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The idea in a nutshell

• Action on manifold with boundary has two pieces:

I = Ibulk + Ibdry

Boundary piece needed
– Classically: to allow extrema
– Quantum mechanically: to ensure proper “sewing” of path integrals

• Gauge symmetries of Ibulk will typically be broken by Ibdry

– Formerly nonphysical degrees of freedom become dynamical at boundary

• Action for new degrees of freedom is induced from Ibdry

• Results for (2+1)-dimensional gravity:
– Asymptotically AdS: Liouvulle action
– Asymptotically flat: action related to Liouville, Hill’s equation

(work in progress . . . )



(2 + 1)-dimensional gravity

Two tactics

• Start with Chern-Simons formulation
– simple decomposition A = g−1dg + g−1Āg

– standard reduction to WZNW model at boundary (plus constraints)
– boundary term known to be right for “sewing”
– but doesn’t generalize to higher dimensions

• Use standard metric or vielbein formulation
– no simple decomposition into gauge-fixed fields + diffeos
– boundary theory may not be local
– but presumably more widely applicable



The AdS case

Fefferman-Graham expansion of metric:

ds2 = −`2dρ2 + gijdx
idxj, with gij = e2ρ(0)
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Diffeomorphism:
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New spatial metric:

gij = e2ρeϕ
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(Liouville stress-energy tensor)



Action
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Original boundary at ρ = ρ̄; new boundary at
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Compute new normal, extrinsic curvature, induced metric: find
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(Liouville action in limit λ→ 0)



What does this mean?

• CFT with right central charge to match Brown-Henneaux:

Cardy formula gives correct entropy

• Coupling “classical” source at boundary gives right Hawking radiation
(Emparan & Sachs)

• Minimal: “effective description” of black hole states

• Maximal: Liouville theory “really” describes black hole states

Liouville theory has two sectors:

– “normalizable states”: ∆ ≥ c−1
24 , ceff = 1

⇔ BTZ black holes
– “nonnormalizable states”: fill in gap inf ∆, ceff = c

⇔ point particles/conical defects



The asymptotically flat case (work in progress∗. . . )

Again partially gauge-fix metric: Bondi coordinates

ds2 = −2dudr + sdu2 + 2tdudφ+ r2e2ϕdφ2

First problem: need right boundary terms

δIgrav = bulk piece

+
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∫
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∗Warning: do not believe all factors of 2



From field equations (Barnich & Troessaert)

s = −2r∂uϕ+ e−2ϕ
[
−(∂φϕ)2 + 2∂2

φϕ+ Θ
]

with ∂uΘ = 0

In this form, can integrate eϕ(s− r∂rs)δϕ; find
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Not quite Liouville action, but has interesting properties. . .

Let χ = e−ϕ/2

Then equations of motion are ∂2
φχ−

Θ

4
χ = 0

(Hill’s equation)



Action for diffeomorphisms: start with flat base metric

ds2 = −2dūdr̄ + dū2 + r̄2dφ̄2

Diffeomorphism
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Confirm form

s = −2r∂uϕ+ e−2ϕ
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Boundary action is then
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What can we say about this action?

• No u derivatives (why?)

• Equations of motion are Hill’s equation

∂2
φχ+

1

2
{φ0;φ}χ = 0

Schwarzian derivative form of potential⇒ periodicity of solutions

• Consider the auxiliary two-dimensional metric

ds̃2 =
1

β

(
dudφ+ e−ϕdu2

)
If ∂uϕ = 0, then
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(Polyakov action with c = 6/G)

⇒ connections with CFT, but to be worked out . . .


