Magnetic Self-Organization in the RFP

Prof. John Sarff University of Wisconsin-Madison

Joint ICTP-IAEA College on Plasma Physics • ICTP, Trieste, Italy • Nov 7-18, 2016

The RFP plasma exhibits a fascinating set of magnetic selforganization phenomena

Magnetic self-organization in natural plasmas

Momentum Transport

Solar/Geo Dynamo

Ion Heating in the **Solar Corona** 700 Hydrogen Oxygen 600 s^{-1}) 500 <u>B</u> 400VELOCITY 300 200 WII 100 Û. 3.5 4.0 1.5 2.0 2.5 3.0 3.51.52.02.5 - 3.04.0 $\mathbf{r} / \mathbf{R}_{\odot}$ r / R_{\odot}

Cranmer et al., ApJ, 511, 481 (1998)

Kuang & Bloxham, Nature, '97

The MST RFP at UW-Madison

MST

- Magnetic induction is used to drive a large current in the plasma
 - Plasma current, $I_p < 0.6 \text{ MA}$; B < 0.5 T
 - Externally applied inductive ohmic heating is 5-10 MW (input to electrons)
 - $T_i \sim T_e < 2 \text{ keV}$, despite weak *i*-*e* collisional coupling ($n \sim 10^{19} \text{ m}^{-3}$)
 - Minor radius, *a* = 50 cm ; ion gyroradius, $\rho_{\rm i} \approx$ 1 cm ; $c/\omega_{\rm pi} \approx$ 10 cm β < 25% ; Lundquist number *S* = 5 ×10⁵⁻⁶

Reversed BT forms with sufficiently large plasma current, and persists as long as induction is maintained

However, a reversed-BT should not be an equilibrium

An imbalance in Ohm's law yields a similar conclusion

- Ohm's law: $\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \mathbf{J} \Rightarrow E_{||} = \eta J_{||}$ and $\mathbf{V}_{\perp} = \mathbf{E} \times \mathbf{B}/B^2$
- There is less current in the core than could be driven by $E_{||}$, and more current in the edge than should be driven by $E_{||}$

 \Rightarrow current profile is flatter than it "should" be

The RFP as a minimum energy configuration

• Minimize magnetic energy, with constrained global "magnetic helicity" $K = \int \mathbf{A} \cdot \mathbf{B} dV$ yields

$$\nabla \times \mathbf{B} = \lambda \mathbf{B}$$
 $\lambda = \text{constant}$ (J.B. Taylor, 1974)

Solution in a cylinder: "Bessel Function Model"

$$B_z(r) = B_0 J_0(\lambda r)$$
$$B_\theta(r) = B_0 J_1(\lambda r)$$

 $J_0(\lambda a) < 0$ for $\lambda a > 2.4$

resembles an RFP equilibrium

Current profile exhibits a cycle of slow peaking followed by an abrupt flattening during impulsive relaxation events

Relaxation cycles result from quasi-periodic impulsive magnetic reconnection events (a.k.a. sawteeth)

Toroidicity allows distinct $k_{\parallel} = 0$ resonant modes at many radii in the plasma:

$$0 = \mathbf{k} \cdot \mathbf{B} = \frac{m}{r} B_{\theta} + \frac{n}{R} B_{\phi}$$

m = poloidal mode number

n =toroidal mode number

A dynamo-like emf arrests the peaking tendency of the current profile, i.e., this is how tearing instability saturates in the RFP

• With non-axisymmetric quantities, (i.e., tearing instability):

$$\mathbf{B} = \langle \mathbf{B} \rangle + \tilde{\mathbf{B}}$$

toroidal surface average spatial fluctuation

• Then mean-field parallel Ohm's law becomes:

$$\langle E \rangle_{\parallel} - \eta \langle J \rangle_{\parallel} = \left| \langle \tilde{\mathbf{V}} \times \tilde{\mathbf{B}} \rangle_{\parallel} \right|$$

dynamo-like emf from tearing instability Correlated product of fluctuations Depresents nonlinear saturation at equilibrium magnitude

Nonlinear, resistive MHD provides a base model for the origin of the dynamo

 $\tilde{\mathbf{V}}, \tilde{\mathbf{B}}$ = fluctuations associated with tearing modes

Plasma (ion) flow also affected during relaxation events

MST

• Implies coupled electron and ion momentum relaxation

Profile of the parallel flow also flattens during relaxation events

MS

Computational model for tearing-relaxation recently extended to include two-fluid effects

• Nonlinear multi-mode evolution solved using NIMROD

Ohm's law:
$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \frac{1}{ne} \mathbf{J} \times \mathbf{B} - \frac{1}{ne} \nabla p_e + \eta \mathbf{J} + \frac{m_e}{ne^2} \frac{\partial \mathbf{J}}{\partial t}$$

Momentum: $nm_i \frac{d\mathbf{V}}{dt} = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi_{gyro} - \nabla \cdot \nu nm_i \mathbf{W}$

Relaxation process couples electron and ion momentum balance

Generalized Ohm's law permits several possible mechanisms for dynamo action

• The MHD and Hall mechanisms are measured to be significant, summing together in a way that has not been completely diagnosed

There's also a "kinetic" dynamo, i.e., stochastic transport of current

Probe measurements in the edge region show that both the MHD and Hall dynamo emf terms are important

Measurements of the "total" dynamo emf show a balance in Ohm's law

The Reynolds stress bursts in opposition to Hall emf, which is the Maxwell stress in parallel momentum balance

$$\rho \frac{\partial V_{||}}{\partial t} = \langle \tilde{\mathbf{j}} \times \tilde{\mathbf{b}} \rangle_{||} - \rho \langle (\tilde{\mathbf{v}} \cdot \nabla) \tilde{\mathbf{v}} \rangle_{||} - \nabla_{||} p + v \rho \nabla^{2} V_{||}$$

$$\begin{pmatrix} 40 \\ 20 \\ \rho \frac{\partial V_{||}}{\partial t} & -\rho \langle (\tilde{\mathbf{v}} \cdot \nabla) \tilde{\mathbf{v}} \rangle_{||} \\ 20 \\ -20 \\ -20 \\ -40 \\ -$$

0.5

1.5

1.0

-1.0 -0.5

0.0

time (ms)

Relaxation events similar to those in MST are seen in NIMROD extended MHD simulations

NIMROD simulations reveal the same tendencies as observed in MST plasmas

NIMROD simulations motivated probe measurements of the Hall dynamo over a larger portion of the plasma

• A deep-insertion capacitive probe for the total dynamo is in development

The measurements in MST are qualitatively similar to NIMROD predictions

$$\left\langle \mathbf{E} \right\rangle_{\parallel} - \eta \left\langle \mathbf{J} \right\rangle_{\parallel} \approx -\left\langle \tilde{\mathbf{V}} \times \tilde{\mathbf{B}} \right\rangle_{\parallel} + \underbrace{\frac{1}{\langle n \rangle e} \left\langle \tilde{\mathbf{J}} \times \tilde{\mathbf{B}} \right\rangle_{\parallel}}_{\text{MHD dynamo}} + \underbrace{\frac{1}{\langle n \rangle e} \left\langle \tilde{\mathbf{J}} \times \tilde{\mathbf{B}} \right\rangle_{\parallel}}_{\text{Two-fluid Hall dynamo}}$$

Relaxation of parallel flow is also in good qualitative agreement

$$m_{i} \langle n \rangle \frac{\partial \langle \mathbf{V} \rangle_{\parallel}}{\partial t} \approx -m_{i} \langle n \mathbf{V} \cdot \boldsymbol{\nabla} \mathbf{V} \rangle_{\parallel} + \left\langle \tilde{\mathbf{J}} \times \tilde{\mathbf{B}} \right\rangle_{\parallel}$$
Reynolds force
Lorentz force

Magnetic self-organization creates the possibility to sustain a steady-state fusion plasma using induction

- Magnetic helicity balance motivated by success of Taylor relaxation
- Conventional induction maintains helicity balance with constant $V_{\phi} \& \Phi$
- "Oscillating field current drive" (OFCD) generates DC helicity injection using purely AC loop voltages

$$\frac{\partial K}{\partial t} = 2V_{\phi}\Phi - 2\int \mathbf{E} \cdot \mathbf{B}dV \qquad (K = \int \mathbf{A} \cdot \mathbf{B}dV)$$
apply oscillating $V_{\phi} \& \Phi$:
$$V_{\phi} = \hat{V}_{\phi} \sin \omega t \quad \& \quad \Phi = \frac{\hat{V}_{\theta}}{\omega} \sin \omega t + \Phi_{dc}$$

$$\langle 2V_{\phi}\Phi \rangle = \frac{\hat{V}_{\phi}\hat{V}_{\theta}}{2\omega} \sin \delta \quad \delta = \text{Phase}[V_{\theta}, V_{\phi}]$$
 $\hat{V}_{\phi} \sin \omega t \quad \hat{V}_{\theta} \sin(\omega t + \pi/2)$

Energy balance with "relaxed" current profile for modeling OFCD

OFCD on MST produces 10% increase in plasma current, as much as expected

OFCD current drive efficiency measured the same as for steady induction ($\approx 0.1 \text{ A/W}$)

Tearing instability at the global scale drives a cascade to gyroscale turbulence

The cascade is anisotropic and hints at a non-classical dissipation mechanism

- The k_{\perp} spectrum is well-fit by a dissipative cascade model (P. Terry, PoP 2009)
- Onset of exponential decay occurs at a smaller k_{\perp} than expected for classical dissipation

Powerful ion energization occurs during the impulsive magnetic reconnection events

• Instantaneous heating rate can be as large as 10 MeV/s (50 MW!)

Heating is anisotropic and species dependent

- MST is equipped with several ion temperature diagnostics:
 - Rutherford scattering for majority ion temperature
 - Charge-exchange recombination spectroscopy (CHERS) for minority ions
 - Neutral particle energy analyzers (energetic neutral loss from plasma)

Heating depends on mass and charge

An energetic ion tail is generated and reinforced at each reconnection event

- Distribution is well-fit by a Maxwellian plus a power-law tail
- Reminiscent of power laws observed for astrophysical energetic particles

 $f_{D+}(E) = A \ e^{-E/kT} + B \ E^{-\gamma}$

Proposed Ion Heating Mechanisms

Existing models for ion heating in the RFP are based on distinct mechanisms

- Cyclotron-resonant heating:
 - Feeds off the turbulent cascade to gyro-scale
 - Preferential perpendicular heating, but with collisional relaxation
 - Preferential minority ion heating, since $\tilde{B}^2(\omega_{ci})$ is larger where ω_{ci} is smaller
 - Mass scaling is predicted with dominant minority heating and collisional relaxation

Tangri et al., PoP **15** (2008) (similar to Cranmer et al)

Existing models for ion heating in the RFP are based on distinct mechanisms

- Stochastic heating:
 - Feeds off large electrostatic electric field fluctuations and the distinct stochastic magnetic diffusion process
 - Monte Carlo modeling yields MST-like heating rates (Fiksel et al, PRL 2009)
 - Predicts mass scaling close to that observed

- Emerging story: measurements not shown here suggest the electrostatic fluctuations for $f \gtrsim 100$ kHz are drift waves excited in the turbulent cascade
 - Importance of non-uniformity and gradients at the system scale and coupling of different types of modes/waves

Existing models for ion heating in the RFP are based on distinct mechanisms

- Viscous heating:
 - No clear experimental evidence for the required large sheared flow
 - Perpendicular flow is dominant for tearing modes for which the classical viscosity is small
 - A "reliable" dissipation mechanism, but difficult to achieve the large heating rates seen in MST plasmas
 - See, e.g., Svidzinski et al, PoP 15 (2009)

The RFP plasma exhibits a fascinating set of magnetic selforganization phenomena

