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Importance of plasma waves
• Along with single particle motion, understanding of linear 

waves are foundation for physical intuition for behavior of 
plasmas

• Waves play direct role in important physical processes: RF 
heating in fusion plasmas, particle acceleration by waves in 
space plasmas,  plasma turbulence in astrophysical objects



Importance of plasma waves
• Along with single particle motion, understanding of linear 

waves are foundation for physical intuition for behavior of 
plasmas

• Waves play direct role in important physical processes: RF 
heating in fusion plasmas, particle acceleration by waves in 
space plasmas,  plasma turbulence in astrophysical objects

• Wave is collective response of plasma to perturbation, 
however, intuition for waves starts with considering single 
particle response to electric/magnetic fields that make up 
the wave

• Focus on magnetized plasmas: particle response is 
anisotropic, orientation of wave E-field wrt background 
magnetic field is essential in determining response



Wave equation, plasma dielectric model for 
linear waves

• Treat plasma as conducting medium; will lead to 
dielectric description (but start by treating plasma 
charge and currents as free)
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• Plasma effects buried in current, need model to relate 
current to E

• Model plasma as cold fluid, will find a linear, tensor 
conductivity
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Important intuition: Single particle response 
to wave fields

• Conductivity tensor tells us plasma response to applied 
electric field; useful to think about single particle orbits

• In particular for magnetized plasmas and wave electric fields 
that are perpendicular to B

• Two drifts matter (in uniform plasma):  ExB drift and 
polarization drift

• ExB drift is the dominant particle response for low 
frequency wave fields 

• Polarization drift is dominant at higher frequencies
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ExB and Polarization Drifts

• No currents from ExB at low freq (ions and electrons 
drift the same); above ion cyclotron freq, ions primarily 
polarize, no ExB, can get ExB current from electrons
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Model for plasma conductivity
• Use cold, two-fluid model; formally cold means:

• Assume plane wave solution (uniform plasma), 
linearize the equations:

• Ignore terms higher than first order:  arrive at 
equation that is the same for motion of a single 
particle (importance of understanding drifts!)
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Plasma model, cont.
Choose B = B0ẑ , E = E1 = Exx̂ + Ez ẑ

Ion momentum equation becomes:
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Plasma model, cont.
Back to the wave equation, rewrite with plane wave assumption:

�k⇤ k⇤E� ⇤2

c2
E� i⇤µo⇥ · E = 0

Can rewrite in the following way:

M · E = 0
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Cold plasma dispersion relation
Using the cold two-fluid model for �, the dielectric tensor becomes:
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Defining � to be the angle between k and Bo, the
wave equation becomes:
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combinations of � and k



Magnetic 
field lines

Low frequency waves: Alfvén waves
• For freq. much less than ion cyclotron frequency, 

primary waves are Alfvén waves

Shear Alfvén wave

k

• Primary motion: ExB motion of electrons and 
ions together (D→0)

• To pull this out of our cold plasma model: 
k = kz ẑ (� = 0)



Shear wave in cold plasma model

• Like wave on string:  magnetic field plays role of 
tension, plasma mass → string mass 
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Alfvén waves from MHD

• Linearizing this system reveals four waves: fast and slow 
magnetosonic waves, the shear Alfvén wave, and the 
entropy wave
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Shear Alfvén wave Compressional
Alfvén wave

(fast magnetosonic)

Slow magnetosonic

Magnetic 
field lines
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MHD Waves
• For freq. much less than ion cyclotron frequency, 

primary waves are Alfvén waves

sound wave response (in fast/slow modes)
 not in our cold two-fluid model



Shear wave dispersion derivation

• We are looking for the shear wave, so we’ll make 
appropriate assumptions:
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Shear wave dispersion derivation, cont

• Combine these two to get:
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Currents in MHD AW

• Current in k⊥=0 AW is entirely due to ion polarization 
current: no field aligned current

• As k⊥ is introduced, current closes along the field 
(inductively driven)
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Polarization current

~
j =�iwne

W
i

d~
E

B

o

� ik

y

dB

µ

o

ẑ



Finite k⊥ introduces parallel current, electric field

• Shear Alfvén wave currents without k⊥ are purely due to 
ion polarization and are cross-field

• With finite k⊥, wave currents must close along the field: 
introduce parallel electric field and parallel particle 
response (easy to find departures from MHD…)

• Ions carry current across field, electrons carry parallel 
current (ion parallel response important at higher β)

• Electron parallel response introduces dispersion and 
damping to Alfvén wave 
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Kinetic and Inertial Alfvén waves: introduce 
dispersion and damping at finite k⊥

• At finite k⊥, wave obtains parallel electric field

• In low β plasma, key additional physics is parallel electron 
response
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• Use kinetic electron response in parallel direction (ignore 
ion response)

• For simplicity, assume cold ions, k⊥ρe << 1; use cold 
perpendicular response
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Kinetic and Inertial Alfvén waves

• Shear wave:  
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Kinetic and Inertial Alfvén waves

• Inertial Alfvén wave:  cold electron response, vA >> vth,e
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Kinetic and Inertial Alfvén waves: Damping

• Landau damping rate for kinetic Alfvén wave:

• Need finite k⊥ρs  for Landau damping - generates finite E|| 
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• At higher β, collisionless damping on ions is important (vA 
∼ vth,i for β∼1); Landau damping and transit-time magnetic 
pumping (called Barnes damping in astrophysical literature)
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Importance of KAW and IAW

• Space plasmas:  IAW/KAW observed in auroral zones, possible 
mechanism for auroral electron acceleration [Louarn, et al., 
GRL 21, 1847 (1994); Chaston, et al GRL 26, 647 (1999)]

• Fusion devices:  Alfvén wave heating [Mahajan Phys. Fluids 25, 
652 (1982)], mode conversion to KAWs source of damping for 
Alfvén eigenmodes [Hasegawa and Chen, PRL 35, 370 (1975)]

• Space/Astro plasmas: KAWs terminate cascade in MHD/
Alfvénic turbulence [Bale, et al. PRL 94, 215002 (2005); 
Sahraoui, et al. PRL 102, 231102 (2009)].



The LArge Plasma Device (LAPD) at UCLA

• Solenoidal magnetic field, cathode discharge plasma (BaO and LaB6)

• BaO Cathode: n ∼ 1012 cm-3, Te ∼ 5-10 eV, Ti ≲ 1 eV

• LaB6 Cathode: n ∼ 5x1013 cm-3, Te ∼ 10-15 eV, Ti ~ 6-10 eV

• B up to 2.5kG (with control of axial field profile)

• Large plasma size, 17m long, D~60cm (1kG: ~300 ρi, ~100 ρs)

• High repetition rate:  1 Hz



LAPD Plasma source



Example Plasma Profiles

• Low field case (400G) (also shown: with particle transport barrier 
via driven flow*); generally get flat core region with D=30-50cm

• Broadband turbulence generally observed in the edge region

CE

CE

CE

* Carter, et al, PoP 16, 012304 (2009)



LAPD Parameters

⌦i ⇠ 400kHz

⌫ei ⇠ 3MHz

⌫ii ⇠ 300kHz

!A ⇠ 200kHz

Lk ⇠ 18m

L? ⇠ 50cm

�mfp ⇠ 20cm

⇢i ⇠ 2mm

⇢s ⇠ 5mm

�e ⇠ 5mm

vth,e ⇠ 1⇥ 108cm/s

vA ⇠ 1⇥ 108cm/s

� ⇠ me/mi ⇠ 1⇥ 10�4
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Example data: cylindrical Alfvén eigenmodes in LAPD 

Maggs, Morales, Carter, PoP 12, 013103 (2005)
Maggs, Morales, PRL 91, 035004 (2003)

• Plasma source acts as resonant cavity 
for shear Alfvén waves

• Driven spontaneously by discharge 
current (thought to be inverse Landau 
damping on return current electrons)

• Alfvén wave “MASER”
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Measurement methodology in LAPD

• Use single probes to measure local density, temperature, potential, 
magnetic field, flow: move single probe shot-to-shot to construct 
average profiles

• Add a second (reference) probe to use correlation techniques to 
make detailed statistical measurements of turbulence (structure, 
etc)



Measured structure of Alfvén eigenmodes in LAPD



Example LAPD Users and Research Areas
• Basic Physics of Plasma Waves, e.g. linear properties of inertial and 

kinetic Alfvén waves (Gekelman, Morales, Maggs, Vincena…, Kletzing, 
Howes)

• Drift-wave turbulence and transport (Carter, Pace, Schaffner, Friedman, 
Popovich, Umansky, Maggs, Morales, Horton)

• Fast Waves/Physics of ICRF (D’Ippolito, Myra, Wright, Van Compernolle, 
Carter, Gekelman …)

• Wave-particle interactions (fast ions, fast electrons) (Colestock, 
Papadapoulous, Gekelman, Vincena, Zhou, Zhang, Heidbrink, Carter, 
Breizman, … ) 

• Reconnection (Gekelman, Van Compernolle, Daughton, …)

• Alfvén waves and shocks driven by laser blow-off (Niemann, Gekelman, 
Vincena, …)

• Nonlinear interactions between Alfvén waves (Carter, Dorfman, Howes, 
Kletzing, Skiff,  Vincena, Boldyrev, ...)



 Whistler modes excited by energetic electrons

X. An, et al., Geophys. Res. Lett., 43 (2016)

• Excitation of whistler waves by energetic electron beam (project led 
by J. Bortnik, R. Thorne)

• See “chirping” emission, similar to whistler chorus in magnetosphere 
(tied to transport/loss of radiation belt electrons)

Geophysical Research Letters 10.1002/2015GL067126

Figure 3. Wave properties plotted on a kz-! diagram from (a, b) the LAPD experiment and (c, d) corresponding HOTRAY
calculations, respectively, showing multiple resonance modes, color coded by power spectral density (Figure 3a), wave
normal angle " from the experiment (Figure 3b), linear growth rates (Figure 3c), and wave normal angle " from HOTRAY
code (Figure 3d).

summed Maxwellian distributions including an optional drift in the parallel direction and also a loss cone. The
beam electrons are modeled as a beam ring distribution, implemented in HOTRAY as
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Here v⟂ and vz are perpendicular and parallel velocities, respectively, relative to the background magnetic
field. $∥, $⟂, % , and vd are free parameters that control the shape of the distribution function. Since direct
measurements of the distribution function are not available at this stage, the distribution function is roughly
inferred based on physical arguments. As the beam enters the plasma, the fastest-growing Langmuir waves
slow down and relax the beam electrons in the parallel direction [O’Neil et al., 1971; Gentle and Lohr, 1973]. The
beam electrons move locally over a single Langmuir wave with a relative velocity ofΔv = 2− 4

3 (nb∕n0)
1
3 u [O’Neil

et al., 1971]. The Langmuir wave eventually reaches an amplitude& ≈ me(Δv)2∕e, which is enough to trap the
beam electrons, and also causes nonlinear saturation of wave growth. Thus, the beam electrons are modeled
to be a Maxwellian centered at the phase velocity of the Langmuir wave vd = u − Δv with a thermal spread

AN ET AL. WHISTLER WAVE EXCITATION 5



 Three-dimensional reconnection in flux ropes

• Kink-unstable current carrying structures (flux ropes) interact and 
reconnect in LAPD, see periodic/pulsating reconnection

• First time “squashing factor”/presence of quasi-separatrix-layer 
(QSL) quantitatively linked to the reconnection rate

Gekelman, et al., Phys. Rev. Lett. 116, 235101 (2016)

The volume-averaged power ð1=VÞ
R ~J · ~EdV spikes

during a collision to 0.35 W=cm3 but can locally be as
high as 200 W=cm3. While both the average and local
power dissipation oscillate at the kink frequency, there is a
time lag of ∼150 μs between the peak dissipated power
within the QSL and the volume-averaged dissipated power,
which is dominated by contributions from the much larger
volume outside the QSL. The location of maximum Q in
Fig. 3(b) is also associated with peak power dissipation
[Fig. 3(e)]. The time evolution of this energy conversion
and the QSL formation both track the heartbeat associated
with the flux-rope collisions. When the flux ropes move
apart,Q between the ropes drops. The datawere searched for
field lines, initially an electron skin depth apart, and moving
towards one another at the ion sound speed (nearly the same
asVA based on the reconnection field)which had antiparallel
components of magnetic field (Bx or By) of 0.11 G (100
times smaller than the field of the ropes themselves).
A rough estimate of the average energy (during the 50 μs

reconnection burst) released by the annihilation of all the
0.11 G magnetic field for these was 4.62 J. If one compares
this to the volume-averaged power during the seventh burst
in Fig. 3(e), one gets a similar value, approximately 2 J,
which depends upon the reconnection volume used.
The steady state part of the power in Fig. 3(e) is most

likely due to resistive power loss in the current sheet
[the dc Joule heating is 20 kW (0.3 W=cm3 vol of ropes),
the rope discharge power is 93 kW].
Is the bulk of the reconnection occurring in the QSL?

In this experiment, we hypothesize that the QSL between
the currents is due to reconnection, and other QSLs at the
periphery of the current channels are due to field lines
associated with spreading currents. There are no nulls in the
3D magnetic field; the current is fully three dimensional
(Fig. 2), and the classic “X” and “O” points associated with
2D reconnection are not present.
In order to better understand the spatial correlations

between the QSL and the quasipotential, two isosurfaces
of Ξ are shown in Fig. 4 with the values labeled. The
positive value of Ξ is associated with the QSL and at this
time overlaps about one-third of it. We associate negative
values of Ξ with the electric field driving the flux-rope
current. A second surface of Ξ ¼ −5, which maps back
to the source of the bottom flux rope, also exists below
the QSL but was not drawn here as it would obscure the
positive Ξ (blue surface) shown in Fig. 4. The full range
of Ξ on a plane (δz ¼ 11 m) is shown in Fig. 3(d). These
results demonstrate that the field lines passing through
the QSL are participating most strongly in the reconnec-
tion process. In the published literature, the nonlinear
reconnection rate is often defined by the maximum value

FIG. 3. (a) QSL on two cut planes. The vertical plane shows the time dependence ofQ at (−30 ≤ x ≤ 30 cm, y ¼ 0, z ¼ 2.56) and the
vertical axis is time. The x-y plane shows the spatial dependence of Q at t ¼ 4.192 ms. Two isosurfaces at Q ¼ 400 and 200 are
superimposed. (b) Qðx; y; t1 ¼ 5.5856 msÞ at z ¼ 2.56 m, this is a time when the ropes collide. (c) Qðx; y; t2 ¼ 5.521 12 msÞ at
z ¼ 2.56 mwhenQ is small. (d) The integral of the electric field along the magnetic field over the full δz ¼ 11 m. This is a projection on
an x-y plane at δz ¼ 2.56 m. (e) The power density in W=cm3 as a function of time at a location within the QSL. The estimated error in
~J · ~E is less than 20%.

PRL 116, 235101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JUNE 2016

235101-4



Shear suppression of turbulent transport in LAPD

Visible light (40k frames/sec)
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• Limiter biasing used to control edge flow: can reverse flow 
direction, zero-out spontaneous rotation

•  Documented response of turbulence and transport to continuous 
variation in shear [Schaffner et al., PRL 109, 135002 (2012)]; 
compared to decorrelation models [Schaffner, et al.,PoP 2013]



IAW/KAW wave studies in LAPD
• LAPD created to enable AW research need length to fit parallel 

wavelength (~few meters)

• Below:  3D AW pattern from a small antenna (comparable to skin depth, 
sound gyroradius)

• A number of issues studied over the years:  radiation from small source, 
resonance cones, field line resonances, wave reflection, conversion from 
KAW to IAW on density gradient… [UCLA LAPD group: Gekelman, 
Maggs, Morales, Vincena, et al]

Details, publication list at http://plasma.physics.ucla.edu
Review:  Gekelman, et al., PoP 18, 055501, (2011) 

http://plasma.physics.ucla.edu


Finite frequency dispersion relation for KAWs

• Need kinetic theory to explain observations around Ωᵢ

• Nice study of absorption of KAW in “magnetic beach” 

Vincena, et al. PoP 8, 3884 (2001)



Study of IAW/KAW dispersion & damping

• Special antenna built to create plane-wave-like AWs with 
control over k to do detailed dispersion/damping 
measurements [U. Iowa group, Kletzing, Skiff + students] 

Kletzing, et al, PRL 104, 095001 (2010)



Measured dispersion and damping, GK modeling
• Measurements compared to AstroGK simulations, including 

collisions (crucial to get inertial AW dispersion/damping right)

Nielson, Howes, et al, PoP 17, 022105 (2010)

inertial AW

kinetic AW



• U. Iowa group:  interest in understanding 
electron acceleration by Alfvén waves; 
relevance to generation of Aurora

• Used novel electron distribution 
diagnostic (whistler wave absorption) to 
study oscillation in electron distribution 
function in presence of inertial AW

 Electron response to inertial Alfvén wave
SCHROEDER ET AL.: ELECTRON SLOSHING OF AN INERTIAL ALFVÉN WAVE X - 19
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Figure 4. The composite measurement of ge(vz) is generated using 64 phase-shifted data

sets. (a) Sorting measurements by Alfvén wave phase and electron energy show there are mod-

ifications of the electron distribution δge = ge − ge0 at the frequency of the Alfvén wave. (b)

Magnitude of the first Fourier mode with respect to Alfvén wave phase compared to the solution

of equation 2.

D R A F T March 15, 2016, 10:45am D R A F T

Schroeder, et al., Geophys. Res. Lett. 43, 4701 (2016)

Geophysical Research Letters 10.1002/2016GL068865

Figure 4. The composite measurement of ge(vz) is generated using 64 phase-shifted data sets. (a) Sorting measurements
by Alfvén wave phase and electron energy show that there are modifications of the electron distribution !ge =ge − ge0
at the frequency of the Alfvén wave. (b) Magnitude of the first Fourier mode with respect to Alfvén wave phase
compared to the solution of equation (2).

While the two effects predicted by Kletzing [1994] are qualitatively different, they are theoretically related.
The linear solution ge1(vz) for electron sloshing discussed here is needed for the nonlinear solution to the
Maxwell-Boltzmann system of equations that captures resonant electron acceleration. Therefore, a test of
electron sloshing ge1(vz) is not only an important verification of basic inertial Alfvén wave behavior but also
enables a future test of resonant electron acceleration.

4. Results

To compare the data with theory, we must extract ge0(vz) and ge1(vz) from the measurements. Because
ge =ge0 +ge1 + ... and the modifications ge1 + ... produced by the Alfvén wave are time periodic, these modifi-
cations can be removed from WWAD data by averaging over Alfvén wave phase to produce the experimental
ge0. The measured ge0 produced by this procedure is shown in Figure 3. The horizontal axis gives the resonant
electron energy, E = mev2

z∕2, of each data point, and the sign of vz has been maintained so that each half of
the distribution function can be distinguished. Because the plasma is created by a hot-cathode discharge, it
is expected that there are more suprathermal electrons moving away from the cathode with velocities vz <0,
as is clearly seen in Figure 3. Smooth functions are fitted to each half of the experimental ge0 separately, and
the derivatives "ge0∕"vz are used in equation (2) to produce the analytical solution for ge1.

The random error in the measurement of ge0 is negligible. The dominant source of error is systematic and
due to whistler ducting induced by the ∼1% plasma density perturbation caused by inserting the whistler
antennas into the plasma. This effect, which is well known, produces the low-amplitude undulations along
the energy axis of the measured ge0 in Figure 3 [Streltsov et al., 2012].
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Figure 1. Experimental setup in the LaPD. Elsasser probes E1 and E2 observe the perpendicular wavefields B⟂ and E⟂
in the x-y plane. Whistler probes W1 and W2 are used to measure the parallel electron distribution function ge(vz).
A scanning Langmuir probe, denoted as L above, measures electron density and temperature.

The experiments were performed in the Large Plasma Device (LaPD) [Gekelman et al., 2016], an NSF/DOE user
facility at the University of California, Los Angeles. The experiment used a 10 ms discharge of hydrogen plasma,
and the discharge was repeated at 1 Hz. The plasma is very repeatable from discharge to discharge, and the
slight variations of measured quantities between discharges are random and can be reduced by ensemble
averaging. Figure 1 shows a schematic of the locations of various probes used to make measurements. The
swept Langmuir probe was used to find the electron density ne =1.0 × 1012 cm−3 and electron temperature
Te =2.2 eV. Langmuir probe measurements of ne were calibrated to a nearby line-integrated measurement
from a microwave interferometer. The externally applied background magnetic field is B0 =1.8 kG. Based on
these plasma conditions, the electron skin depth is !e = 0.53 cm and vte∕vA = 0.16 where vte = (kTe∕me)1∕2

is the electron thermal speed and vA is the Alfvén speed. These parameters are relevant to the inertial Alfvén
wave where vte∕vA<1 and are appropriate for the auroral magnetosphere. During the discharge sequence,
the Alfvén wave is excited for 1 ms at t=4 ms after the start of the discharge, and all data are collected as the
Alfvén wave passes the probes.

Alfvén waves are excited using the Arbitrary Spatial Waveform (ASW) antenna [Thuecks et al., 2009], depicted
in Figure 2a. The antenna consists of a series of conducting grid pieces that draw currents directly from the
plasma. The currents collected by the ASW antenna flow parallel to the fixed, externally applied, magnetic
field B0. By oscillating the current collected by the antenna, an oscillating magnetic field perturbation is pro-
duced, thereby launching an Alfvén wave. The amplitude of the current collected by each grid piece can be
individually controlled, allowing a pattern to be established in x̂ that defines k⟂. The Alfvén wave amplitude
produced by the ASW antenna is limited by the magnitude of the current that can be drawn from the plasma.

Figure 2. Alfvén waves are generated by the Arbitrary Spatial Waveform (ASW) antenna and observed using Elsässer
probes. (a) The grid pieces of the ASW antenna can be phased independently to establish well-defined structure in x̂.
(b) Elsässer probe measurements of B⟂ verify the planar Alfvén wave launched by the ASW antenna. Arrows show the
amplitude and direction of B⟂; color is used to indicate the intensity of By . The white cross is the location of ge(vz)
measurements presented in Figures 3–4. Data from a scan along the white line are shown in Figure 5.
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On to nonlinear processes: motivation from MHD turbulence

• From a weak turbulence point of view, cascade is due to 
interactions between linear modes:  shear Alfvén waves 

• Motivates laboratory study of wave-wave interactions among 
Alfvén waves 

wavenumber
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• Low frequency turbulence in 

magnetized plasma (e.g. solar 
wind, accretion disk)

• Energy is input at “stirring” scale 
(e.g. MRI in accretion disk, tearing 
mode or Alfvén Eigenmode in 
tokamak or RFP) and cascades 
nonlinearly to dissipation scale



Turbulent Cascade in the Solar wind

Bale, 2005



Theory of the Alfvénic cascade
• Kraichnan: nonlinear perturbations arise through interaction between 

counter-propagating shear Alfvén waves (ideal, incompressible MHD) 

Theory of the Alfvénic cascade: quasilinear theory
� Quasilinear theory (weak turbulence) approach – spectrum of linear

modes interacting weakly

� Kraichnan: nonlinear perturbations arise through interaction between
counter-propagating shear Alfvén waves (ideal, incompressible MHD)
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� Physically: up-going shear wave follows the perturbed field lines of
down-going wave, shear each other apart to produce smaller-scale
structure, thus creating the cascade

• Cascade is highly anisotropic, primarily in the perpendicular direction 
(follows from three wave matching rules) [Shebalin, Matthaeus, 
Goldreich, Sridhar, Bhattachargee, et al]

• Physically: right-going wave follows the perturbed field lines of left-going 
wave, shear each other apart to produce smaller-scale structure

• Non-ideal effects (compressibility, FLR, etc) allow three wave 
interactions involving other modes, copropagating interactions



“Classical” accretion: drag provided by collisions 
among the plasma particles in the disk

• Only happens in “cool” disks 
(remember plasmas become 
“collisionless” as they get hot)

• In classical disk, energy gets 
transferred to light particles via 
collisions: electrons are heated

• Electrons radiate this energy away very effectively (x-
rays due to synchrotron radiation); keeps disk cool, 
results in “thin”disk (relevant to protostar, planetary 
disks, some BH)



Problem with “hot” disks: collisions too 
infrequent to explain observed accretion rates

• Radiatively inefficient disks are often observed: not enough 
radiation to cool disk as matter accretes, energy gets stored in 
thermal energy, get puffed-up, thick disk
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• Turbulence to the rescue?  Problem: disks are hydrodynamically 
stable (no “linear” instability in Keplerian flow of neutral gas)



Problem with “hot” disks: collisions too 
infrequent to explain observed accretion rates

• Radiatively inefficient disks are often observed: not enough 
radiation to cool disk as matter accretes, energy gets stored in 
thermal energy, get puffed-up, thick disk

• Because plasma is very hot, collisions are too infrequent to explain 
observed rates of accretion!

• Turbulence to the rescue?  Problem: disks are hydrodynamically 
stable (no “linear” instability in Keplerian flow of neutral gas)

➡ However, if you acknowledge this “gas” is a plasma, and that 
magnetic fields can be present, there is an instability: 
Magnetorotational Instability (MRI) [Velikhov, Chandrasekhar, 
Balbus, Hawley]



Magnetorotational instability (MRI): transports 
momentum, but where does energy go?

• Presence of weak magnetic field allows instability: angular 
momentum transported outward, matter inward

• Instability provides “anomalous” viscosity, accretion can occur

• Energy released in accretion gets taken up by turbulent 
magnetic fields which grow as part of the instability:  where 
does this energy go and why isn’t it radiated away?

MRI simulation
(Stone)

Balbus, Hawley, Rev. Mod. Phys. 70, 1–53 (1998)



Energy in MRI can drive turbulent cascade of Alfvén 
waves

• Shear Alfvén wave: analogous to wave on string, tension provided by field 
line, mass by plasma

Magnetic 
field lines Shear Alfvén wave



Energy in MRI can drive turbulent cascade of Alfvén 
waves

• Shear Alfvén wave: analogous to wave on string, tension provided by field 
line, mass by plasma

• MRI acts as large scale “stirring”; instability perturbations are like large-scale 
Alfvén waves

• Nonlinear interaction among waves generates daughter waves at smaller 
spatial scales; cascade down to dissipation scales where energy dissipated 
into plasma thermal energy

• Direct ion heating possible at dissipation scale: could explain observations

Magnetic 
field lines Shear Alfvén wave wavenumber
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Turbulent Alfvénic cascade observed in the solar wind

• Questions raised:  what sets shape of spectrum (power law 
observed, close to Komolgorov); how is energy dissipated

• Motivates laboratory study of wave-wave interactions among 
Alfvén waves 

• “Stirring” comes from strong 
flows, AWs that originate at the 
sun

• Satellite measurements of 
electric and magnetic field 
fluctuations reveals turbulent 
spectrum

Bale, et al. PRL 94, 215002 (2005)



Large amplitude wave sources: MASER and Antenna

Bo

30cm

10
cm

• Resonant cavity (MASER, narrowband), loop antenna (wideband)
• Both can generate AWs with δB/B ~ 1% (~10G or 1mT); large 

amplitude from several points of view:
• Wave beta is of order unity
• Wave Poynting flux ~ 200 kW/m2, same as discharge heating 

power density
• From GS theory:  stronger nonlinearity for anisotropic waves; 

here k||/k⊥ ~ δB/B

I ~ 1kA, V ~ 1kV
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Strong electron heating by large amplitude 
Alfvén waves in LAPD

• Localized heating observed, on wave current channel 
(collisional and Landau damping: Note damping length is 
comparable to machine length!)

• Results in structuring of plasma (additionally see parallel 
outflows, density, potential modification, cross-field flows)

active phase afterglow



Three-wave interactions with two “pump” Alfvén waves

• Three-wave matching conditions must be 
satisfied (arise from quadratic nonlinearities 
(e.g. ∇ B²))

!1 + !2 = !3

~k1 + ~k2 = ~k3

• For three IDEAL AWs (MHD cascade interaction), must have 
counter-propagating waves with the third “wave” having k∥ = 0 
(leads to perpendicular cascade)

• This constraint is removed if we allow for different third mode 
(e.g. sound wave) and/or include dispersion (KAW, IAW):  e.g. co-
propagating interaction allowed

• In LAPD experiments, waves have k⊥ρs ~ 1, ω/Ωi ~ 1: dispersive 
kinetic or inertial Alfvén waves

• Co-propagating interaction allowed (waves can pass through 
one another)

• Decay instabilities possible (parametric, modulational)

• LAPD experiments with dispersive KAW/IAW



• Initial attempts in LAPD (Carter, Boldyrev, et al.): no strong 
evidence for daughter wave production/cascade (instead see beat 
waves, heating, harmonic generation, etc).  Used local interaction, 
trying to look for perp. cascade.

• New idea (Howes):  have one of the two interacting (pump) 
waves be k∥ ≈ 0, theoretical prediction for stronger NL 
interaction in this case

• UCLA Loop antenna (large amplitude) versus U. Iowa ASW 
antenna (small amplitude but precise k⊥ control)

MHD-cascade relevant collisions:  AW+AW → AW



Interaction maximized, sensitivity to daughter wave 
enhanced through linearly polarized pumps

• Loop antenna: Bx only, low frequency wave (60 kHz), ~1.5G 
amplitude

• ASW antenna: By only, 270kHz (f/fci ≈ 0.5, picked to avoid 
harmonics of loop antenna), ~15mG amplitude

• Cross-polarization maximizes interaction; look for generation of Bx 
fluctuations at 270kHz

Pump 1 Pump 2 Daughter

Howes et al., PRL 109, 255001 (2012)



First laboratory observation of daughter AW 
production: consistent with weak turbulence theory

• Perpendicular wavenumber spectrum consistent with three-
wave matching (k1 + k2 = k3)

Pump 1 Pump 2 Daughter

Howes et al., PRL 109, 255001 (2012)

Loop (pump)

ASW (pump)

daughter



First observation of three wave interaction in LAPD:  
production of quasimodes by co-propagating AWs

• Spontaneous multimode emission by the cavity is often 
observed, e.g. m=0 and m=1 

m=0

m=1

m=0 m=1



m=0

m=1

m=0 m=1

T.A. Carter, B. Brugman, et al., PRL 96, 155001 (2006)

• Can control multimode emission 
(e.g. current, shortening the 
plasma column)

• With two strong primary waves, 
observe beat driven quasimode 
which scatters pump waves, 
generating sidebands

•  Strong interaction: “pump”     
δB/B~1%,  QM δn/n~10%

First observation of three wave interaction in LAPD:  
production of quasimodes by co-propagating AWs

• Spontaneous multimode emission by the cavity is often observed, 
e.g. m=0 and m=1 



Driven cavity, antenna launched waves used to study 
properties of interaction

Driven cavity: can produce QMs 
with range of beat frequencies 

(limited by width of cavity 
resonance for driven m=0) 



Structure of interacting modes

m=0 
(driven)

m=1
(spont.)

1st upper 
sideband

Quasimode



Beat driven wave is off-resonance Alfvén wave; theory 
consistent with observed amplitude, resonant behavior

• Nonlinear Braginskii fluid theory, k⊥ >> k||, ω/Ωci∼1
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• Exhibits resonant behavior (for Alfvénic beat wave) - reasonable 
agreement with experiments 

•  Ignoring resonant demoninator, δn/n ∼ 1-2% for LAPD parameters

• Dominant nonlinear forcing is perpendicular (NL polarization drift): 
easier to move ions across the field to generate density response 
due to k⊥ >> k|| 



Nonlinear excitation of sound waves by Alfvén 
waves

• Parametric decay instability: decay of large amplitude AW to 
sound wave and backward-propagating AW

• Might be important in solar wind (how do you generate 
counter-propagating AW spectrum starting with AWs 
propagating from the sun?) and fusion plasmas (ICRF)

• In LAPD, decay growth rate slower than AW transit time 
(hard to see without larger amplitude, but we are looking)

• Instead, study three-wave interaction at heart of the 
instability: two counter-propagating AWs which beat together 
to drive a sound wave



Nonlinear excitation of sound waves by AWs
• Study three-wave process at heart of parametric decay by interacting 

two frequency-detuned, counter-propagating AWs

[Dorfman & Carter, PRL 110, 
195001 (2013)]



Nonlinear excitation of sound waves by AWs
• Study three-wave process at heart of parametric decay by interacting 

two frequency-detuned, counter-propagating AWs

[Dorfman & Carter, PRL 110, 
195001 (2013)]

• Nonlinear response at beat frequency observed; response persists after 
nonlinear drive is turned off:  evidence for excitation of damped linear wave



Resonant response observed; consistent with simple model of 
nonlinear sound wave drive, though damping not fully explained

• Beat-wave response peaks at beat frequency consistent with 
simple fluid model (three-wave matching AW + AW → IAW)

• Amplitude of peak predicted by theory (damping via ion-neutral 
collisions), but width not matched
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Spatial pattern of driven wave consistent with parallel ponderomotive 
drive

• Driven mode peaks near spatial maximum of magnetic field fluctuation 
of beating Alfvén waves



Observation of a parametric instability of KAWs

• Single, large amplitude KAW launched.  Above an amplitude threshold 
and frequency, observe production of daughter modes. 

[Dorfman & Carter, PRL, 116, 
195002 (2016)]

antenna described in Gigliotti et al. [37]. The pump wave is
launched at ω0 ∼ 0.67Ωi, producing the pattern in the plane
perpendicular to B0 shown for each antenna in the bottom
panel. The strap antenna launches a linearly polarized
m ¼ 0 Alfvén wave cone (k⊥0ρs ¼ 0.11) in which oscil-
lating magnetic field vectors (white arrows) circle the field-
aligned wave current. By contrast, the RMF antenna is
set up to produce two field-aligned current channels
(k⊥0ρs ¼ 0.21) rotating around B0 in an m ¼ 1 pattern
[37]. The rotation direction and hence wave polarization
may be controlled by varying the antenna phasing. To
ensure the launched wave remains nearly monochromatic,
the antenna current is digitized (not shown) and found to
contain no significant sideband component.
In the plasma column in front of the antenna, magnetic

and Langmuir probes detect the signatures of the pump and
daughter modes. Each probe is mounted on an automated
positioning system that may be used to construct a 2D
profile in the x-y plane averaged across multiple discharges.
When the pump wave amplitude exceeds a threshold

value, additional peaks are observed in the frequency
spectrum, as shown in Fig. 2. Panel (a) of Fig. 2 shows
the appearance of three modes: a low frequency mode (M1),
a lower sideband mode (M−), and an upper sideband mode
(Mþ). The frequency matching relations ω#∓ω1 ¼ ω0

hold. However, M1 is not purely a density perturbation as
predicted by the k⊥ ¼ 0 modulational instability theory; as
seen in Fig. 2, the mode has significant magnetic character.
A clear parametric dependence of the mode frequencies

on pump amplitude is shown in panel (b) of Fig. 2. As the
pump amplitude δB0⊥=B0 increases above threshold, the

frequencies ofM1 andMþ increase; there is a correspond-
ing decrease in the frequency of M− such that frequency
matching relations are satisfied at all wave powers.
To determine the character of the three observed daughter

modes, the parallel wave numbers are measured using a set
of three axially separated magnetic probes placed 0.639 m
apart, allowing resolution of wave numbers up to 4.9=m. As
shown in Fig. 3, this measurement reveals positive values of
k∥ for all modes, indicating that all three daughter modes
are copropagating with the pump. Parallel wave number
matching is satisfied, k∥#∓k∥1 ¼ k∥0. Based on the mea-
sured dispersion relation, the pump, M−, and Mþ are
identified as kinetic Alfvén waves (KAWs) while M1 is a
nonresonant mode. Note that M1 falls above the KAW
dispersion curve ω ¼ kjjVA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk⊥ρsÞ2 − ðω=ΩiÞ2

p
for

all possible values of k⊥. However, the measured kjj1
is too small for M1 to be an acoustic mode (for these
parameters, Cs ¼ 0.012VA). This production of a
nonresonant mode is consistent with the modulational
instability.

FIG. 1. Experimental setup in LAPD. Top: An Alfvén wave
antenna on the right end of the device launches the pump wave.
Magnetic and Langmuir probes used to diagnose the interaction are
shown. Bottom: Spatial pattern of the pump wave in the xy plane
measured by a magnetic probe at z ¼ 2.6 m for the strap antenna
(left, B0 ¼ 1135 G) and RMF antenna (right, B0 ¼ 993 G).

(a)

(b)

FIG. 2. Observed kinetic Alfvén wave (KAW) parametric
instability showing threshold behavior and parametric depend-
ence. RMF antenna, RHCP mode, B0 ¼ 993 G. (a) Frequency
spectrum from a magnetic probe at x ¼ 0, y ¼ −6 cm, z ¼ 2.6 m
for three pump mode amplitudes. When the pump amplitude is
above threshold for instability, three daughter modes are seen.
(b) Parametric dependence of the daughter mode frequency as a
function of pump amplitude δB0⊥=B0. The pump amplitude is 0
on the log10 color scale. White vertical dashed lines represent
values of pump amplitude from (a).
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Pump waves:  linearly and circularly polarized



antenna described in Gigliotti et al. [37]. The pump wave is
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(k⊥0ρs ¼ 0.21) rotating around B0 in an m ¼ 1 pattern
[37]. The rotation direction and hence wave polarization
may be controlled by varying the antenna phasing. To
ensure the launched wave remains nearly monochromatic,
the antenna current is digitized (not shown) and found to
contain no significant sideband component.
In the plasma column in front of the antenna, magnetic

and Langmuir probes detect the signatures of the pump and
daughter modes. Each probe is mounted on an automated
positioning system that may be used to construct a 2D
profile in the x-y plane averaged across multiple discharges.

When the pump wave amplitude exceeds a threshold
value, additional peaks are observed in the frequency
spectrum, as shown in Fig. 2. Panel (a) of Fig. 2 shows
the appearance of three modes: a low frequency mode (M1),
a lower sideband mode (M−), and an upper sideband mode
(Mþ). The frequency matching relations ω#∓ω1 ¼ ω0

hold. However, M1 is not purely a density perturbation as
predicted by the k⊥ ¼ 0 modulational instability theory; as
seen in Fig. 2, the mode has significant magnetic character.
A clear parametric dependence of the mode frequencies

on pump amplitude is shown in panel (b) of Fig. 2. As the
pump amplitude δB0⊥=B0 increases above threshold, the

frequencies ofM1 andMþ increase; there is a correspond-
ing decrease in the frequency of M− such that frequency
matching relations are satisfied at all wave powers.
To determine the character of the three observed daughter

modes, the parallel wave numbers are measured using a set
of three axially separated magnetic probes placed 0.639 m
apart, allowing resolution of wave numbers up to 4.9=m. As
shown in Fig. 3, this measurement reveals positive values of
k∥ for all modes, indicating that all three daughter modes
are copropagating with the pump. Parallel wave number
matching is satisfied, k∥#∓k∥1 ¼ k∥0. Based on the mea-
sured dispersion relation, the pump, M−, and Mþ are
identified as kinetic Alfvén waves (KAWs) while M1 is a
nonresonant mode. Note that M1 falls above the KAW
dispersion curve ω ¼ kjjVA
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is too small for M1 to be an acoustic mode (for these
parameters, Cs ¼ 0.012VA). This production of a
nonresonant mode is consistent with the modulational
instability.

FIG. 1. Experimental setup in LAPD. Top: An Alfvén wave
antenna on the right end of the device launches the pump wave.
Magnetic and Langmuir probes used to diagnose the interaction are
shown. Bottom: Spatial pattern of the pump wave in the xy plane
measured by a magnetic probe at z ¼ 2.6 m for the strap antenna
(left, B0 ¼ 1135 G) and RMF antenna (right, B0 ¼ 993 G).
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FIG. 2. Observed kinetic Alfvén wave (KAW) parametric
instability showing threshold behavior and parametric depend-
ence. RMF antenna, RHCP mode, B0 ¼ 993 G. (a) Frequency
spectrum from a magnetic probe at x ¼ 0, y ¼ −6 cm, z ¼ 2.6 m
for three pump mode amplitudes. When the pump amplitude is
above threshold for instability, three daughter modes are seen.
(b) Parametric dependence of the daughter mode frequency as a
function of pump amplitude δB0⊥=B0. The pump amplitude is 0
on the log10 color scale. White vertical dashed lines represent
values of pump amplitude from (a).
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Production of sidebands and low frequency mode

• Production of daughter waves 
observed: threshold both in 
wave amplitude and in 
frequency (only observed for 
f ≳ 0.5 fci)

• All three daughter waves co-
propagating with pump (need 
dispersive AWs)

• Modes satisfy three-wave 
matching rules



antenna described in Gigliotti et al. [37]. The pump wave is
launched at ω0 ∼ 0.67Ωi, producing the pattern in the plane
perpendicular to B0 shown for each antenna in the bottom
panel. The strap antenna launches a linearly polarized
m ¼ 0 Alfvén wave cone (k⊥0ρs ¼ 0.11) in which oscil-
lating magnetic field vectors (white arrows) circle the field-
aligned wave current. By contrast, the RMF antenna is
set up to produce two field-aligned current channels
(k⊥0ρs ¼ 0.21) rotating around B0 in an m ¼ 1 pattern
[37]. The rotation direction and hence wave polarization
may be controlled by varying the antenna phasing. To
ensure the launched wave remains nearly monochromatic,
the antenna current is digitized (not shown) and found to
contain no significant sideband component.
In the plasma column in front of the antenna, magnetic

and Langmuir probes detect the signatures of the pump and
daughter modes. Each probe is mounted on an automated
positioning system that may be used to construct a 2D
profile in the x-y plane averaged across multiple discharges.

When the pump wave amplitude exceeds a threshold
value, additional peaks are observed in the frequency
spectrum, as shown in Fig. 2. Panel (a) of Fig. 2 shows
the appearance of three modes: a low frequency mode (M1),
a lower sideband mode (M−), and an upper sideband mode
(Mþ). The frequency matching relations ω#∓ω1 ¼ ω0

hold. However, M1 is not purely a density perturbation as
predicted by the k⊥ ¼ 0 modulational instability theory; as
seen in Fig. 2, the mode has significant magnetic character.
A clear parametric dependence of the mode frequencies

on pump amplitude is shown in panel (b) of Fig. 2. As the
pump amplitude δB0⊥=B0 increases above threshold, the

frequencies ofM1 andMþ increase; there is a correspond-
ing decrease in the frequency of M− such that frequency
matching relations are satisfied at all wave powers.
To determine the character of the three observed daughter

modes, the parallel wave numbers are measured using a set
of three axially separated magnetic probes placed 0.639 m
apart, allowing resolution of wave numbers up to 4.9=m. As
shown in Fig. 3, this measurement reveals positive values of
k∥ for all modes, indicating that all three daughter modes
are copropagating with the pump. Parallel wave number
matching is satisfied, k∥#∓k∥1 ¼ k∥0. Based on the mea-
sured dispersion relation, the pump, M−, and Mþ are
identified as kinetic Alfvén waves (KAWs) while M1 is a
nonresonant mode. Note that M1 falls above the KAW
dispersion curve ω ¼ kjjVA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk⊥ρsÞ2 − ðω=ΩiÞ2

p
for

all possible values of k⊥. However, the measured kjj1
is too small for M1 to be an acoustic mode (for these
parameters, Cs ¼ 0.012VA). This production of a
nonresonant mode is consistent with the modulational
instability.

FIG. 1. Experimental setup in LAPD. Top: An Alfvén wave
antenna on the right end of the device launches the pump wave.
Magnetic and Langmuir probes used to diagnose the interaction are
shown. Bottom: Spatial pattern of the pump wave in the xy plane
measured by a magnetic probe at z ¼ 2.6 m for the strap antenna
(left, B0 ¼ 1135 G) and RMF antenna (right, B0 ¼ 993 G).

(a)

(b)

FIG. 2. Observed kinetic Alfvén wave (KAW) parametric
instability showing threshold behavior and parametric depend-
ence. RMF antenna, RHCP mode, B0 ¼ 993 G. (a) Frequency
spectrum from a magnetic probe at x ¼ 0, y ¼ −6 cm, z ¼ 2.6 m
for three pump mode amplitudes. When the pump amplitude is
above threshold for instability, three daughter modes are seen.
(b) Parametric dependence of the daughter mode frequency as a
function of pump amplitude δB0⊥=B0. The pump amplitude is 0
on the log10 color scale. White vertical dashed lines represent
values of pump amplitude from (a).
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Production of sidebands and low frequency mode
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FIG. 2: Observed Kinetic Alfvén Wave (KAW) decay insta-
bility showing threshold behavior and a parametric depen-
dence. Data is from the RMF antenna in Helium plasma
with B0 = 993 G. k?⇢s = 0.21. Panel (A) shows the fre-
quency spectrum from a magnetic probe at z = 2.6 m for
three di↵erent pump mode amplitudes. When the pump am-
plitude is above threshold for the decay process, three daugh-
ter modes are seen. Panel (B) shows a parametric dependence
of the decay mode frequency as a function of pump amplitude
�B0?/B0. The pump amplitude is 0 on the log color scale.
White vertical dashed lines represent the values of pump am-
plitude plotted in the upper panel.

described in detail in Gigliotti et al. [30]. A linear or cir-
cularly polarized Alfvén wave is launched at !0 ⇠ 0.67⌦i

in order to allow for finite frequency e↵ects crucial to
the observation of the modulational instability. In the
plasma column in front of the antenna, magnetic and
Langmuir probes detect the magnetic field signatures of
the pump and decay modes. Each probe is mounted on
an automated positioning system that may be used to
construct a 2-D profile in the x-y plane averaged across
multiple discharges.

When the pump amplitude exceeds a threshold value,
additional peaks are observed in the frequency spectrum,
as shown in Fig. 2. Panel (A) of the figure shows the ap-
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FIG. 3: Behavior of the observed instability for two di↵er-
ent sets of plasma parmaters. Both plots show the perpedic-
ular magnetic field spectrum as a function of antenna cur-
rent and frequency. Panel (A) is from a magnetic probe at
z = 5.11 m using the strap antenna in Hydrogen plasma with
f0 = 434 kHz, B0 = 330 G. Panel (B) is from a magnetic
probe at z = 5.75 m using the strap antenna in Helium plasma
with f0 = 125 kHz, B0 = 400 G.

pearance of three modes: a low frequency mode (M1), a
lower sideband mode (M-), and an upper sideband mode
(M+). Consistent with the theoretical prediction for a
modulational instability, the frequency matching rela-
tions !± ⌥ !1 = !0 hold. However, the low-frequency
acoustic quasi-mode expected for the modulational insta-
bility is not observed; as seen in Fig. 2, M1 has significant
magnetic character.

Consistent with a modulational instability, there is a
clear parametric dependence of the mode frequencies on
pump amplitude as shown in Panel (B) of Fig. 2. As
the pump amplitude �B0?/B0 increases above thresh-
old, the frequencies of M1 and M+ increase; there is a
corresponding decrease in the frequency of M- such that
the frequency matching relations are satisfied at all wave
powers.

The experiment is performed for a variety of plasma
and antenna parameters. Two other examples are shown
in Fig. 3 In Panel (A), harmonics of the low frequency
decay mode as well as the pump minus those harmonics
are clearly seen. In Panel (B), there is a mode at half the
pump frequency that bifurcates at higher antenna pow-
ers. The present paper will focus on the clear three-mode
case in Fig. 2; a detailed study of parameter dependencies
will be left to a future publication.

To determine the character of the three observed de-
cay modes, the parallel wavenumbers are measured. As
shown in Fig. 4, this reveals positive values of k|| for
all modes, indicating that all three decay modes are co-
propagating with the pump. Based on the measured dis-
persion relation, the pump, M-, and M+ are identified
as KAWs while M1 is a non-resonant quasi-mode. Note
that while M1 does not fall on the KAW dispersion curve

! = k||VA

q
1 + (k?⇢s)

2 � (!/⌦i)
2, the measured k||1 is

still too low for M1 to be an acoustic mode (for these
parameters, Cs = 0.012VA). The presence of a quasi-
mode allows the k|| matching relation k||± ⌥ k||1 = k||0
characteristic of a modulational instability to hold; this

Variety of 
behaviors

observed as 
plasma 

parameters are 
changed



Sidebands are KAWs, low frequency mode is quasimode

• Sideband waves are consistent with KAW dispersion relation

• Low frequency mode is a non-resonant mode/quasimode: phase speed 
inconsistent with sound wave or KAW

• Participant modes consistent with modulational decay instability

Measurements in the plane perpendicular to the back-
ground field reveal that perpendicular nonlinear forces
likely play a role in generating the observed daughter
waves. This is shown in Fig. 4 which displays the pattern of
a representative daughter mode M− in the strap antenna
case; the plot is derived from a magnetic probe scanned
spatially over many shots. By comparing this figure to the
strap pump mode pattern in Fig. 1, it can been seen that the
amplitude peak ofM− occurs near the center of the current
channel on a gradient of the pump mode magnetic field. By
contrast, the parallel ponderomotive force associated with
the modulational instability will produce an amplitude peak
in the daughter modes at the location where the pump wave
magnetic field peaks [33,38]. This difference suggests a
perpendicular nonlinearity in which perpendicular gra-
dients of the pump mode amplitude (i.e., k⊥) play a key
role in the nonlinear terms.
The pumpmode polarization also influences the observed

instability. This is investigated by changing the RMF
antenna phasing to produce one of the two polarization
patterns shown in the inset panel of Fig. 5. Polarization is
quantified at each spatial point by measuring the ratio of the
minor to major radius in the ellipse traced by the rotating
magnetic field vector. This quantity is signed negative for
left-hand rotation and positive for right-hand rotation. As
shown in Fig. 5, left-hand (LHCP) and right-hand (RHCP)
pumpmodes contain opposite polarizationmixes that sum to
linear polarization. Eachmix produces a different frequency
spectra in the vicinity of the current channel; the sideband
separation frequency produced by the LHCP mode is less
than half that produced by the RHCP mode. As in the
linearly polarized strap antenna case, the daughter mode
amplitudes peak near the current channel center for the
RHCP pump mode. The spatial profile and nonlinear

physics may be different in the LHCP case and is still under
investigation; the LHCP mode also leads to a broadening of
the pump mode profile and a corresponding broad spectrum
at low frequencies. The existence of a polarization depend-
ence is consistent with the theoretical literature on para-
metric instabilities. However, most theoretical work (e.g.,
Refs. [6,7]) considers uniformly polarized plane waves,
making direct comparisons difficult.
Despite important physical differences with the present

work, modulational instability theory with k⊥ ¼ 0 still
describes some features of the observed process well.
Figure 6, panel (a) shows the roots of the dispersion
relation derived by Wong and Goldstein [6] and
Hollweg [7], solved for LAPD parameters. This two-fluid

FIG. 3. Parallel wave number measurement showing daughter
modes copropagating with the pump. The pump, M−, and Mþ
are identified as KAWs while M1 is a nonresonant mode. Strap
antenna, B0 ¼ 1140 G, δB0⊥=B0 ¼ 1.9 × 10−3. Magnetic probes
at z ¼ 5.11 m, 5.75 m, and 6.39 m. The fluid dispersion relation
for a KAW with the pump k⊥0ρs ¼ 0.11 and a line with slope
ω=kjj ¼ 0.29 VA are plotted for comparison.

FIG. 4. Spatial profile of M− for the strap antenna suggesting
the nonlinearity is perpendicular in nature. A cut of δBx is shown
on the right. Strap antenna pump from Fig. 1, B0 ¼ 1135 G.
Color represents fluctuating magnetic field amplitude δB−⊥;
white arrows show relative magnitude and direction. The peak in
M− amplitude occurs on a gradient of the pump mode magnetic
field near the current channel center.

FIG. 5. Dependence of the observed frequency spectrum on the
polarization of the RMF antenna. Magnetic probe x ¼ 0,
y ¼ −6 cm, z ¼ 2.6 m. Inset: Polarization of the RMF pump
mode from Fig. 1 along a cut at x ¼ 0. B0 ¼ 993 G.
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FIG. 2: Observed Kinetic Alfvén Wave (KAW) decay insta-
bility showing threshold behavior and a parametric depen-
dence. Data is from the RMF antenna in Helium plasma
with B0 = 993 G. k?⇢s = 0.21. Panel (A) shows the fre-
quency spectrum from a magnetic probe at z = 2.6 m for
three di↵erent pump mode amplitudes. When the pump am-
plitude is above threshold for the decay process, three daugh-
ter modes are seen. Panel (B) shows a parametric dependence
of the decay mode frequency as a function of pump amplitude
�B0?/B0. The pump amplitude is 0 on the log color scale.
White vertical dashed lines represent the values of pump am-
plitude plotted in the upper panel.

described in detail in Gigliotti et al. [30]. A linear or cir-
cularly polarized Alfvén wave is launched at !0 ⇠ 0.67⌦i

in order to allow for finite frequency e↵ects crucial to
the observation of the modulational instability. In the
plasma column in front of the antenna, magnetic and
Langmuir probes detect the magnetic field signatures of
the pump and decay modes. Each probe is mounted on
an automated positioning system that may be used to
construct a 2-D profile in the x-y plane averaged across
multiple discharges.

When the pump amplitude exceeds a threshold value,
additional peaks are observed in the frequency spectrum,
as shown in Fig. 2. Panel (A) of the figure shows the ap-

δB
(log norm)Antenna Current (A)

100 200 300

f (
kH

z)

0

50

100

150

-10

-8

-6

-4

-2

0(B)

δB
 (log norm)Antenna Current (A)

50 100 150 200

f (
kH

z)

0

100

200

300

400

500

-7

-6

-5

-4

-3

-2

-1

0(A)

FIG. 3: Behavior of the observed instability for two di↵er-
ent sets of plasma parmaters. Both plots show the perpedic-
ular magnetic field spectrum as a function of antenna cur-
rent and frequency. Panel (A) is from a magnetic probe at
z = 5.11 m using the strap antenna in Hydrogen plasma with
f0 = 434 kHz, B0 = 330 G. Panel (B) is from a magnetic
probe at z = 5.75 m using the strap antenna in Helium plasma
with f0 = 125 kHz, B0 = 400 G.

pearance of three modes: a low frequency mode (M1), a
lower sideband mode (M-), and an upper sideband mode
(M+). Consistent with the theoretical prediction for a
modulational instability, the frequency matching rela-
tions !± ⌥ !1 = !0 hold. However, the low-frequency
acoustic quasi-mode expected for the modulational insta-
bility is not observed; as seen in Fig. 2, M1 has significant
magnetic character.

Consistent with a modulational instability, there is a
clear parametric dependence of the mode frequencies on
pump amplitude as shown in Panel (B) of Fig. 2. As
the pump amplitude �B0?/B0 increases above thresh-
old, the frequencies of M1 and M+ increase; there is a
corresponding decrease in the frequency of M- such that
the frequency matching relations are satisfied at all wave
powers.

The experiment is performed for a variety of plasma
and antenna parameters. Two other examples are shown
in Fig. 3 In Panel (A), harmonics of the low frequency
decay mode as well as the pump minus those harmonics
are clearly seen. In Panel (B), there is a mode at half the
pump frequency that bifurcates at higher antenna pow-
ers. The present paper will focus on the clear three-mode
case in Fig. 2; a detailed study of parameter dependencies
will be left to a future publication.

To determine the character of the three observed de-
cay modes, the parallel wavenumbers are measured. As
shown in Fig. 4, this reveals positive values of k|| for
all modes, indicating that all three decay modes are co-
propagating with the pump. Based on the measured dis-
persion relation, the pump, M-, and M+ are identified
as KAWs while M1 is a non-resonant quasi-mode. Note
that while M1 does not fall on the KAW dispersion curve

! = k||VA

q
1 + (k?⇢s)

2 � (!/⌦i)
2, the measured k||1 is

still too low for M1 to be an acoustic mode (for these
parameters, Cs = 0.012VA). The presence of a quasi-
mode allows the k|| matching relation k||± ⌥ k||1 = k||0
characteristic of a modulational instability to hold; this



Daughter quasimode located on pump current channel, inconsistent with 
parallel ponderomotive drive 

• Perpendicular nonlinearity?  Importance of k⊥ of pump, daughters

Measurements in the plane perpendicular to the back-
ground field reveal that perpendicular nonlinear forces
likely play a role in generating the observed daughter
waves. This is shown in Fig. 4 which displays the pattern of
a representative daughter mode M− in the strap antenna
case; the plot is derived from a magnetic probe scanned
spatially over many shots. By comparing this figure to the
strap pump mode pattern in Fig. 1, it can been seen that the
amplitude peak ofM− occurs near the center of the current
channel on a gradient of the pump mode magnetic field. By
contrast, the parallel ponderomotive force associated with
the modulational instability will produce an amplitude peak
in the daughter modes at the location where the pump wave
magnetic field peaks [33,38]. This difference suggests a
perpendicular nonlinearity in which perpendicular gra-
dients of the pump mode amplitude (i.e., k⊥) play a key
role in the nonlinear terms.
The pumpmode polarization also influences the observed

instability. This is investigated by changing the RMF
antenna phasing to produce one of the two polarization
patterns shown in the inset panel of Fig. 5. Polarization is
quantified at each spatial point by measuring the ratio of the
minor to major radius in the ellipse traced by the rotating
magnetic field vector. This quantity is signed negative for
left-hand rotation and positive for right-hand rotation. As
shown in Fig. 5, left-hand (LHCP) and right-hand (RHCP)
pumpmodes contain opposite polarizationmixes that sum to
linear polarization. Eachmix produces a different frequency
spectra in the vicinity of the current channel; the sideband
separation frequency produced by the LHCP mode is less
than half that produced by the RHCP mode. As in the
linearly polarized strap antenna case, the daughter mode
amplitudes peak near the current channel center for the
RHCP pump mode. The spatial profile and nonlinear

physics may be different in the LHCP case and is still under
investigation; the LHCP mode also leads to a broadening of
the pump mode profile and a corresponding broad spectrum
at low frequencies. The existence of a polarization depend-
ence is consistent with the theoretical literature on para-
metric instabilities. However, most theoretical work (e.g.,
Refs. [6,7]) considers uniformly polarized plane waves,
making direct comparisons difficult.
Despite important physical differences with the present

work, modulational instability theory with k⊥ ¼ 0 still
describes some features of the observed process well.
Figure 6, panel (a) shows the roots of the dispersion
relation derived by Wong and Goldstein [6] and
Hollweg [7], solved for LAPD parameters. This two-fluid

FIG. 3. Parallel wave number measurement showing daughter
modes copropagating with the pump. The pump, M−, and Mþ
are identified as KAWs while M1 is a nonresonant mode. Strap
antenna, B0 ¼ 1140 G, δB0⊥=B0 ¼ 1.9 × 10−3. Magnetic probes
at z ¼ 5.11 m, 5.75 m, and 6.39 m. The fluid dispersion relation
for a KAW with the pump k⊥0ρs ¼ 0.11 and a line with slope
ω=kjj ¼ 0.29 VA are plotted for comparison.

FIG. 4. Spatial profile of M− for the strap antenna suggesting
the nonlinearity is perpendicular in nature. A cut of δBx is shown
on the right. Strap antenna pump from Fig. 1, B0 ¼ 1135 G.
Color represents fluctuating magnetic field amplitude δB−⊥;
white arrows show relative magnitude and direction. The peak in
M− amplitude occurs on a gradient of the pump mode magnetic
field near the current channel center.

FIG. 5. Dependence of the observed frequency spectrum on the
polarization of the RMF antenna. Magnetic probe x ¼ 0,
y ¼ −6 cm, z ¼ 2.6 m. Inset: Polarization of the RMF pump
mode from Fig. 1 along a cut at x ¼ 0. B0 ¼ 993 G.
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antenna described in Gigliotti et al. [37]. The pump wave is
launched at ω0 ∼ 0.67Ωi, producing the pattern in the plane
perpendicular to B0 shown for each antenna in the bottom
panel. The strap antenna launches a linearly polarized
m ¼ 0 Alfvén wave cone (k⊥0ρs ¼ 0.11) in which oscil-
lating magnetic field vectors (white arrows) circle the field-
aligned wave current. By contrast, the RMF antenna is
set up to produce two field-aligned current channels
(k⊥0ρs ¼ 0.21) rotating around B0 in an m ¼ 1 pattern
[37]. The rotation direction and hence wave polarization
may be controlled by varying the antenna phasing. To
ensure the launched wave remains nearly monochromatic,
the antenna current is digitized (not shown) and found to
contain no significant sideband component.
In the plasma column in front of the antenna, magnetic

and Langmuir probes detect the signatures of the pump and
daughter modes. Each probe is mounted on an automated
positioning system that may be used to construct a 2D
profile in the x-y plane averaged across multiple discharges.
When the pump wave amplitude exceeds a threshold

value, additional peaks are observed in the frequency
spectrum, as shown in Fig. 2. Panel (a) of Fig. 2 shows
the appearance of three modes: a low frequency mode (M1),
a lower sideband mode (M−), and an upper sideband mode
(Mþ). The frequency matching relations ω#∓ω1 ¼ ω0

hold. However, M1 is not purely a density perturbation as
predicted by the k⊥ ¼ 0 modulational instability theory; as
seen in Fig. 2, the mode has significant magnetic character.
A clear parametric dependence of the mode frequencies

on pump amplitude is shown in panel (b) of Fig. 2. As the
pump amplitude δB0⊥=B0 increases above threshold, the

frequencies ofM1 andMþ increase; there is a correspond-
ing decrease in the frequency of M− such that frequency
matching relations are satisfied at all wave powers.
To determine the character of the three observed daughter

modes, the parallel wave numbers are measured using a set
of three axially separated magnetic probes placed 0.639 m
apart, allowing resolution of wave numbers up to 4.9=m. As
shown in Fig. 3, this measurement reveals positive values of
k∥ for all modes, indicating that all three daughter modes
are copropagating with the pump. Parallel wave number
matching is satisfied, k∥#∓k∥1 ¼ k∥0. Based on the mea-
sured dispersion relation, the pump, M−, and Mþ are
identified as kinetic Alfvén waves (KAWs) while M1 is a
nonresonant mode. Note that M1 falls above the KAW
dispersion curve ω ¼ kjjVA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk⊥ρsÞ2 − ðω=ΩiÞ2

p
for

all possible values of k⊥. However, the measured kjj1
is too small for M1 to be an acoustic mode (for these
parameters, Cs ¼ 0.012VA). This production of a
nonresonant mode is consistent with the modulational
instability.

FIG. 1. Experimental setup in LAPD. Top: An Alfvén wave
antenna on the right end of the device launches the pump wave.
Magnetic and Langmuir probes used to diagnose the interaction are
shown. Bottom: Spatial pattern of the pump wave in the xy plane
measured by a magnetic probe at z ¼ 2.6 m for the strap antenna
(left, B0 ¼ 1135 G) and RMF antenna (right, B0 ¼ 993 G).

(a)

(b)

FIG. 2. Observed kinetic Alfvén wave (KAW) parametric
instability showing threshold behavior and parametric depend-
ence. RMF antenna, RHCP mode, B0 ¼ 993 G. (a) Frequency
spectrum from a magnetic probe at x ¼ 0, y ¼ −6 cm, z ¼ 2.6 m
for three pump mode amplitudes. When the pump amplitude is
above threshold for instability, three daughter modes are seen.
(b) Parametric dependence of the daughter mode frequency as a
function of pump amplitude δB0⊥=B0. The pump amplitude is 0
on the log10 color scale. White vertical dashed lines represent
values of pump amplitude from (a).
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Parametric instability changes with pump polarization

• Change in daughter frequency/amplitude with 
change from dominant LHCP to RHCP

Measurements in the plane perpendicular to the back-
ground field reveal that perpendicular nonlinear forces
likely play a role in generating the observed daughter
waves. This is shown in Fig. 4 which displays the pattern of
a representative daughter mode M− in the strap antenna
case; the plot is derived from a magnetic probe scanned
spatially over many shots. By comparing this figure to the
strap pump mode pattern in Fig. 1, it can been seen that the
amplitude peak ofM− occurs near the center of the current
channel on a gradient of the pump mode magnetic field. By
contrast, the parallel ponderomotive force associated with
the modulational instability will produce an amplitude peak
in the daughter modes at the location where the pump wave
magnetic field peaks [33,38]. This difference suggests a
perpendicular nonlinearity in which perpendicular gra-
dients of the pump mode amplitude (i.e., k⊥) play a key
role in the nonlinear terms.
The pumpmode polarization also influences the observed

instability. This is investigated by changing the RMF
antenna phasing to produce one of the two polarization
patterns shown in the inset panel of Fig. 5. Polarization is
quantified at each spatial point by measuring the ratio of the
minor to major radius in the ellipse traced by the rotating
magnetic field vector. This quantity is signed negative for
left-hand rotation and positive for right-hand rotation. As
shown in Fig. 5, left-hand (LHCP) and right-hand (RHCP)
pumpmodes contain opposite polarizationmixes that sum to
linear polarization. Eachmix produces a different frequency
spectra in the vicinity of the current channel; the sideband
separation frequency produced by the LHCP mode is less
than half that produced by the RHCP mode. As in the
linearly polarized strap antenna case, the daughter mode
amplitudes peak near the current channel center for the
RHCP pump mode. The spatial profile and nonlinear

physics may be different in the LHCP case and is still under
investigation; the LHCP mode also leads to a broadening of
the pump mode profile and a corresponding broad spectrum
at low frequencies. The existence of a polarization depend-
ence is consistent with the theoretical literature on para-
metric instabilities. However, most theoretical work (e.g.,
Refs. [6,7]) considers uniformly polarized plane waves,
making direct comparisons difficult.
Despite important physical differences with the present

work, modulational instability theory with k⊥ ¼ 0 still
describes some features of the observed process well.
Figure 6, panel (a) shows the roots of the dispersion
relation derived by Wong and Goldstein [6] and
Hollweg [7], solved for LAPD parameters. This two-fluid

FIG. 3. Parallel wave number measurement showing daughter
modes copropagating with the pump. The pump, M−, and Mþ
are identified as KAWs while M1 is a nonresonant mode. Strap
antenna, B0 ¼ 1140 G, δB0⊥=B0 ¼ 1.9 × 10−3. Magnetic probes
at z ¼ 5.11 m, 5.75 m, and 6.39 m. The fluid dispersion relation
for a KAW with the pump k⊥0ρs ¼ 0.11 and a line with slope
ω=kjj ¼ 0.29 VA are plotted for comparison.

FIG. 4. Spatial profile of M− for the strap antenna suggesting
the nonlinearity is perpendicular in nature. A cut of δBx is shown
on the right. Strap antenna pump from Fig. 1, B0 ¼ 1135 G.
Color represents fluctuating magnetic field amplitude δB−⊥;
white arrows show relative magnitude and direction. The peak in
M− amplitude occurs on a gradient of the pump mode magnetic
field near the current channel center.

FIG. 5. Dependence of the observed frequency spectrum on the
polarization of the RMF antenna. Magnetic probe x ¼ 0,
y ¼ −6 cm, z ¼ 2.6 m. Inset: Polarization of the RMF pump
mode from Fig. 1 along a cut at x ¼ 0. B0 ¼ 993 G.
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antenna described in Gigliotti et al. [37]. The pump wave is
launched at ω0 ∼ 0.67Ωi, producing the pattern in the plane
perpendicular to B0 shown for each antenna in the bottom
panel. The strap antenna launches a linearly polarized
m ¼ 0 Alfvén wave cone (k⊥0ρs ¼ 0.11) in which oscil-
lating magnetic field vectors (white arrows) circle the field-
aligned wave current. By contrast, the RMF antenna is
set up to produce two field-aligned current channels
(k⊥0ρs ¼ 0.21) rotating around B0 in an m ¼ 1 pattern
[37]. The rotation direction and hence wave polarization
may be controlled by varying the antenna phasing. To
ensure the launched wave remains nearly monochromatic,
the antenna current is digitized (not shown) and found to
contain no significant sideband component.
In the plasma column in front of the antenna, magnetic

and Langmuir probes detect the signatures of the pump and
daughter modes. Each probe is mounted on an automated
positioning system that may be used to construct a 2D
profile in the x-y plane averaged across multiple discharges.

When the pump wave amplitude exceeds a threshold
value, additional peaks are observed in the frequency
spectrum, as shown in Fig. 2. Panel (a) of Fig. 2 shows
the appearance of three modes: a low frequency mode (M1),
a lower sideband mode (M−), and an upper sideband mode
(Mþ). The frequency matching relations ω#∓ω1 ¼ ω0

hold. However, M1 is not purely a density perturbation as
predicted by the k⊥ ¼ 0 modulational instability theory; as
seen in Fig. 2, the mode has significant magnetic character.
A clear parametric dependence of the mode frequencies

on pump amplitude is shown in panel (b) of Fig. 2. As the
pump amplitude δB0⊥=B0 increases above threshold, the

frequencies ofM1 andMþ increase; there is a correspond-
ing decrease in the frequency of M− such that frequency
matching relations are satisfied at all wave powers.
To determine the character of the three observed daughter

modes, the parallel wave numbers are measured using a set
of three axially separated magnetic probes placed 0.639 m
apart, allowing resolution of wave numbers up to 4.9=m. As
shown in Fig. 3, this measurement reveals positive values of
k∥ for all modes, indicating that all three daughter modes
are copropagating with the pump. Parallel wave number
matching is satisfied, k∥#∓k∥1 ¼ k∥0. Based on the mea-
sured dispersion relation, the pump, M−, and Mþ are
identified as kinetic Alfvén waves (KAWs) while M1 is a
nonresonant mode. Note that M1 falls above the KAW
dispersion curve ω ¼ kjjVA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk⊥ρsÞ2 − ðω=ΩiÞ2

p
for

all possible values of k⊥. However, the measured kjj1
is too small for M1 to be an acoustic mode (for these
parameters, Cs ¼ 0.012VA). This production of a
nonresonant mode is consistent with the modulational
instability.

FIG. 1. Experimental setup in LAPD. Top: An Alfvén wave
antenna on the right end of the device launches the pump wave.
Magnetic and Langmuir probes used to diagnose the interaction are
shown. Bottom: Spatial pattern of the pump wave in the xy plane
measured by a magnetic probe at z ¼ 2.6 m for the strap antenna
(left, B0 ¼ 1135 G) and RMF antenna (right, B0 ¼ 993 G).

(a)

(b)

FIG. 2. Observed kinetic Alfvén wave (KAW) parametric
instability showing threshold behavior and parametric depend-
ence. RMF antenna, RHCP mode, B0 ¼ 993 G. (a) Frequency
spectrum from a magnetic probe at x ¼ 0, y ¼ −6 cm, z ¼ 2.6 m
for three pump mode amplitudes. When the pump amplitude is
above threshold for instability, three daughter modes are seen.
(b) Parametric dependence of the daughter mode frequency as a
function of pump amplitude δB0⊥=B0. The pump amplitude is 0
on the log10 color scale. White vertical dashed lines represent
values of pump amplitude from (a).
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Theory: qualitatively consistent with k
⊥
=0 modulation decay theory (with 

important quantitative differences)

• Theory for k⊥=0 parametric instabilities 
(Wong & Goldstein; Hollweg) solved for 
LAPD parameters

• Modulational decay instability predicted to 
be unstable with consistent phase velocity 
for M1 (low frequency daughter) 

• Mode frequency and growth rate too low 
for experiment, but scales consistently 
with amplitude (importance of finite k⊥?)

• Parametric decay (sound wave 
production) predicted to have 
higher growth rate but we have 
not observed it!

model outputs the dispersion relation of M1 given a finite
amplitude pump wave propagating parallel to the back-
ground field. Orange curves for unstable modes reveal the
usual decay, beat, and modulational instabilities driven by
the parallel ponderomotive force. Because the modulational
instability involves only forward propogating modes, it is
most consistent with the experimental observations. An
arrow on the figure indicates that the peak growth rate of
the modulational instability occurs for daughter nonreso-
nant modes with ω=k∥ ¼ 0.29 VA. Comparing this value to
the measured dispersion of M1 in Fig. 3, the line falls just
within the upper error bar. Therefore, the fact thatM1 is not

a normal mode of the system is well predicted by modula-
tional instability theory with k⊥ ¼ 0.
The theory also predicts the increase in mode frequency

with pump amplitude seen in Fig. 2. This is shown in panel
(b) of Fig. 6 which plots the frequency of M1 for both the
experimental case in Fig. 2 (blue circles) and the k⊥ ¼ 0
theoretical prediction [6,7] (red stars). Both theory and
experiment follow an upward trend. However, the theo-
retical frequencies are an order of magnitude too low, and
the corresponding growth times are longer than the plasma
discharge; clearly, the parallel ponderomotive force
is too weak to explain the experimental observations.
Furthermore, changing the k⊥ spectrum of the pump wave
by switching to a different antenna (yellow squares) while
keeping other parameters similar results in an increase in
the observed M1 frequency. These observations imply that
perpendicular structure plays a key role in the observed
instability.
Further theoretical development is necessary to fully

explain the observed daughter modes. Wong and Goldstein
[6] and Hollweg [7] predict that the growth rate of the decay
instability should be three orders of magnitude larger than
that of the modulational instability for the LAPD param-
eters under investigation. Yet parametric decay to sound
waves is not observed. Possible reasons include (1) the
growth rates are modified when finite k⊥ is considered and
(2) for the larger values of k∥ characteristic of the decay
instability ion-neutral collisions present in the experiment
significantly reduce the growth rate.
Concerning the effect of finite k⊥, very limited theo-

retical and computational work is available. Numerical
simulations by Del Zanna [39,40] and Matteini et al. [23]
show a reduction in the growth rate of the decay instability
for oblique pump waves, but do not consider the modula-
tional instability. Work by Viñas and Goldstein [41,42]
extends the theory to allow the daughter modes to have
finite k⊥ while retaining k⊥0 ¼ 0 for the pump. This allows
for new classes of instabilities at oblique angles. In
particular, Viñas and Goldstein [42] found a magneto-
acoustic instability with a very narrow band of unstable
wave numbers which is favored at low β and high wave
dispersion (i.e., high ω=Ωi). The oblique nature of the
daughter modes may also explain the Alfvénic character of
the observed nonresonant mode M1. New insight on the
nature of the nonlinear terms may also come from extend-
ing theoretical work by Brugman [43] which examines
copropagating waves, but only with aligned polarizations.
The applicability of these results to the present Letter is
currently under investigation.
In summary, the first laboratory observations of a shear

Alfvén wave parametric instability are presented. A single
finite ω=Ωi, finite k⊥ Alfvén wave is launched above a
threshold amplitude, resulting in three daughter modes: two
forward propagating Alfvén wave sidebands and a forward
propagating nonresonant mode. Frequency and parallel

(a)

(b)

FIG. 6. Comparison between LAPD data and k⊥ ¼ 0
dispersion relation derived by Wong and Goldstein [6] and
Hollweg [7]. (a) Solutions to the dispersion relation of Wong
and Goldstein [6] and Hollweg [7] for experimental parameters of
Fig. 3. Labeled: s: sound mode, −b: backward propagating lower
Alfvénic sideband, −f: forward propagating lower Alfvénic
sideband, þf: forward propagating upper Alfvénic sideband.
Black curves represent stable modes; orange curves representing
unstable modes are labeled with the appropriate instability.
(b) Mode frequency of the modulational instability as a function
of pump amplitude for experimental parameters in Fig. 2 (blue
circles), theoretical predictions (red stars), and strap antenna
results with similar parameters (yellow squares).
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 Exciting/controlling drift waves via beating AWs

• Density depletion formed by inserting blocking disk into 
anode-cathode region, blocking primary electrons therefore 
limiting plasma production in its shadow

• Instability grows on periphery of striation/depletion (drift-
Alfvén waves studied in depth [Burke, Peñano, Maggs, Morales, 
Pace, Shi… ])

• Launch KAWs into depletion, look for interaction

Density Depletion

Two independant, perpen-
dicularly polarized Alfvén 
waves

B0= 0.5 - 1.5 kG

He Plasma Boundary

Vacuum Chamber Wall

Cathode
Grid Anode

Disk blocks 
primary electrons



Unstable fluctuations observed on depletion

• m=1 coherent 
fluctuation 
observed 
localized to 
pressure gradient

• Sheared cross-
field flow also 
present in 
filament edge: 
Drift-wave 
instability 
modified by shear 
(coupling to KH)

(a)

(b)

(c)

(d)

(e)



Resonant drive and mode-selection/suppression of instability 

• Beat response significantly stronger than uniform plasma case 

• Resonance at (downshifted) instability frequency observed, 
suppression of the unstable mode observed above (and slightly 
below)

• Instability returns at higher beat frequency
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BW controls unstable mode and reduces broadband noise 

• Threshold for control:  beat-driven mode has comparable 
(but less) amplitude than original unstable mode

• With beat wave, quieter at wide range of frequencies 
(previously generated nonlinearly by unstable mode)

BW
BW



Structure of beat-driven modes suggest coupling to linear modes

• Beat wave has m=1 (6 kHz peak), m=2 (8 kHz peak)

• Rotation in electron diamagnetic direction (same as instability)
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Threshold for control, saturation of BW observed

• Modification of DW seen starting at PBW/PDW ~ 10%; 
maximum suppression for comparable BW power

• Two effects:  electron heating from KAWs modifies profiles, 
causing some reduction in amplitude without BW

• BW response seems to saturate as DW power bottoms out



Similar behavior seen using external antenna 
to excite drift-waves 

• Used external antenna structure on MIRABELLE, VINETA to try to 
directly excite drift-waves

• Saw collapse of spectrum onto coherent drift-wave at the driven 
frequency (+ harmonics), transport modified

Schroeder, et al PRL 2001
Brandt, et al, PoP 2010



ICRF beat waves used to drive AEs 

• ICRF BWs used to excited 
TAEs in JET [Fasoli, et al.] 
and ASDEX [Sassenberg, et 
al.]

• Could use ICRF to interact 
with control lower 
frequency modes (drift-
type, ELMs, etc)

Sassenberg, et al., NF 50, 052003 (2010)


