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On this talk :

Fascinating properties and algebra of symmetries of
asymptotically flat spacetimes
4dñ 3dñ 4d. Many lessons can be drawn from 3d to
help understand 4d physics.
Interplay between various concepts : asymptotic
symmetries, gravitational memory, holography, black
holes
Tackle classical problems : gravitational collapse, cosmic
censorship, black hole information paradox
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Asymptotically flat spacetimes

No black hole in 3d Einstein-positive matter theory. [Ida, 2000]

G. Compère (ULB) 4 / 40



Preambule : the BMS3 and BMS4 groups
The space of solutions to Einstein gravity with “reasonable”
asymptotically flat boundary conditions can be expanded
close to null infinity in a fixed gauge.

ds2 “ ´du2 ´ 2dudr ` r2d2Ω` . . .

“ ´dv2 ` 2dvdr ` r2d2Ωantipodal ` . . .

The group of diffeomorphisms which
preserve the form of the asymptotic metric, mapping one
metric to another but preserving the gauge,
are associated with finite and non-trivial canonical
charges

is the asymptotic symmetry group.
Using “reasonable” boundary conditions, the asymptotic
symmetry group was found to be the BMS4 group in 4d [Bondi,

van der Burg, Metzner, 1962] [Sachs, 1962] and the BMS3 group in 3d [Ashtekar, Bicak,

Schmidt, 1996]
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What reasonable boundary conditions may
mean?

4d Admit Kerr, gravitational waves and
electromagnetic fields
Positive energy
Allow to describe memory effects [Zeldovich, Polnarev,

1974] [Christodoulou, 1991]

Allow to describe a semi-classical S-matrix
which obeys all known theorems [Weinberg, 1965]

[Cachazo, Strominger, 2014]

Allow for small perturbations to decay
(non-linear stability) [Christodoulou, Klainerman, 1993]

3d Admit “appropriate” matter fields
Positive energy
Flat region can be embedded in AdS3
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A translation in Minkowski spacetime

pt,x,y, zq

Bz

pt, r, θ, φq

cos θBr ´
1
r sin θBθ

pu, r, θ, φq, retarded time u “ t´ r

´cos θBu ` cos θBr ´
1
r sin θBθ
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The bms4 algebra

bms4 » sop3,1q i Supertranslations

Supertranslations are either translations or pure
supertranslations. Pure supertranslations are (abelian)
“higher harmonic angle-dependent translations”

Tpθ, φqBu `
1
2∇

2TBr ´
1
r pBθTBθ `

1
sin2 θ

BφTBφq ` . . .

The solutions to ∇2p∇2 ` 2qT “ 0 are the translations. Those
are the ` “ 0 and ` “ 1 spherical harmonics, T “ 1, T “ cos θ,
T “ sin θ cosφ, T “ sin θ sinφ.
What are supertranslations in the bulk ?
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The extended bms4 algebra

[Barnich, Troessaert, 2010]

bms4 » Superrotations˚ i Supertranslations˚

where

Superrotations˚ » Vir˚ ‘ Vir˚,
Supertranslations˚ » Regular supert.‘Meromorphic supert.

The Lorentz subalgebra

sop3,1q » slp2,Rq ‘ slp2,Rq Ă Vir˚ ‘ Vir˚

is generated by global conformal transformations on the
sphere. The rest of the algebra has generators which contain
meromorphic functions, with poles on S2.
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The extended bms4 algebra : comments

The algebra is not realized as asymptotic symmetry algebra,
at least in the standard sense :

The Kerr black hole has infinite meromorphic
supertranslation momenta. [Barnich, Troessaert, 2010]
Minkowski acted upon with a finite superrotation
diffeomorphism has negative energy. [G.C., Long, 2016]

The superrotations still have a role to play :
Superrotation charges are finite and can be non-trivial
[Barnich, Troessaert, 2011] [Flanagan, Nichols, 2015] [G.C., Long, 2016]

The subleading soft graviton theorem has been related to
the Ward identity of the superrotation algebra [Kapec, Lysov,

Pasterski, Strominger, 2014] [Campiglia, Laddha, 2015]
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The bms3 algebra
In 3d : Poincaré » sop2,1q i R3. The Poincaré algebra is

irRm,Rns “ pm´ nqRm`n,
irRm,Tns “ pm´ nqTm`n,
irTm,Tns “ 0, m,n “ ´1,0,1.

1+2 Translations T0 “ Bt ; T1 ` T´1 “ Bx, ipT1 ´ T´1q “ By
1+2 Lorentz transformations R0 “ Bφ ; R1 `R´1, ipR1 ´R´1q
The algebra can be promoted as an asymptotic symmetry
algebra of asymptotically flat spacetimes, for n P Z :

bms3 » Superrotations pRnq i Supertranslations pTnq
» Virasoro i zup1q

[Ashtekar, Bicak, Schmidt, 1996] [Barnich, G.C., 2007]

The BMS3 group is DiffpS1q ˙ VectpS1q [Barnich, Oblak, 2014].
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The bms3 algebra : comments

Limit from Brown-Henneaux In large `Ñ8 limit,
AdS3 ÑMink3. The exact symmetries are
contracted as sop2,2q Ñ isop2,1q. The asymptotic
symmetries with Brown-Henneaux/Dirichlet
boundary conditions are contracted as

Vir‘ VirÑ Superrotationsi Supertranslations

[Barnich, G.C., 2007]

Isomorphism The bms3 algebra is also isomorphic to the
infinite-dimensional extension of the 2d Galilean
conformal algebra. [Bagchi, Gopakumar, 2009]
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4d supertranslations and memories
After the passage of either gravitational waves or null matter
between two detectors placed in the asymptotic null region,
the detectors generically acquire a finite relative
displacement and a finite time shift.
This is the memory effect. Historically, it is refered to as the
linear memory effect for null matter [Zeldovich, Polnarev, 1974] and the
non-linear memory or Christodoulou effect for gravitational
waves [Christodoulou, 1991].
Memory effects follow from the existence of the
supertranslation field Cpθ, φq which is effectively shifted by a
supertranslation after the passage of radiation as [Geroch, Winicour,

1981]
δTCpθ, φq “ Tpθ, φq.

Memory effects are a 2.5PN General Relativity effect. [Damour,
Blanchet, 1988]

Memory effects cannot be detected by LIGO.
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More precisely, supertranslation memories follow from an
angle-dependent energy conservation law deduced from
Einstein’s equations integrated over a finite retarded time
interval of I` : [Strominger, Zhiboedov, 2014]

´
1
4∇

2p∇2 ` 2qpC|u2 ´C|u1q “m|u2 ´m|u1 `
ż u1

u2
duTuu,

Tuu ”
1
4NzzN

zz ` 4πG lim
rÑ8

rr2Tmatteruu s.

The supertranslation shift can be constructed from the
radiation flux history. It allows to compute the shift of the
geodesic deviation vector sA, A “ θ, φ

sA|u2 ´ sA|u1 „
1
r B

ABBpC|u2 ´C|u1qsB

This is a classical effect of Einstein gravity, Op~0q.
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What is the supertranslation field in the bulk ?
In 3d, part of the answer is the phase space of analytic
solutions to vacuum Einstein gravity with Dirichlet boundary
conditions : [Barnich, Troessaert, 2010]

ds2 “ Θpφqdu2 ´ 2dudr ` 2
´

Ξpφq `
u
2BφΘpφq

¯

dudφ` r2dφ2.

The transformation laws of Θpφq under bms3 is

δT,RΘ “ RBφΘ` 2BφRΘ´ 2B3φR

This is the coadjoint representation of the Virasoro algebra.
We deduce that Θpφq is the superrotation field itself plus a
zero mode. The zero mode is the mass (a conical defect). In
order to concentrate on the supertranslation field, we set

Θ “ ´1 pno conical defectq.

This sets to the supertranslation charge to 0 (rest frame).
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The transformation law of Ξpφq under a supertranslation is
then

δTΞ “ ´BφT ´ B3φT.

We deduce that Ξpφq is a composite field in terms of the
supertranslation field Cpφq plus a zero mode

Ξpφq “ 4GJ ´ Bφp1` B2φqC, δTC “ T.

The zero mode is attributed to the spin of a massless particle.
It creates a dislocation responsible for closed timelike
curves. So we set J “ 0. The metric becomes

ds2 “ ´du2 ´ 2dudpr `Cpφq ` B2φCpφqq ` r2dφ2.
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ds2 “ ´du2 ´ 2dudpr `Cpφq ` B2φCpφqq ` r2dφ2.

We switch to static coordinates ρ “ r ` B2φCpφq `Cpφq ´Cp0q,
t “ u` ρ.
The shift of C by its zero mode ensures that the space
coordinate ρ is not affected by time shifts.
The metric becomes [G.C., Long, 2016]

ds2 “ ´dt2 ` dρ2 ` pρ´ ρSHpφqq2dφ2.

In the rest frame, supertranslations only act spatially, except
the zero mode which is a time translation.
Coordinates break down at the supertranslation horizon

ρ “ ρSHpCq ” B2φCpφq `Cpφq ´Cp0q.
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The metric describes Poincaré vacua
The BMS3 conserved charges are

QT “ 0 (No momenta)

QR “

ż 2π

0
dφRpφqBφρSH

“

ż 2π

0
dφRpφqBφ

´

B2φCpφq `Cpφq ´Cp0q
¯

“ ´

ż 2π

0
dφCpφqpB2φ ` 1qBφRpφq (No Lorentz charges).

ñ All Poincaré charges are zero.
Superrotation charges are non-zero and characterize the
supertranslation field 1-to-1.
ñ Obstruction at shrinking circle. Existence of a defect.
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Finite supertranslation diffeomorphism

The solution with supertranslation field is diffeomorphic to
Minkowski spacetime.

ds2 “ ´dt2 ` dx2s ` dy2s “ ´dt2 ` dρ2 ` pρ´ ρSHpφqq2dφ2

The finite diffeomorphism is

xs “ ρcosφ´Cpφqcosφ`C1pφq sinφ,
ys “ ρ sinφ´Cpφq sinφ´C1pφqcosφ.

It is invertible outside of the supertranslation horizon

ρ ą ρSHpφq “ C2pφq `Cpφq

It generates superrotation charges QR “
ş2π
0 dφR1pφqρSHpφq.
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Supertranslation horizon
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C(ϕ) = Cos(2ϕ)
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C(ϕ) = Cos(5ϕ)
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Supertranslation horizon

-200 -100 0 100

-60

-40

-20

0

20

40

60

xs

ys

C(ϕ) = Sum of 10 random harmonics

The static gauge for the vacua breaks down at the
supertranslation horizon.
The defect which sources superrotation charges lies in the
interior region.
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Finite supertranslation diffeomorphism

ds2 “ ´dt2 ` dρ2s ` ρ2sdφ2 “ ´dt2 ` dρ2 ` pρ´ ρSHpφqq2dφ2

The finite diffeomorphism is

ρ2s “ pρ´Cq2 ` pC1q2,

tanφs “
pρ´Cq sinφ´C1 cosφ
pρ´Cqcosφ`C1 sinφ.

For C “ ax cosφ` bx sinφ, it is exactly the coordinate change
from polar coordinates around the origin to polar coordinates
around a translated origin by pax,bxq. The metric is preserved
(ρSH “ 0).
Supertranslation diffeomorphisms are generalizations of
“changing the origin of coordinates”.
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Limit from AdS3
The general metric of Einstein gravity with Brown-Henneaux
boundary conditions is

ds2 “ `2
dr2
r2 ´

´

rdx` ´ `2L´px
´qdx´
r

¯´

rdx´ ´ `2L`px
`qdx`
r

¯

[Bañados, 1998] It represents AdS3{BTZ{ . . . with holographic
gravitons generated by the holographic stress-tensor
T`` “ L`px`q, T`´ “ 0, T´´ “ L´px´q of a dual CFT2.
The flat limit `Ñ8 is well-defined in Null Gaussian
coordinates [Barnich, Gomberoff, Gonzalez, 2012] . After canceling the
superrotation field and angular momentum (L` “ L´) and
taking `Ñ8, L`pφq » BφρSHpφq and we find the vacua

ds2 “ ´dt2 ` dρ2 ` pρ´ ρSHpφqq2dφ2

with zero Poincaré charges as a limiting solution of AdS3.
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The finite 4d vacuum supertranslation
We can generalize to 4d. [G.C., Long, 2016]
After a long analysis, the finite BMS supertranslation
diffeomorphism of Minkowski spacetime is found to be

ts “ t`Cp0,0q,
xs “ pρ´C`Cp0,0qq sin θ cosφ` csc θ sinφBφC´ cos θ cosφBθC,
ys “ pρ´C`Cp0,0qq sin θ sinφ´ csc θ cosφBφC´ cos θ sinφBθC,
zs “ pρ´C`Cp0,0qqcos θ ` sin θBθC.

At past or future null infinity, the infinitesimal version
matches with BMS supertranslations after using the mapping
rule

ξ
pBMS˘q

T “ ξ
pstatq
T ´ δTxµpBMS˘q

B

Bxµ
pBMS˘q
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The Poincaré vacua of Einstein gravity
The resulting metric is

ds2 “ ´dt2 ` dx2s ` dy2s ` dz2s “ ´dt2 ` dρ2 ` gABdθAdθB,

where θA “ θ, φ and

gAB “ pρ´Cq2γAB ´ 2pρ´CqDADBC`DADECDBDEC,
“ pργAC ´DADCC´ γACCqγCDpργDB ´DDDBC´ γDBCq

We checked that the 10 Poincaré charges are zero. The
superrotation charges are finite and non-trivial.
The metric models the degenerate Poincaré vacuum which
encodes memory effects in Einstein gravity.
Maybe our universe is patched with such vacua, originating
from a pregeometric phase.
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Isometric embedding of the supertranslation
horizon
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Memories from 4d Gravitational Collapse

The final static (J “ 0) metric after spherical gravitational
collapse, if analytic, is diffeomorphic to the Schwarzschild
metric. [No hair theorems]
[Carter, Hawking, Robinson, 1971-1975] [Chrusciel, Costa, 2008] [Alexakis, Ionescu, Klainerman, 2009]

But memory effects accumulate before and during collapse,
so the final metric is in a different BMS vacuum that the
global vacuum.
Two questions :

What is the final state of collapse gµνpM,Cpθ, φqq ?
How does the supertranslation field Cpθ, φq compares to
the final mass M ?
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The Schwarzschild metric

It admits Weyl conformally flat sections. This is manifest in
isotropic coordinates pt, ρs, θs, φsq :

ds2 “ ´

´

1´ M
2ρs

¯2

´

1` M
2ρs

¯2dt
2 `

ˆ

1` M
2ρs

˙4
´

dρ2s ` γABdθAdθB
¯

where

γABdθAdθB “ dθ2s ` sin2 θsdφ2s ,
ρs “ 8 at spatial infinity

ρs “
M
2 at the event horizon
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The Schwarzschild metric embedded in the
BMS supertranslation vacuum

ds2 “ ´

´

1´ M
2ρs

¯2

´

1` M
2ρs

¯2dt
2 `

ˆ

1` M
2ρs

˙4
´

dρ2 ` gABdθAdθB
¯

where

gAB “ pργAC ´DADCC´ γACCqγCDpργDB ´DDDBC´ γDBCq
ρ2s “ pρ´Cq2 `DACDAC

Remarks :
When C “ 0, this is Schwarzschild
Obtained by finite supertranslation diffeomorphism
The non-trivial Poincaré charges are just the energy M
There are superrotation charges quadratic in C
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The Schwarzschild metric with BMS hair
In comparison with [“Soft hair on black holes”, Hawking, Perry, Strominger, 2016]

Agree : The hair is soft (zero energy). Supermomenta
commute with the Hamiltonian.
Op~0q, not Op~1q. The classical nature of the BMS hair is
rooted in the classical memory effect. The metric are
angles/distances which are classically observable (on the
contrary electromagnetic hair is encoded in phases
measurable only by a quantum apparatus). Op~0q
correction is compatible with quantum theory arguments
allowing for a resolution of Hawking’s paradox [Mathur, 2009]

I don’t see how linear/small diffeomorphisms could
capture the hair. A linearized diffeomorphism would give
only the linearized metric, valid close to I` or I´. But
non-linear effects in the bulk follow from Einstein’s
equations.
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How much supertranslation hair ?

What is the final value of Cpθ, φq ?

It depends upon the fluxes and Bondi mass at I` and I´.
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How much supertranslation hair ?

Assuming junction conditions joining I`´ and I´` [Strominger, 2013]

and boundary conditions on radiation [Christodoulou, Klainerman, 1993],
Einstein’s equations give

´
1
4∇

2p∇2 ` 2qpC|finalpθ, φq ´C|inpπ ´ θ, φ` πqq

“m|final ´m|in `
ż `8

´8

duTuupθ, φq ´
ż `8

´8

dvTvvpπ ´ θ, φ` πq

This is the global angle-dependent energy conservation law
for asymptotically flat spacetimes. [Geroch, Winicour, 1980] [Strominger,
Zhiboedov, 2014] [G.C., Long, 2016]

Spherically symmetric collapse of a null shell
ñ C|final “ 0 (metric described by Vaidya metric).
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How much supertranslation hair ?

Non-spherically symmetric collapse of a null shell is
constrained by the null energy condition

Tvvpθ, φq ě 0.

Assuming all matter arrives at v “ 0,

Tvv “
ˆM `M

ř

Pl,mYl,mpθ, φq
4πr2 `Opr´3q

˙

δpvq

we get the complicated constraint
ÿ

Pl,mYl,mpθ, φq ě ´1.

G. Compère (ULB) 33 / 40



How much supertranslation hair ?
In the ideal case (no outgoing radiation, no initial mass, only
ingoing collapsing radiation), the solution to the global
energy conservation law is

Cpθ, φq “M
ÿ

`ě2,m

4p´1q`
p`´ 1q`p`` 1qp`` 2qPl,mYl,mpθ, φq

with the constraint
ÿ

Pl,mYl,mpθ, φq ě ´1.

which bounds C from above and below (from compactness).
So, for a general non-spherically symmetric collapse we
expect (think binary black hole merger or accretion)

|Cpθ, φq| »M (leading order classical effect)
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Competition between supertranslation horizon
and infinite redshift surface

ds2 “ ´

´

1´ M
2ρs

¯2

´

1` M
2ρs

¯2dt
2 `

ˆ

1` M
2ρs

˙4
´

dρ2 ` gABdθAdθB
¯

where ρ2s “ pρ´Cq2 `DACDAC. The infinite redshift surface is
located at ρ “ ρHpθ, φq solution to

M2

4 “ pρH ´Cq2 `DACDAC.

When C !M, this is a black hole with event horizon
When DACDAC ą M2

4 , there is no infinite redshift surface.
ñ Probable violation of the weak cosmic censorship
But it turns out that for all cases studied, DACDAC ď M2

4
from the weak energy condition bound !
ñ New test of the weak cosmic censorship
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Supertranslation and Killing horizons
Simplest axisymmetric ` “ 2 case :

´
M
12p3cos

2 θ ´ 1q ď Cpθ, φq ď M
6 p3cos

2 θ ´ 1q

Figure: Upper bound :
Cpθ, φq “ M

6 p3cos2 θ ´ 1q.
Figure: Lower bound :
Cpθ, φq “ ´M

12 p3cos2 θ ´ 1q.

The Killing horizon ρH can be partly hidden behind the
supertranslation horizon ρSH.
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On the 4d Superrotation field
What about the vacua with supertranslation and
superrotation fields ?
We need to apply a finite combined supertranslation and
superrotation diffeomorphism to Minkowski :

gµνpγzz̄,Cpz, z̄q,Gpzq,u, rq “
Bxαs
Bxµ ηαβpγzz̄, rq

Bxβs
Bxν .

with

u “

b

BzGBz̄Ḡ
´

u`Cpz, z̄q
¯

`O
ˆ

1
r

˙

r “ Oprq

z “ Gpzq `O
ˆ

1
r

˙

z̄ “ Ḡpz̄q `O
ˆ

1
r

˙
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The diffeomorphism can be resumed after using 2 tricks
Use Weyl rescalings [Barnich, Troessaert, 2010]

Use map to Minkowski foliated by null planes so that γzz̄
is taken care of by the Weyl rescaling

The final metric is [G.C, Long, 2016]

gµνpγzz̄,Cpz, z̄q,Gpzq,u, rq “ gµνpγzz̄,Czzpu, z, z̄q, rq

where

Czz “ ´2DzBzC´ pu`Cq
ˆ

B3zG
BzG

´
3pB2zGq2
2pBzGq2

˙

, Czz̄ “ 0.

The Schwarzian derivative term naturally arises as in 3d
examples. [ Balog, Feher, Palla, 1997] It is the stress-tensor of a free
boson BzG “ eψpzq,

Tzz “ ´
1
2

ˆ

B3zG
BzG

´
3pB2zGq2
2pBzGq2

˙

“
1
4pBzψq

2 ´
1
2BzBzψ, Tz̄z “ 0.
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The Bondi mass decreases with retarded time u,

BuM “ ´
1
2T

ABTAB.

ñ Unbounded negative energy. Discard by imposing the
Dirichlet boundary condition Tzz “ 0.
The symplectic structure at I` is

ΩI`rδC, δψ; δC, δψs ” ´ 1
4G

ż

I`

dud2Ω δCAB ^ δTAB.

ñ The superrotation field is a source conjugated to the
supertranslation field.
Conserved superrotation charges for the physical vacua
exist, QR »

ş

S B
2
zCB2z̄C. Similar to AdS prescription [Witten, 1998] :

“Turning on a source to compute a vev”.

G. Compère (ULB) 39 / 40



Summary of the results

The metrics for the Poincaré vacua with supertranslation
field in 3d and 4d gravity have been derived. It is unclear
whether or not the 4d vacua are physical.
In the center-of-mass frame, supertranslations are
spatial, except the zero mode (time shift).
Memory effects lead to a different final state of collapse :
the Schwarzschild black hole with supertranslation hair.
The hair is a large non-linear Op~0q and OpMq effect which
is computable from past history of evolution and collapse.
Much physics and maths remains to be understood.
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