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What do we mean by magnetohydrodynamics ?

➡ It is a fluid-like theoretical description for the dynamics of matter 

➡Baryonic matter in the Universe is mostly hydrogen.  

➡At temperatures above 104 K  it becomes a hydrogen plasma, i.e. a gas made of   
        protons and electrons 

➡The large scale behavior of this gas can be described through fluidistic equations  
 (Navier-Stokes). 

➡This fluid is made of electrically charged particles and therefore it suffers electric and  
 magnetic forces. 

➡Not only that, these charges are sources of self-consistent electric and magnetic fields. 
 Therefore, the fluid equations will couple to Maxwell’s equations. 

➡At small spatial scales (and fast timescales) non-fluid or kinetic effects become  
 non-negligible. 



➡ The MHD equations are: 

which describe the dynamics of the fluid as well as the evolution of the magnetic field.  

➡ The induction equation is the result of Ohm’s law 

and Faraday’s equation.

MHD equations
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∂ B⃗
∂ t

= ∇⃗ × ( u⃗× B⃗ )

➢ The magnetic force can be split into:

➢ In the asymptotic limit of negligible resistivity:

Magnetic pressure  
and magnetic tension

Frozen-in condition

MHD equations
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➡Within this level of description (which is adequate at large spatial scales) there  
 is a variety of important plasma processes that have traditionally been addressed: 

•  Instabilities and wave propagation (Alfven and magnetosonic) 

•  Dynamo mechanisms to generate magnetic fields 

•  MHD turbulence 

•  Magnetic reconnection  

Applications of MHD



➢Number of sunspots vs. time 

➢It clearly shows an 11 yr period  
  with irregularities in  its maxima,    
  its periods and rise-fall times. 

➢Area covered by spots as a function  
  of latitude and time. 

➢At the beginning of each cycle, sunspots are born at latitudes of            and migrate to the Equator. 

➢ Magnetic polarities are reversed from one cycle to the next and are different at different   
   hemispheres (Hale´s law)

!30±

Magnetic field of the Sun
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➢ If we assume the magnetic field B to be very small, the MHD equations decouple. We can  
first solve the equations of motion. For instance, in the incompressible limit
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➢ Now that we know              , we can solve the induction equation to obtain  ),( txu !! ),( txB !
!

➢ This particular and convenient approximation is known as the kinematic dynamo.  
Note that the induction equation is linear in            ,  for any given              . For 
stationary flows, there will be a dynamo solution whenever

0,)(),( 0 >= γγ texBtxB !!!!

What kind of permanent flows are ubiquitous in astrophysical objects ?

Kinematic dynamos 
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Rotation 
(macro) 

Meridional flow 
(macro) 

Convection 
(micro)

o Radial differential rotation  

o Latitudinal differential rotation  

o From equator to poles at 20 m/s 

o Helicoidal convective turbulence 

o Giant cells (driven by Coriolis) 

o Regular and stochastic components

Rotation and Convection

Omega effect 

Alpha effect



➢ We integrate the induction equation numerically, assuming axi-symmetry. 

➢ We use empirical profiles of differential rotation and meridional flow. (Mininni & 
Gómez 2002, ApJ 573, 454).

Meridional flow               Small-scale convection          Dissipation
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➢ Toroidal field vs. latitude and time. 

➢ Hale´s law can cleary be observed.

➢ Magnetic energy vs. latitude and time. 

➢ It is a proxy of Wolf´s number.

Non-stochastic butterfly diagrams



➢ We model          as a  gaussian  
   stochastic process, with spatial and  
  temporal correlations corresponding  
  to typical giant cells.  

δα

kmdays
corrcorr

510.2,30 ≅≅ λτ

➢ Toroidal magnetic field obtained from solar  
    magnetograms, displaying the change of polarity 
   in the polar regions. 

➢ Our results correctly reproduce the general  
    behavior, although our butterflies arise at  
    higher latitudes

Role of stochasticity



➢Wolf Number vs. time  

➢ Maunder minimum lasts from 1650 to 1700. 

➢ There is evidence of more Maunder-like  
   events (Beer 2000). 

➢ N-S asymmetries were enhanced during the  
   Maunder minimum (Ribes & Nesme-Ribes 1993).

Maunder minimum 



➢ Toroidal magnetic field  
   for a long time integration 
   (Gómez & Mininni 2006). 

➢ A minimum of activity is  
    observed at the center. After  
   a few cycles, normal activity  
   is restablished. 

➢ Magnetic energy at mid-latitudes vs. time. Two Maunder-like events are observed. 

Maunder-like events



➢ It provides a quantitative expresion for the coefficient alpha. The first assumption is that 
there is a scale separation between the large scale magnetic field being  generated and the 
small scale convective motions, i.e
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where <...> is an average over small scales. To compute the evolution of the mean field, we 
average the induction equation 
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➢ The extra term can be interpreted as an electromotive force exerted by small scale motions
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➢ We still need to obtain an expresion for the electromotive force, and that requires some 
assumptions (Steenbeck, Krause & Radler 1966).

Mean field theory
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Let us substract the averaged equation from the general induction equation

                 [1]                                                            [2] 

[1] Can be removed with a Galilean transformation. 
[2] It´s a departure from average of a second order quantity (FOSA). 

➢ Let us further assume that this system evolves in a typical correlation time of these 
small scale convective motions.  

➢Therefore

where we neglected the gradient of the large scale magnetic field. 

➢ For an isotropic state of these small scale flows, these tensors become
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➢ The kinetic helicity of convective flows is important for dynamo activity.
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Mean field theory



Simulations

➢ We integrate the MHD equations numerically, using a 
spectral scheme in all  three spatial  directions  (Gomez, 
Milano and Dmitruk 2000; also Dmitruk, Gomez & 
Matthaeus 2003) 

➢ We show results from 256x256x256  runs performed  in 
(CAPS), our linux cluster with 80 cores 

➢ For the spatial derivatives, we use a pseudo-spectral  
scheme with  2/3-dealiasing. Spectral codes are well suited 
for  turbulence studies, since they provide exponentially fast 
convergence.  

➢ Time integration is performed with a second order Runge-
Kutta scheme.The time step is chosen to satisfy the CFL 
condition.



➢ We focus on Fourier-Galerkin methods. Let us illustrate on Burgers equation 

for u(x,t) on the interval                        assuming periodic boundary conditions and 
the initial condition  

➢ We expand in a truncated Fourier expansion 

➢ Demanding zero projection of the solution u(x,t) on the truncated Fourier space 

➢ This truncated expansion                  converges exponentially fast to the exact 
solution as   

However, it is computationally very demanding, it involves                  operations.
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Simulations: spatial integration



➢ The FFT algorithm yields the discrete set         from the set               after                        
floating point operations. 

➢ The strategy of computing spatial derivatives in Fourier space and nonlinear terms  
in physical space, is known as pseudo-spectral, i.e.  

➢ The relation between discrete Fourier coefficients           and the continuous ones is  

➢ This sum causes a spurious effect known as aliasing when computing nonlinear terms. 
Aliasing effects can be suppressed by applying the “two-thirds rule”, i.e.
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Simulations: spatial integration



➢ We advance the solution through discrete time steps 

➢ In compact notation, if      

where F is a nonlinear and spatial differential operator, we use a second order 
Runge-Kutta scheme.  

➢ We first advance half a step 

and use                   to jump the whole step 

➢ This is second order accurate (i.e.                   ). The size of the step is limited by  

the CFL condition, i.e                               for 
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Simulations: temporal integration



MHD 3D dynamos

➢ From mean field theory (Krause & Radler 1980), we know that the turbulent generation of 
magnetic fields (the alpha effect) is proportional to the kinetic helicity of the flow. 

➢ To study this mechanism through direct simulations, we externally drive the flow with a helical 
force at large scales (an ABC pattern), until a stationary turbulent state is reached (Mininni, Gómez 
& Mahajan, 2003, ApJ, 587, 472; Mininni, Gómez & Mahajan, 2005, ApJ, 619, 1019)  

➢ At that point, a magnetic seed is implanted at small scales and the  
3D  MHD equations are evolved (Meneguzzi, Frisch & Pouquet 1981). 
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➢ The boxes show the intermittent 
spatial distribution of positive and 
negative kinetic helicity H, clearly 
displaying a net unbalance.
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➢ The power spectrum of magnetic energy grows in time until it 
reaches equipartition at each scale (Brandenburg et al. 2003).  

➢ The Kolmogorov slope is also displayed for reference. 

➢ The full line is the kinetic energy power spectrum and the 
dotted line is the total energy.  

t = 0

t = 20

Energy power spectra



➢ The power spectrum of magnetic energy grows in time until it 
reaches equipartition at each scale (Brandenburg et al. 2003).  

➢ The Kolmogorov slope is also displayed for reference. 

➢ The full line is the kinetic energy power spectrum and the 
dotted line is the total energy.  

t = 0

t = 20

Energy power spectra



➢ The image on the right shows the spatial  
distribution of magnetic energy. 

➢ The image below shows an initial exponential  
growth stage (kinematic dynamo) for the total  
magnetic energy. At later times it saturates when  
it reaches approximate equipartition with the total  
kinetic energy of the turbulent flow.

➢ As predicted by MFT (Steenbeck et al. 1966), 
kinematic helicity (H) at the microscale 
produces magnetic field at macroscopic scales 
(large-scale dynamos).

Turbulent dynamos 



➢ When forcing is applied at intermediate  
scales, an accumulation  of magnetic  
energy is observed at the  largest scales. 

➢ This behavior is caused by the inverse 
cascade of magnetic helicity.  

➢ The magnetic field at large scales is  
approximately force-free, i.e.
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➢ Small scales, however, are consistent with a strongly 
turbulent MHD regime. 

➢ This configuration can be representative of active 
regions of the solar corona, which are approximately force-
free at large scales and at the same time are being heated 
by a strong MHD turbulence at smaller scales (Gómez & 
F.Fontán 1988)

Force-free equilibria



Conclusions

Today we presented the MHD equations  as a valid description of the large-scale 
behavior of astrophysical plasmas. 

As a first application, we presented the Alpha-Omega dynamos to describe the 
basic features of the solar dynamo. 

Using empirical profiles of differential rotation and meridional flows, we manage to  
reproduce various observed aspects of the solar cycle, such as its period, rise-fall 
asymmetry and sunspot migration toward the Equator. 

Moreover,  considering a stochastic part for the Alpha effect, we not only reproduce 
the irregularities observed in the cycle, but also the potential  occurrence of 
Maunder-like events where magnetic activity on the Sun switches off for several 
decades.  

Finally, we numerically show a turbulent dynamo in action. An initial magnetic seed 
grows to equipartion with kinetic energy, provided that the flow is helical.


