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The RFP plasma exhibits a fascinating set of magnetic self-

organization phenomena el

Magnetic Relaxation Event Cycle
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Magnetic self-organization in natural plasmas
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The MST RFP at UW-Madison -

Magnetic induction is used to drive a large current in the plasma
— Plasma current, I, <0.6 MA ; B<0.5T
— Externally applied inductive ohmic heating is 5-10 MW (input to electrons)
— T.~T.<2keV, despite weak i-e collisional coupling (n ~ 1019 m=3)
— Minor radius, a = 50 cm ; ion gyroradius, p; = 1 cm ; ¢/, = 10 cm
B < 25% ; Lundquist number § =5 x10%°
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Reversed BT forms with sufficiently large plasma current, and

persists as long as induction is maintained VST
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However, a reversed-BT should not be an equilibrium

0 radius, r

reversal implies:

= Jo #0 , which for finite n
J
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(non steady-state)




An imbalance in Ohm’s law yields a similar conclusion

+ Ohmslaw: E4+V xB=nJ = E|=n1J and V. =E x B/B?

e There is less current in the core than could be driven by E);, and more current in
the edge than should be driven by E|,

= current profile is flatter than it “should” be
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The RFP as a minimum energy configuration

* Minimize magnetic energy, with constrained K = 2(1)1(1)2
global “magnetic helicity” K = fA-BdV yields o,
V xB =AB A= constant (J.B. Taylor, 1974) o
1
Solution in a cylinder: “Bessel Function Model”
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Current profile exhibits a cycle of slow peaking followed by an

abrupt flattening during impulsive relaxation events L \iST 4
A - /— magnetic relaxation cycles
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Relaxation cycles result from quasi-periodic impulsive magnetic

reconnection events (a.k.a. sawteeth) ST ¢

Toroidicity allows distinct k;; = 0 resonant modes at many radii in the plasma:

m = poloidal mode number
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A dynamo-like emf arrests the peaking tendency of the current

profile, i.e., this is how tearing instability saturates in the RFP €z

- With non-axisymmetric quantities, B=(B)+B B~ I;(r)ei(mH—nsb)
(i.e., tearing instability): P R B
toroidal spatial —— <<
surface fluctuation <B>
average

- Then mean-field parallel Ohm’s law becomes:

=2 il Correlated product of fluctuations
<E>II — 77<J>II = <V X B>|| Epresents nonlinear saturation

at equilibrium magnitude

dynamo-like emf
from tearing instability



Nonlinear, resistive MHD provides a base model for the origin of

the dynamo VST
E=nJ-SVxB S=T—R= Lundquist number
Ta
oV 2
P;=—SPV'VV+SJXB+PmV A P, =v/m = Magnetic Prandtl
number

S=6x103

Dynamo emf
maintains the
current profile
close to marginal
stability.

1
Ohm’ s Law

nonlinear dynamo fromm—vyvy —
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V. B = fluctuations associated with tearing modes
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Plasma (ion) flow also affected during relaxation events

ST

e Implies coupled electron and ion momentum relaxation
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Profile of the parallel flow also flattens during relaxation events,

LS 1g
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Computational model for tearing-relaxation recently extended to

include two-fluid effects el

* Nonlinear multi-mode evolution solved using NIMROD

Ohm’s law: E=—V><B+ JXB——VPe aJ

/ 8t
dV

Momentum:  nm, — =JxB-Vp-V-11,,.,-V-vom;W
5

Relaxation process couples electron and ion momentum balance




Generalized Ohm’s law permits several possible mechanisms for

dynamo action VST 4

« The MHD and Hall mechanisms are measured to be significant, summing together
in a way that has not been completely diagnosed

E-n)=
— 1 1
VXB+enJXB envpe
1 1 1
“MHD” “Hall”  “Diamagnetic” (V p.)

There’s also a “kinetic” dynamo, i.e., stochastic transport of current



Probe measurements in the edge region show that both the

MHD and Hall dynamo emf terms are important VST 4

V/m




Measurements of the “total” dynamo emf show a balance in

Ohm’s law

(E)—n{J ) ==V, xB),=(E-B),/B o Magnetic Colls
L g © Capacitive Probe
total” dynamo emf P :
~ » |
- Boron Nitride
Measured Balance of Parallel Ohm’s Law — e
15 T T T T T
- Total Dynamo s
10
8 -
_. 6
'5 1 1 1 1 1 §E, Z:
06 -04 -02 00 02 04 06 ok
Time From Sawtooth (ms) -2
-0.6

-0.0
Time From Sawtooth (ms)



The Reynolds stress bursts in opposition to Hall emf, which is

the Maxwell stress in parallel momentum balance ST ¢
Vi > - - 2
Pa—t” = (Jxb)y=p{(¥-V)¥) =V p+vpV7Y,

Probe measurements
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Relaxation events similar to those in MST are seen in NIMROD

extended MHD simulations
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NIMROD simulations reveal the same tendencies as observed in

MST plasmas
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NIMROD simulations motivated probe measurements of the Hall

dynamo over a larger portion of the plasma

A deep-insertion capacitive probe for the total dynamo is in development
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The measurements in MST are qualitatively similar to NIMROD

predictions L MST4
Exp. Probe Data Sketch of Inferred Dynamo Computational Results
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Relaxation of parallel flow is also in good qualitative agreemen 3

Exp. Data at r/a = 0.83 Exp. Data At Crash Computational Results
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Magnetic self-organization creates the possibility to sustain a

steady-state fusion plasma using induction VST g

e Magnetic helicity balance motivated by success of Taylor relaxation
e Conventional induction maintains helicity balance with constant Vy& @

o “Oscillating field current drive” (OFCD) generates DC helicity injection using
purely AC loop voltages
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Energy balance with “relaxed” current profile for modeling OFC ;
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OFCD on MST produces 10% increase in plasma current, as

much as expected
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Tearing instability at the global scale drives a cascade to gyro-

scale turbulence S

Power Spectrum of Magnetic Fluctuations
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The cascade is anisotropic and hints at a non-classical

dissipation mechanism

« The k| spectrum is well-fit by a dissipative cascade model (P. Terry, PoP 2009)
* Onset of exponential decay occurs at a smaller k| than expected for classical

dissipation
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Powerful ion energization occurs during the impulsive magnetic

reconnection events ST 4

* [nstantaneous heating rate can be as large as 10 MeV/s (50 MW!)
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Heating is anisotropic and species dependent

« MST is equipped with several ion temperature diagnostics:
— Rutherford scattering for majority ion temperature
— Charge-exchange recombination spectroscopy (CHERS) for minority ions
— Neutral particle energy analyzers (energetic neutral loss from plasma)
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Heating depends on mass and charge
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An energetic ion tail is generated and reinforced at each

reconnection event

o Distribution is well-fit by a Maxwellian plus a power-law tail

 Reminiscent of power laws observed for astrophysical energetic particles
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Proposed lon Heating Mechanisms




Existing models for ion heating in the RFP are based on distinct

mechanisms ST 4

 Cyclotron-resonant heating:
— Feeds off the turbulent cascade to gyro-scale
— Preferential perpendicular heating, but with collisional relaxation
— Preferential minority ion heating, since Ez(wci) is larger where w; is smaller
— Mass scaling is predicted with dominant minority heating and collisional

relaxation
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Existing models for ion heating in the RFP are based on distinct

mechanisms ST 4

« Stochastic heating:

— Feeds off large electrostatic electric field fluctuations and the distinct
stochastic magnetic diffusion process

— Monte Carlo modeling yields MST-like heating rates (Fiksel et al, PRL 2009)
— Predicts mass scaling close to that observed

Non-Alfvenic Cascade
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 Emerging story: measurements not shown here suggest the electrostatic
fluctuations for f =100 kHz are drift waves excited in the turbulent cascade

— Importance of non-uniformity and gradients at the system scale and coupling
of different types of modes/waves @



Existing models for ion heating in the RFP are based on distinct

mechanisms ST 4

 Viscous heating:
— No clear experimental evidence for the required large sheared flow
— Perpendicular flow is dominant for tearing modes for which the classical
viscosity is small
— A “reliable” dissipation mechanism, but difficult to achieve the large heating
rates seen in MST plasmas

— See, e.g., Svidzinski et al, PoP 15 (2009)



The RFP plasma exhibits a fascinating set of magnetic self-

organization phenomena el

Magnetic Relaxation Event Cycle
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