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The idea in a nutshell

e Action on manifold with boundary has two pieces:

I = Iy + Ipary

Boundary piece needed

— Classically: to allow extrema
— Quantum mechanically: to ensure proper “sewing” of path integrals

e Gauge symmetries of Ip, will typically be broken by Ipq,
— Formerly nonphysical degrees of freedom become dynamical at boundary

e Action for new degrees of freedom is induced from Ipg,

e Results for (2+1)-dimensional gravity:
— Asymptotically AdS: Liouvulle action

— Asymptotically flat: action related to Liouville, Hill's equation
(work in progress ...)



(2 4+ 1)-dimensional gravity
Two tactics

e Start with Chern-Simons formulation
— simple decomposition A = g~ ldg + g1 Ag
— standard reduction to WZNW model at boundary (plus constraints)
— boundary term known to be right for “sewing”
— but doesn’t generalize to higher dimensions

e Use standard metric or vielbein formulation
— no simple decomposition into gauge-fixed fields + diffeos
— boundary theory may not be local
— but presumably more widely applicable



The AdS case

Fefferman-Graham expansion of metric:

;. 4 : (0) (2)
ds® = —0%dp? + gijdz*dx?, with g;; = engij(m) +gij(x) + ...

Field equations:
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Diffeomorphism:
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Form invariance of metric:
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New spatial metric:
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(Liouville stress-energy tensor)



Action
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(Liouville action in limit A — 0)



What does this mean?

e CFT with right central charge to match Brown-Henneaux:
Cardy formula gives correct entropy

e Coupling “classical” source at boundary gives right Hawking radiation
(Emparan & Sachs)

e Minimal: “effective description” of black hole states

e Maximal: Liouville theory “really” describes black hole states

Liouville theory has two sectors:
— “normalizable states™ A > 02;41, Ceff = 1
< BTZ black holes
— “nonnormalizable states”: fillin gap inf A, ce = ¢

& point particles/conical defects



The asymptotically flat case (work in progress™...)

Again partially gauge-fix metric: Bondi coordinates

ds? = —2dudr + sdu?® + 2tdudg + r?e*Pdo?

First problem: need right boundary terms
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*Warning: do not believe all factors of 2



From field equations (Barnich & Troessaert)

s = —2r0yp + e 2% {—(8@0)2 + Zqubgo + @} with 0,0 = 0

In this form, can integrate e¥ (s — r9ys)dy; find
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Not quite Liouville action, but has interesting properties. ..

Let x = e~ #/2
Then equations of motion are 8(]25x — ZX =0

(Hill's equation)



Action for diffeomorphisms: start with flat base metric

ds? = —2dudr + du?® + F2dop>

Diffeomorphism
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Confirm form
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Boundary action is then
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What can we say about this action?

e No u derivatives (why?)
e Equations of motion are Hill's equation
2 ]_
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Schwarzian derivative form of potential = periodicity of solutions
e Consider the auxiliary two-dimensional metric
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(Polyakov action with ¢ = 6/G)
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=> connections with CFT, but to be worked out ...



