric is in a different BMS vacuum that the
global vacuum.
Two questions :

@ What is the final state of collapse g,.,(M,C(6,¢))?

@ How does the supertranslation field C(6, ) compares to
the final mass M ?
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The Schwarzschild metric

It admits Weyl conformally flat sections. This is manifest in
isotropic coordinates (t, ps, 65, ¢s) :

ds? - Ei_—zf>dt2 + (1 n %)4 (dpg + WABdeAdeB)
T2
where

apd0rde? = db? + sin? 05d¢?,

ps = oo at spatial infinity
M .
ps = & at the event horizon
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The Schwarzschild metric embedded in the
BMS supertranslation vacuum

2
(1 — ZMPS) M\
ds? = —~ ) g2, (142 <dp2 + gABdeAdaB>
M2 2ps
(1+4£
where
das = (pyac —DaDcC —vacC)v“P(pyps — DpDEC — vppC)
ps = (p—C)*>+DaCD*C
Remarks :

@ When C = 0, this is Schwarzschild

@ Obtained by finite supertranslation diffeomorphism

@ The non-trivial Poincaré charges are just the energy M
@ There are superrotation charges quadratic in C
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The Schwarzschild metric with BMS hair

In Comparison Wlth [“Soft hair on black holes”, Hawking, Perry, Strominger, 2016]

@ Agree : The hair is soft (zero energy). Supermomenta
commute with the Hamiltonian.

@ O(hY%), not O(k'). The classical nature of the BMS hair is
rooted in the classical memory effect. The metric are
angles/distances which are classically observable (on the
contrary electromagnetic hair is encoded in phases
measurable only by a quantum apparatus). O(i°)
correction is compatible with quantum theory arguments
allowing for a resolution of Hawking’s paradox vatur, 20091

@ I don’t see how linear/small diffeomorphisms could
capture the hair. A linearized diffeomorphism would give
only the linearized metric, valid close to 3" or 3—. But
non-linear effects in the bulk follow from Einstein’s
equations.
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How much supertranslation hair?

What is the final value of C(9, ¢) ?

Cfinal

It depends upon the fluxes and Bondi mass at J© and 7.
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How much supertranslation hair?

Assuming junction conditions joining J* and J7 iswominger 2013)
and boundary COIlditiOIlS on radiation [Christodoulou, Klainerman, 1993],
Einstein’s equations give

1

_sz (v2 + 2)(C|ﬁnal(97 ¢) — Clin(m — 0,6 + 7))
+oo +oo

= M|fnqr — Mlin + duTyy (0, ¢) — dvTyy(m — 6,6 + )
-0 —0

This is the global angle-dependent energy conservation law
for asy’mptoticaﬂy ﬂat Spacetimes. [Geroch, Winicour, 1980] [Strominger,
Zhiboedov, 2014] [G.C., Long, 2016]

Spherically symmetric collapse of a null shell
= Clfing = 0 (metric described by Vaidya metric).
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How much supertranslation hair?
Non-spherically symmetric collapse of a null shell is
constrained by the null energy condition

Tw(b,¢) = 0.
Assuming all matter arrives at v= 0,

M+ M3 P Ym0, ¢) _
Ty = ( 47T’r2 ! +O(r 3)) 5(v)

we get the complicated constraint

ZPI,mYI,m(ea ¢) > -1
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How much supertranslation hair?

In the ideal case (no outgoing radiation, no initial mass, only
ingoing collapsing radiation), the solution to the global
energy conservation law is

1)€
Mggm 7 _ 1 1)(€ Z)Pl,mYI,m(97¢)

with the constraint

ZPl,mYl,m(0>¢) > -1
which bounds C from above and below (from compactness).
So, for a general non-spherically symmetric collapse we

expect (think binary black hole merger or accretion)

IC(6,9) ~M (leading order classical effect)

G. Compere (ULB) 34/40



Competition between supertranslation horizon
and infinite redshift surface

2
ds®> = 8%32&2 + (1 + 2Mp5)4 (dp2 + gABdeAdeB)
s

where p? = (p — C)? + DACDAC. The infinite redshift surface is
located at p = py(0, ¢) solution to
M2

g = (o~ C)? + D,CDAC.

@ When C « M, this is a black hole with event horizon

e When D,CDAC > MT2, there is no infinite redshift surface.
= Probable violation of the weak cosmic censorship

@ But it turns out that for all cases studied, DACDAC < MTZ
from the weak energy condition bound!
= New test of the weak cosmic censorship
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Supertranslation and Killing horizons
Simplest axisymmetric ¢ = 2 case :

—M(3 cos?0—1)<C(0,¢) < 1\(;[(3 cos?6—1)

1

Figure: Upper bound : Figure: Lower bound :
C0,¢) = ¥ (3cos?29—1). C(0,¢) = —15(3cos? 0 —1).

The Killing horizon py can be partly hidden behind the
supertranslation horizon pgy.
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On the 4d Superrotation field

What about the vacua with supertranslation and
superrotation fields?

We need to apply a finite combined supertranslation and
superrotation diffeomorphism to Minkowski :

_ 0Xg ox5
gMV(7227C(272)7G(z)7u7 r) = aTZnaﬁ(’YZE’r)TX’S/.
with
~ _ 1
u - m<u+0(z,z))+0<r)
r = O(r)
zZ = G(z)+0<1>
r
_ == 1
z = G(z)+0(r>
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The diffeomorphism can be resumed after using 2 tricks
@ Use Weyl rescalings (sarmich, Troessaert, 2010]
@ Use map to Minkowski foliated by null planes so that ~,;
is taken care of by the Weyl rescaling

The final metric is c.c, Long, 20161

9w (122,C(2,2),G(2),U,T) = G (122, C22 (U, 2,2),T)
where
3G 3(02G)*
.G 2(0,G)?
The Schwarzian derivative term naturally arises as in 3d

examples. [ alog, Fener, Palla, 19971 It iS the stress-tensor of a free
boson ¢,G = e%@),

CZZ = —2D2§ZC - (u + C) ( ) 5 Czi = 0

Tzz =

1 /3G 3(02G)? 1 -
-3 (%5 - 3Zak) - §l0w? - 3ot Ta-o0.
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The Bondi mass decreases with retarded time u,

oM = —éTABTAB.

= Unbounded negative energy. Discard by imposing the
Dirichlet boundary condition T, = 0.

The symplectic structure at 3+ is

Q4+ [0C, 6¢;6C, 61p] = dud?Q6Cap A 6TAB.

1
4G )5+
= The superrotation field is a source conjugated to the

supertranslation field.

Conserved superrotation charges for the physical vacua
exist, Qg ~ {4 02C02C. Similar to AdS prescription witen, 1908 :
“Turning on a source to compute a vev”.
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Summary of the results

@ The metrics for the Poincaré vacua with supertranslation
field in 3d and 4d gravity have been derived. It is unclear
whether or not the 4d vacua are physical.

@ In the center-of-mass frame, supertranslations are
spatial, except the zero mode (time shift).

@ Memory effects lead to a different final state of collapse :
the Schwarzschild black hole with supertranslation hair.
The hair is a large non-linear O(i°) and O(M) effect which
is computable from past history of evolution and collapse.

@ Much physics and maths remains to be understood.
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